
EE 390 Lab Manual, EE Department, KFUPM

Experiment #3

Arithmetic Instructions

3.0 Objective

The objective of this experiment is to learn the arithmetic instructions and write simple
programs using TASM

3.1 Introduction

Arithmetic instructions provide the micro processor with its basic integer math skills. The
80x86 family provides several instructions to perform addition, subtraction,
multiplication, and division on different sizes and types of numbers. The basic set of
assembly language instructions is as follows

Addition: ADD, ADC, INC, DAA

Subtraction: SUB, SBB, DEC, DAS, NEG

Multiplication: MUL, IMUL

Division: DIV, IDIV

Sign Extension: CBW, CWD

Examples:

 ADD AX,BX

adds the content of BX with AX and stores the result in AX register.

 ADC AX,BX
adds the content of BX, AX and the carry flag and store it in the AX register. It is
commonly used to add multibyte operands together (such as 128-bit numbers)

 DEC BX
decreases the content of BX register by one

 MUL CL
multiplies the content of CL with AL and stores the result in AX register

 MUL CX
multiplies the content of CX with AX and stores the 16-bit upper word in DX and 16-bit
lower word in the AX register

 IMUL CL
is same as MUL except that the source operand is assumed to be a signed binary number

 1

EE 390 Lab Manual, EE Department, KFUPM

3.2 Pre-lab:

1. Write a program in TASM that performs the addition of two byte sized numbers that

are initially stored in memory locations ‘num1’ and ‘num2’. The addition result
should be stored in another memory location ‘total’. Verify the result using turbo
debugger.

[Hint: Use DB directive to initially store the two byte sized numbers in memory locations
called ‘num1’ and ‘num2’. Also reserve a location for the addition result and call it
‘total’]

2. Write a program in TASM that multiplies two unsigned byte sized numbers that are

initially stored in memory locations ‘num1’ and ‘num2’. Store the multiplication
result in another memory location called ‘multiply’. Notice that the size of memory
location ‘multiply’ must be of word size to be able to store the result. Verify the result
using turbo debugger.

3.3 Lab Work:

Example Program 1: Write a program that asks to type a letter in lowercase and then
converts that letter to uppercase and also prints it on screen.

TITLE "Program to convert lowercase letter to uppercase"
.MODEL SMALL ; this defines the memory model
.STACK 100 ; define a stack segment of 100 bytes
.DATA ; this is the data segment

 MSG1 DB 'Enter a lower case letter: $'
 MSG2 DB 0DH,0AH, 'The letter in uppercase is: '
 CHAR DB ?, '$'

.CODE ; this is the code segment
 ORG 100h

MOV AX,@DATA ; get the address of the data segment
MOV DS,AX ; and store it in register DS

MOV AH,9 ; display string function
LEA SI,MSG1 ; get memory location of first message
MOV DX,SI ; and store it in the DX register
INT 21H ; display the string

MOV AH,01 ; single character keyboard input function
INT 21H ; call the function, result will be stored in AL (ASCII code)

SUB AL,20H ; convert to the ASCII code of upper case
LEA SI,CHAR ; load the address of the storage location
MOV [SI],AL ; store the ASCII code of the converted letter to memory

 2

EE 390 Lab Manual, EE Department, KFUPM

MOV AH,9 ; display string function
LEA SI,MSG2 ; get memory location of second message
MOV DX,SI ; and store it in the DX register
INT 21H ; display the string

MOV AX, 4C00H ; Exit to DOS function
INT 21H

END

String output function is used in this program to print a string on screen. The effective
address of string must first be loaded in the DX register and then the following two lines
are executed

 MOV AH,09
 INT 21H

Exercise 1: Modify the above program so that it asks for entering an uppercase letter and
converts it to lowercase.

Example Program 2: The objective of this program is to enter 3 positive numbers from
the keyboard (0-9), find the average and store the result in a memory location called
‘AVG’. Run the program in turbo debugger and verify the result.

TITLE "Program to calculate average of three numbers"
.MODEL SMALL ; this defines the memory model
.STACK 100 ; define a stack segment of 100 bytes
.DATA ; this is the data segment

 msg1 DB 'Enter three numbers (0 to 9): $'
 msg2 DB 0DH,0AH,'The average is (only quotient) : $'
 num DB 3 DUP(?) ;memory location to store the numbers
 average DW ? ;memory location to store the average

.CODE ; this is the code segment
 ORG 100h ; program starts at CS:100H

 MOV AX,@DATA ; get the address of the data segment
 MOV DS,AX ; and store it in register DS

 MOV CL,03 ; counter to take 3 inputs

 MOV AH,9 ; display string function
 LEA DI,msg1 ; get memory location of message1
 MOV DX,DI ; and store it in the DX register
 INT 21H ; display the string

 LEA SI,num ; load the address of memory location num

START: MOV AH,01 ; single character keyboard input function

 3

EE 390 Lab Manual, EE Department, KFUPM

 INT 21H ; call the function, result will be stored in AL (ASCII)

 SUB AL,30H ; subtract 30 to convert from ASCII code to number
 MOV [SI],AL ; and store the first number in this location
 DEC CL ; decrement CL
 CMP CL,0 ; check if the 3 inputs are complete
 JE ADD_IT ; if yes then jump to ADD_IT location
 INC SI ; if no then move to next location in memory
 JMP START ; unconditional jump to get the next number

ADD_IT: MOV CL,02 ; counter to add the numbers
 LEA SI,NUM ; get the address of the first stored number
 MOV AL,[SI] ; store the first number in AL

AGAIN: ADD AL,[SI+1] ; add the number with the next number
 DEC CL ; decrease the counter
 CMP CL,0 ; if all the numbers are added
 JE DIVIDE ; then go to the division
 INC SI ; otherwise keep on adding the next numbers to the result
 JMP AGAIN ; unconditional jump to add the next entry

DIVIDE: MOV AH,0 ; make AX=AL for unsigned division
 MOV CL,03 ; make divisor=3 to find average of three numbers
 DIV CL ; divide AX by CL
 LEA SI,average ; get the address of memory location average
 MOV [SI],AX ; and store the result in the memory

 MOV AH,9 ; display string function
 LEA DI,msg2 ; get memory location of message1
 MOV DX,DI ; and store it in the DX register
 INT 21H ; display the string

 MOV DL,[SI] ; store the result in DL
 ADD DL,30H ; put ASCII code in DL by adding 30H
 MOV AH,02 ; display character function
 INT 21H ; should contain ASCII code in DL

 MOV AX, 4C00H ; Exit to DOS function
 INT 21H

END ; end of the program

 4

EE 390 Lab Manual, EE Department, KFUPM

Exercise 2: Write a program in TASM that calculates the factorial of number 5 and
stores the result in a memory location. Verify the program using turbo debugger
[Hint: Since 5! = 5x4x3x2x1, use MUL instruction to find the multiplication. Store 5 in a
register and decrement the register after every multiplication and then multiply the result
with the decremented register. Repeat these steps using conditional jump instruction]

Exercise 3: Modify the factorial program such that it asks for the number for which
factorial is to be calculated using string function and keyboard input function. Assume
that the number will be less than 6 in order to fit the result in one byte.

 5

	Experiment #3

