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INTRODUCTION

The use of Liapunov's direct method for determination of power system stabilily
has been reported in the literature over @ number of vears.»? Because of the

higher orders of power system equations, explicit exprassions of Liapunov functions
are not usually reported. It is felt that o few worked-out examples will help final-
vear undergraduates, whe are sufficiently familiar with control theory, in the use

of Liapunov functions for the determination of power svstem stability, Since the
standard texts consider examples of only up to third-order or so, these examples
will also serve as illustrations of higher-order systems for an introductory course

on modern contral far postgraduate students,

A synchronous generator having a fast response, high gain exciter and feeding an
infinite bus through a double circuit transmission line has been considered for this
study. Such generators on load result in slowly growing oscillations necessitating
additional stabilizing signals for satisfactory performance®. The stability of the
system has been examined with and without auxiliary stabilizing signals through
the direct method of Liapunov considering both linear and nonlinear system
equations. The variable gradient method™® with some modifications, bas been vsed
for the nonlinear model.

THE DIRECT METHOD OF LIAPUNOWV
Consider a system which can be represented by the following differential equation

X=£Xx), flo)=0 (1)

where X is u state vector and fisa continuous function of X The direct method of
Lizpunoy states that equilibrium states of equation (1) are stable if it is possible to
determine a scalar F(X) such that F(0) = 0 and the derivative of the scalar function,
V(X), is of sign opposite to V(X or vanishes identically. The function V(X iz
called a Liapunov function®,

Expanding f{X) in a Taylor series shout the equilibrium state X . and retaining
only the first-order derivatives, the linearized equation can be expressed as

Y¥=AXx (2
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where X now represents the variation of the states from the equilibrium values and
A s the Jacobian which depends on X, Consider 4 to be a real and nonsingular
malrix,

A negessary and sufficient condition for X = 0 to be an assymptotically stable
solution of equation (2), in the neighborhood of the equilibrium state where the
linearization is valid, is that there exists a real symmetric matrix P satisfying the
equation?

ATP+ PA= (3

where [ is the identity matrix. The sealar function F(X)= X"PX is a Liapunov
function for the system represented by equation {2). Differentiating the expression
for ¥ and substituting equation (2), it can be easily shown that F(X) = —XTX, which
is of opposite sign to FLX).

For large perturbations from equilibrium states, the first-order approximation is
not valid: To obtain representative functions in such cases, the nonlinear dynamics
should be taken into consideration. One of the methods which provide a svstematic
approach for generating a Liapunov function is a variable gradient method of
Schultz and Gibsan.** The method is based on the fact that if a particular Liapunov
function (L.F.} exists indicating stability of the equilibrium state, then its gradient
also exists. Assume V' to be an explicit function of X, Then its derivative can he
expressed as

% ap‘ - aV - aV i s o ¥
=y ot e i B LnidiN - T
a_]:u., 5 T‘f-z g 3 X (VT x ()

where the gradient of ¥ is assumed to be & combination of variows states and is given
as

gy _ 1
a_xl ""T"‘V. Ly +|C'|_2x: 5 RN, ‘-:.',,,xn
oF »
E VF: OV B Y o iy SR ERP R i 5 o
I;"I"'E . = ’ = - : . {5}
ar
aT I\vVn ChpXy + CpaXz LT Ay o Coan®n
n

s are completely unknown quantities,
Visabtained as s line integral of W1 as

.
V=f (vinT X (a)
L]

The integral can be made independent of the path of integration and is writien in the
expanded form as
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gplag =y = =x,=0) ol =x 8, T, 5T X, T
V=I ?P'ldx, o J— '?V:u'x;
] [+
T M T S/ TELTU {TT Ll E | TN
.be WV, dx, {7}

In order to obtain the scalar 1 from the ling integral of the vector function 7§

uniguely, the following & matrix formed by gfi
!
Cavr, ATV, H?V1.|
ax,, EI..T-E ' o o ﬁxn
DV BV, 0V,
F=| ax, iy VR R e &)
VY, Ay, avy,
B.)c, a.x;._ a.x"

must be symrmdetnic,

SYSTEM REPRESENTATION

Fig, | gives a block diagram of the synchronous generator-infinite bus system
considered,

The differential equations for a 46 MW synchronous generator as taken from
reference [7] are

Pf,fd = 40013 ifa —22.233 1+ 36991 + mi, 29844 sin 5+ 0.711 Eqy
gy =—1519] Ieg —27.376 1+ 455:22(1 + )y 36BN S + 0271 £,

,LI'Eqr = |T1.3775{1 + .*r;'li"‘,.-'ﬂ1 — 451 406(1 +n)i,; - 32.{3?2iw — 305 o b ()
prn =—09360, 1 + 004067, +K
ph =37Tn

where i, iy, i, are the field current, direct and quadrature axis armature currents
respectively. &, n and £, are the torque angle, per unit speed deviation of rotor and

Exciter Generator »Tr. Linel—t Bus

FiG. 1
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normnalized field voltage, The first three equations are obtained by combining Park’s
equation for the synchronaus generator with the transmission line equations. The
last two are obtained by breaking the second-order electromechanical equation (swing
equation) of the generator, The excitation system is assumed to have a single time
constant T, the value of which is taken to be 0.01 25 sec. For a gain K, the exciler
dynamics can be expressed by the equation

P, = -80K e + 80K U 1)+ 8O(L,,, + K., ) — BOE (10}

£ e
¢, 15 the terminal voltage of the generator and £z} is the additional stabilizing signal
(see Fig. 1), Linearization of equations (9) and (10) about the equilibrium state
lirso fdo fgo 18, Eggy] = [1.78 0.3 0.718 0 60° 1] vields the following set of first-
order differential equations

Py 040013 22233 3697 00 -14452 0711 T[]
pii, ~015191 —27376  455.22 0.0 —184.155 027 Ai,
phi, |=| 1713775 —451.406 22672 00 2638 0D ai,
pr —0.0687 002988 0211 00 00 00 Y
pAS 0.0 0.0 00 377 00 00 b
P | | -2779K,  1225TK, 252K, aw 22.53K, (0003K,-80) Ak,
(11}

whereges = 80 K_ Ullr)/n, U,(1) is 2ero in the absence of a stabilizing signal or edualy
20 times the per unit speed deviation signal.

L.F. FOR THE LINEARIZED MODEL
For a given 4, the matrix equation

ATP+PA =T (12}

-

was solved Tor P by the Gauss Jordan method with normalization. Several cases were
considered with and without automatic voltage regulator (a.v.r.) action and stabilizing
signetl L.(1). The P matrix obtained in each case was tested for positive definiteness hy
Svlvester's criterion,”

(i) Without a.v.r. action: In the absence of voltage regulator action, the linearized
representation reduces to five frst-order differential equations, the last row and
columns of the matrix in equation (11) being zero. The positive definite symmetric
matrix P corresponding ta this 5 X 3 4 matrix is

3.6%90 4.6468 —000015 15,993 3859
—4 647 37176 000019 20417 3.155
F= —000015 —000019 003445 =227 0017 (13)
—159978 20417 20127 16204867 —0.00132
3839 3155 001708 ~(.00132 50364

(ii) With a.v.r. action: The A matrix considering voltage regulator action is given in
equation (11). The corresponding positive definite £ matrix for K, = —2 and
stabilizing signal U (1) =0is




8306 —6.838  —(.0014 —66. 788 HOLG 0454
—G.838 J.621 ~0.0003 70837  —T7.0194 —0,037
—0D.0014 00003 00348 —4465 —0.0276 —0.0005
P=1 687 7083 —4.465  3p453.87 00013 —0.09 | (14)
g6le 7019 00276 —0.0013 11,298 0.0552
L 00454 0037 —0.0005 —0.004 005352 00065

(i) With av.r. and stabilizing signal: For K, = —100 and U (¢) = 20 times rotor
speed deviation, the positive definite P mateix is

5652 —47.31 0.087 263044 306 0065
—47.31 3992 0.0805 223153 190 -0.0554
P= 0.0878 00805 02415 —16.129 -0.555 00229 (153
—263044 2231 53 -16.12 19142.12 908.07 —-2.139
— 30607 29039 —{0.555 S08.07  ZHES 0099
0.065 —{,0552 D.0229 21396 0099 0.0066

It can be seen that in all three cases the respective Liapunov functions ¥ = Y7 pX
are positive definite, their derivatives ¥ = —XTX being negative definite, With av.r,
action, the problem was solved for a large number of exciter gains and it was observed
that in the absence of stabilizing signal the matrix P obtained from solution of
equation (12) is not positive for magnitude of gain greater than 3.8, As a check, the
eigenvalues of the linearized system were tested for unstable cases according 1o the
first method of Liapunov. [The first method of Liapunov states that if the real parts
of the eigenvalues of the A matrix obtained by linearization of the original nonlinear
equation are nanpositive, then the equilibrium state is stable, But this applies only
in the neighborhood of the equilibrium state.] However, with an additional feedback
sipnal proportional to shaft velocity, the eguilibrium states are stable even for guite
large values of exciter gain.

LF, FOR THE NONLINEAK MODEL

In order to generate a Liapunov function for the nonlinear model by the variable
gradient method, the following procedure was followed,

1. V¥, the gradient of ¥, is assumed to be a combination of the different states as
given in ¢quation {5).

2. Some of the coefficients in the expression for V¥ are determined by constraining

V=WV pigg + VWapigt .o ... + VVep By (16)

to be negative definite or al least negative semi-definite,

3. The remaining unknown coefficients in 71 are obtained from the 15 curl equations
(for the sixth order system} from the symmetry of the £ matrix given in exXpression
(8).

4. Vis rechecked as the addition of terms reguired in step 3 might alter it, ¥ is then
abtained by performing the line integration shown in equation (7)., This ¥ function
must be positive for assymptotic stahility,

(i) Withour a.v.r. action: To satisfy the curl requirement on the £ matrix, the lollow-
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ing assumptions on the c;'s were made to find the L.F_ far the nonlinear machine
equations without ay.r, as given in équation {9},

@y ¢y =1ty hi=1,2,..°5
b)) ¢, >0 i=1,2, ..4
() e Zlegf=1.2 200y 0= 1,2,3)> (17)

C'qlh_f.: 1,2, 4= [CS‘IIH'I-= 12, 5-:'

Assurnptions (b) and (¢) were made 10 make ¥ positive definite. Substituting the
values nFt:H, the expression for ¥ ogiven by

V="V, pigy + TV piy + V5 piy + WV p,, + TVs pi (18)

is tested for negative definiteness. The values of ¢, for the equilibrium state [2.473
(L5664 0,734 0 607] are:

3872 —402F —1.28 -10 140
—425 4025 128 10 1.0
—-1.28 1.28 125 1.6 1.0 (19}
-10 1.4 1.0 g 14
—-10 1.0 1.0 10 —0,282

The Liapunoy fungtion obtained is
V=09325i,0 + 1375 (i, + i) + 014 (= iy + iy + 1)
FOS(—igy iy +i, +n—02028) (20

which is positive definite, The V¥ function is negative definite only in the neighbour-
hood of the equilibrium state, The limiting values of states for which F < () were
obtained by a computer programme searching a particular axis while others were
kept at their equilibrivm values. The boundaries obtained were

Ly =30024,i,=1 .15]4-3.1'_,;I =1.003, n=0047, 6= 2012 rad.

(ii) With a.v.r. aorion: Considering vollage regulator action but () =10, the ;' for
the synchronous machine exciter system obtained by the same procedure are (for
£K_==3y

¥

164399 1172 —3.02 —292 10 —1.0 |
11.72 1153 '90F 282 10 10
302 302 302 292 10 10 (21)
292 292 292 292 10 10
10 10 10 10 1D 1.0
| —1.0 10 10 10 10 566

The Liapunov function is

4

V'=2359900," + 435 (~ gy Hi)P 05 (= iy +iy +4,)7

F096 (—dey F g +ig t 0y +O05(—ipy +iy+i, +n+8—566F,) (22)
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The boundary states are: lrg =3.1213,1, = 16102, 1= 10321, n=00458,86 = 2.14
rad..ﬁ'_rd =322
(iii) With a.v.r. and stabilizing signad: Withoa.y r_action, K,=-20and U (r)=20 K n,
the e'sare
6721 4329 302 282 1.0 —10
4,729 473 302 2182 1.0 1.0
—3.02 302 30z 282 10 10 (23)
-2.82 282 T2 282 10 10
-1.0 1.0 1.0 1.0 10 1.0
—1.0 L0 14 [ .0 1.0 0029 ]

The Liapunov function
V=0995 ig, " + 0854 (—ipy + i) 4 0.096 (—igy +iy +i,)" +0914
(—dpg +ig+ iy +n)' + 05 (—igy Hig+ B +n+8+0029 E,) {(24)

is positive definite for all states. The boundaries for < 0 as determined by the
procedure discussed are;

g =3.7321, 5= 1_6281=Eq = L0021, n=0042 6 =2.028 rad, £, =4.21

The stability of the equilibrium states with & nonlincar system model was also
investigated for a number of exciter gains in the range 0 to 1000, For magnitude of
gain greater than 4, it was not possible to generate a positive definite Liapunoy
function in the absence of a stabilizing signal. As in the Unearized case, addition of
signal proportional to veloeity of the shaft resulted in convergence of the algorithm,
For large gains the region in which ¥V < 0 narrows down and the iteration required
to obtain a ¥ function increased significantly.

CONCLIUSIONS:
The stability of a few equilibrivan points of 4 synchronous generator infinite bus
power system probleim has heen examined through the diréct method of Lizpunoy.
Considering both linear and non-linear models, it was observed that the system can be
operated with a relatively large exciter gain if a signal proportional to speed variation
of the machine is used in addition 1o normal voltage regulatar action,

To obtain a Liapunov tunction for the linearized model is relstively simple, But the
results obtained by this first approximation of the nonlinear svstemy apply only in
the neighbourhood of the equilibrium state. The Liapuniov function obtained for a
nonlinear model is aggin not unigue: different functions may exhibit different
regions of stability. The complexity of the problem incredses with higherorder
systems. A good first guess of the unknown coefficients from physical considerations
ol the system and an efficient algorithm of updating these coefficients help to reduce
the number of iterations required to generate a satisfactory function.
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ABSTRACTS-ENGLISH, FRENCH, GERMAN, SPANISH

A few Liapunov functions for a synchronous generator infinite hus pawer system problem
The transient stability of a single-machine infinite bus power system problem was examined
thraigh the direct method of Liapunov, It was abserved, through the direct method, that

the system can be operated al & larger exciter gain if an additional feedhack signal proportions
to shaft speed deviation is used.

Quelques fonctions de Lyapounov pour le probléme du générateur synchrone rccordé 2 un

régean infing

Lz stabilité transitaire d'un seul générateur raccordé & un réseau de puissance infinie est éludite
par la méthode directe de Lyapounov. Grice i cette méthade directe, on peut sbserver que le systéme
Peut opérer svec un gain plus élevé de Vexcitatsics s un signal de contréle supplémentatre, pro-
partionnet 4 la variation de vitesse, vst utilisé,

Einige Liapunov-Funktionen fiir gin lnselbetrichproblem cines Synchrongenerztors

Lie transients Stabilitit bei einem Insclihetriehproblem einer Einzelmaschine wird mittels der
direkten Methode von Liapusoy untersucht. Durch diese direkte Methode wurde gefunden, dass
das Bystem mit einer héheren Errcgerverstitkung betrichen werden kann, wenn ein zusiteliches,
der Wellengeschwindigkeitsabweichung proportionales Rickfiihrungssiznal henutzt wird,

Algunas funciones de Liapunov correspondientes al problema de un generador sincrone conectado
a una barra de potencia infinita

Se estudia la estabilidad transitoria del problema clisico de una maquing conectuda a una barra de
potencia infinita, aplicando el método directo de Liapunov, Se observa, mediante el métodao
directo, que el sistema puede operar con una mayor ganancia en la excitacion si se wtiliza una
sefial adicional retroatimentada proporcional & la desviseion de velocidad del s



