
EE 390 Lab Manual, EE Department, KFUPM

Experiment #2

Addressing Modes and Data Transfer using TASM

2.0 Objective

The objective of this experiment is to learn various addressing modes and to verify the
actions of data transfer.

2.1 Introduction

Assembly language program can be thought of as consisting of two logical parts: data and
code. Most of the assembly language instructions require specification of the location of
the data to be operated on. There are a variety of ways to specify and find where the
operands required by an instruction are located. These are called addressing modes. This
section is a brief overview of some of the addressing modes required to do basic
assembly language programming.

The operand required by an instruction may be in any one of the following locations

• in a register internal to the CPU
• in the instruction itself
• in main memory (usually in the data segment)

Therefore the basic addressing modes are register, immediate, and memory addressing
modes

1. Register Addressing Mode

Specification of an operand that is in a register is called register addressing mode. For
example, the instruction

MOV AX,CX

requires two operands and both are in the CPU registers.

2. Immediate Addressing Mode

In this addressing mode, data is specified as part of the instruction. For example, in the
following instruction

MOV BX,1000H

the immediate value 1000H is placed into register BX after this instruction is executed.

3. Memory Addressing Mode

A variety of modes are available to specify the location of an operand in memory. These
are direct, register-indirect, based, indexed and based-indexed addressing modes

 1

EE 390 Lab Manual, EE Department, KFUPM

2.2 Pre-lab:

Using turbo debugger, initialize the registers and memory locations before executing the
following statements and fill the corresponding columns in Table 1.

Example: Initialize AL=10H, SI=30H, BX=1000H, memory location DS:1030H=2AH

MOV AL,[BX+SI]
(see TABLE 1 for the results after execution of this instruction)

a. Initialize AX=200H; DI=50H; memory location DS:58H=9C, DS:59H=9C
MOV AX,[DI+8]

b. Initialize BX=1111H;
MOV BX,2000H

c. Initialize BX=1010H; CX=2222H
XCHG BX,CX

d. Initialize AX=2222H; DI=80H; memory location DS:80H=55H, DS:81H=55H
MOV [DI],AX

e. Initialize AX=1000H; BX=200H; SI=10H; memory location DS:215H=2222H
MOV AX,[BX+SI+5]

f. Initialize AX=0H; BP=100H; memory location DS:102H=11H, DS:103H=11H
MOV AX,[BP+2]

Source Destination
Statement Register/

Memory Contents Register/
Memory

Contents before
execution

Contents after
execution

Addressing
Mode

MOV AL,[BX+SI] Memory 2A Memory 10 2A Based indexed

MOV AX,[DI+8]

MOV BX,2000H

XCHG BX,CX

MOV [DI],AX

MOV AX,[BX+SI+5]

MOV AX,[BP+2]

TABLE 1

 2

EE 390 Lab Manual, EE Department, KFUPM

2.3 Lab Work:

USING AN ASSEMBLER
In Experiment 1, we learned to use the DEBUG program development tool that is
available in the PC’s operating system. This DEBUG program has some limitations.
Program addresses must be computed manually (usually requiring two phases – one to
enter the instructions and a second to resolve the addresses), no inserting or deleting of
instructions is possible, and symbolic addresses cannot be used. All of these limitations
of DEBUG can be overcome by using the proper assembly language tools.

Assembly language development tools, such as Microsoft’s macro-assembler (MASM),
Borland’s Turbo assembler (TASM) together with the linker programs, are available for
DOS. An assembler considerably reduces program development time.

Using an assembler, it is very easy to write and execute programs. When the program is
assembled, it detects all syntax errors in the program – gives the line number at which an
error occurred and the type of error.

We will be using the Turbo assembler (TASM) and linker (TLINK) programs in this lab.
Program Template
The following program template must be followed when using the Turbo assembler to
write programs.

Any line starting with a ‘;’ (semi-colon) is considered a comment and is ignored by the
assembler.

A typical program development cycle using an assembler is illustrated in the flowchart
below.

 3

EE 390 Lab Manual, EE Department, KFUPM

 4

EE 390 Lab Manual, EE Department, KFUPM

2.4 EXAMPLES

Program 1: Enter the following program using an editor. Save the program as
“program1.asm”. Assemble and link the program. Since the program does nothing except
for transferring the contents from one register to another, view and verify the action of
each statement using Turbo Debugger (TD).
Note: You have to create your source file in the directory where the TAMS.exe and TLINK.exe
programs are stored.

TITLE "Program to verify register and immediate addressing modes"
.MODEL SMALL ; this defines the memory model
.STACK 100 ; define a stack segment of 100 bytes
.DATA ; this is the data segment

.CODE ; this is the code segment

MOV AX,10 ;copy AX with hex number 10
MOV BX,10H ;copy BX with hex number 10
MOV CL,16D ;copy CL with decimal number 16
MOV CH,1010B ;copy CH with binary number 1010
INC AX ;increment the contents of AX register
MOV SI,AX ;copy SI with the contents of AX
DEC BX ;decrement the contents of BX register
MOV BP,BX ;copy BP with the contents of BX register

MOV AX,4C00H ; Exit to DOS function
INT 21H

END ; end of the program

In assembler we have to explicitly perform many functions which are taken for granted in
high level languages. The most important of these is exiting from a program. The last two
lines

MOV AX,4C00H
INT 21H

in the code segment are used to exit the program and transfer the control back to DOS.

Procedure (to be followed for all programs):

a. Edit the above program using an editor. Type “edit program1.asm” at the DOS
prompt. Save your file and exit the editor. Make sure your file name has an extension
of “.asm”.

b. Assemble the program created in (a). Type “tasm program1” at the DOS prompt. If
errors are reported on the screen, then note down the line number and error type from
the listing on the screen. To fix the errors go back to step (a) to edit the source file. If
no errors are reported, then go to step (c).

c. Link the object file created in (b). Type “tlink program1” at the DOS prompt. This
creates an executable file “program1.exe”.

d. Type “program1” at the DOS prompt to run your program.

 5

EE 390 Lab Manual, EE Department, KFUPM

Program 2: Write a program for TASM that stores the hex numbers 20, 30, 40, and 50
in the memory and transfers them to AL, AH, BL, and BH registers. Verify the program
using turbo debugger; specially identify the memory location where the data is stored.

TITLE "Program to verify memory addressing modes"
.MODEL SMALL ; this defines the memory model
.STACK 100 ; define a stack segment of 100 bytes
.DATA ; this is the data segment

 num DB 10,20,30,40 ; store the four numbers in memory

.CODE ; this is the code segment

 MOV AX,@DATA ; get the address of the data segment

MOV DS,AX ; and store it in register DS

LEA SI,num ; load the address offset of buffer to store the

MOV AL,[SI] ; copy AL with memory contents of ‘SI’, i.e. 10
MOV AH,[SI+1] ; copy AH with memory contents of ‘SI+1’, i.e. 20
MOV CL,[SI+2] ; copy CL with memory contents of ‘SI+2’, i.e. 30
MOV CH,[SI+3] ; copy CH with memory contents of ‘SI+3’, i.e. 40

MOV AX, 4C00H ; Exit to DOS function
INT 21H

END ; end of the program

The directive DB ‘Define Byte’ is used to store data in a memory location. Each data has
a length of byte. (Another directive is DW ‘Define Word’ whose data length is of two
bytes) The label ‘num’ is used to identify the location of data. The two instructions

MOV AX,@DATA
MOV DS,AX

together with LEA SI,num

are used to find the segment and offset address of the memory location ‘num’. Notice that
memory addressing modes are used to transfer the data.

 6

EE 390 Lab Manual, EE Department, KFUPM

Program 3: Write a program that allows a user to enter characters from the keyboard
using the character input function. This program should also store the characters entered into a
memory location. Run the program after assembling and linking. Verify the program using turbo
debugger, specially identify the location where the data will be stored.

TITLE "Program to enter characters from keyboard"
.MODEL SMALL ; this defines the memory model
.STACK 100 ; define a stack segment of 100 bytes
.DATA ; this is the data segment

char_buf DB 20 DUP(?) ; define a buffer of 20 bytes

.CODE ; this is the code segment

 MOV AX,@DATA ; get the address of the data segment
 MOV DS, AX ; and store it in register DS

 LEA SI, char_buf ; load the offset address of char_buf

AGAIN: MOV AH, 01 ; function for character input from keyboard
 INT 21H ; ASCII value is returned in the AL register

 MOV [SI], AL ; transfer the character typed to memory

 INC SI ; point to next location in buffer
 CMP AL, 0DH ; check if Carriage Return <CR> key was hit
 JNE AGAIN ; if not <CR>, then continue input

 MOV AX, 4C00H ; Exit to DOS function
 INT 21H

END ; end of the program

The directive DB when used with DUP allows a sequence of storage locations to be
defined or reserved. For example

DB 20 DUP(?)

reserves 20 bytes of memory space without initialization. To fill the memory locations
with some initial value, write the initial value with DUP instead of using ‘question mark’.
For example DB 20 DUP(10) will reserve 20 bytes of memory space and will fill it with
the numbers 10.

The Keyboard input function waits until a character is typed from the keyboard. When
the following two lines

MOV AH,01
INT 21H

are encountered in a program, the program will wait for a keyboard input. The ASCII
value of the typed character is stored in the AL register. For example if ‘carriage return’
key is pressed then AL will contain the ASCII value of carriage return i.e. 0DH

 7

EE 390 Lab Manual, EE Department, KFUPM

2.5 EXERCISE

Write a program in TASM that reserves a memory space ‘num1’ of 10 bytes and
initializes them with the hex number ‘AA’. The program should copy the 10 bytes of data
of ‘num1’ into another memory location ‘num2’ using memory addressing mode. Verify
the program using turbo debugger.

Hint : Use DB instruction with DUP to reserve the space for ‘num1’ of 10 bytes with the
initialized value of ‘AA’. Again use DB with DUP to reserve another space for ‘num2’,
but without initialization. Use memory content transfer instructions to copy the data of
‘num1’ to ‘num2’.

 8

	Experiment #2

