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ABSTRACT:

Optimum switching strategies for dynamic braking resistor and shunt reactor is pro-
posed for transient stability of a single machine infinite bus power system. The strategy is
derived through a novel method of ransforming the nonlinear dynamic model of the
system to linear one. The simple optimum strategies derived from the linear model was
observed to be very effective in stabilization.

1. INTRODUCTION

Power systemn stability problems can be broadly divided into two types the transient
stability associated with large disturbances or changes in the network, and steady state and
so called dynamic stability when small changes are involved. A number of measures for
enhancing the perturbed $ystems are reported in the literature. Amongst these, the dynamic
hraking resistor is a widely known tool for ransient stability improvement [1,2]. Applica-
tion of braking resistor devices through a novel control technique is addressed in this
article.

The braking resistor can be considered as a fast load injection to absorb excess tran-
sient energy of an area when the machines accelerate following a disturbance. The resistors
are switched off when there is a deceleration. A modification was suggested by Aliyu [3]
who reported significant improvement in ransient by switching in a reactor thus reducing
the electrical power output when the machines were generally decelerating. Further inves-
tigations on switching of the resistors and reactors for transient control also have been
reported [4].

One problem associated with the brakes is determination of the instant of switching
in and out of these devices so that ransients are controlled most effectively. Because tran-
sient stability analysis requires nonlinear modeling of the power system, a closed loop
optimal switching strategy normally cannot be armived at. In this article a procedure is
proposed which transforms the nonlinear system dynamics to a linear one. The optimal
switching strategy for the linear system is then obtained in a more straightforward manner.
The minimum time switching sirategies are obtained for a simple single machine problem,
considering only the nonlinearities of the electromechanical swing equation of the genera-
tor.

Elactric Machines and Power Systerns, 21:543-555, 1993 543
Copyright & 1883 Taylar & Francis
Q731-35620793 $10.00 + .00



STRATEGIES FOAR DYNAMIC BRAKING RESISTOR-REACTOR 545

3. DYNAMIC MODEL OF A SINGLE MACHINE POWER SYSTEM

A synchronous generator feeding an infinite bus power system over a double circuit
transmission line is shown in Figure 2, The system is assumed to be equipped with
dynamic braking resistor and switchable reacior &t high voltage side of the generator rans-
former.
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FIGURE 2: Single Maching Infinite Bus Sysiem

In transicnt stability studies the time of interest is very small. As first approximation,
stability information can be obtained from consideration of the system dynamics through
the simple electromechanical swing equation -

M &%t + D d8dt = P, - P, - P, (3
where P, and P, are the mechanical input power, and electrical ourput power of the gener-
ator (without the brakes) respectively, 8 is the rotor angular position; M and D are the pen-
erator ingrtia and damping coefficient respectively. Py is the power absorbed by the
switchable brake.

The output power P, can be expressed approximarely as

P, = %siné (4)

where E, ¥, and X are the intemal voltage of the generator, bus voltage, and the reactance
between them. Equation {3} then can be broken up as

§ = Aw
. E EV 1 0D Aw
= = - =g 5 = — - 5

A M Fa; 51 o P, M {5
Ao is the change in frequency.
By assuming & = P,, — P, then equation (5) is of the form (1) with

At 0
= EV oA : =

f —sinb — v £ =) (6}
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2. THEORY

In this section, the method and underlying ideas for the construction of & linear trans-

formarion for a special class of nonlinear systems will be discussed. Consider the class of
nonlinear systems

i=flxi+giriu {1)

where 1 s a scalar input, % is an n-dimensional vector, f and g are smooth vector fields,
and f(0) = 0. Recently there have been considerable amount of research [5-9] deal with the
problem of finding 2 transformartion, T, that will transform the systemt of form (1) into a

particular linear system, that is, a series of integrators (Fig. 1). Expressed in state space
form it is

i=Az+hv (2

where £ = T{x}, A and b are matrices of dimensionsn ¢ nand n x | respeciively, They are
of the form
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Figure | gives a block diagram showing the transformations involved. Linear sysiem
theory can be used to design the controller shown.
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FIGURE 1: Transformation into Linear System

The mathematical theory behind this transformation, as given in reference [6] is preg-
ented in Appendix A, Here, in this paper an application of the above simplified procedure
is considered for a simple power system problem.
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4, THE TRANSFORMED SYSTEM MODEL

When a large disturbance appears in a power sysiem, it may even be first swing
unstable if proper control action 15 not taken fast enou gh. The optimum control problem for
transient stability enhancement can be formulated 5o as 1o minimize the transient duration,
or minimization of

iy
J =f dt Q)

The control problem can be stated as: Given the system of equations (5) find admissible
control u which is limited by some upper and lower bounds

Uy, Sl S (8)

So that the system has a transition from the initial to some target state minimizing the func-
tional (7).

Through the control problem can be solved through open loop iterative procedure,
the optimal u cannot be determined as a function of the states even for this second order
nonlinear system. The following analysis shows how a linear model for this system is
arrived at and the optimum control is then derived from the linear system. Motice that this
is not a small signal linearization (or quairlinearization) process as is often reported for
nonliner systems.

The first step of the design procedure requires us to establish the linearizability of the
single machine system. The lie bracket (refer to Appendix A)is given 25

gg .. _ of
Lf.21 ~ a8
X
—_ M g
=15 (9
M?

Next, check the following two conditions of the linearization theorem,

Condition (i). A simple calculation shows that the set [ g, [f, g1} is linearly inde-
pendent sctin R? provided that M = {},

Condition (ji). The second set of vectors which actually consist of g only is
obviously involutive,

Since condidons (i) and (i) are satisfied, thersfore system (5} is ransformable into
linear systemn of form (2) with the matrices A, and b are 2 x 2 and 2 x 1 respectively,

The ransformation T=(T,,T,.T.) which carries system (5) into & linear sysiem of
form (2) is constructed as follows [7]. From equation (A7) in Appendix A we write,
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45 -1
els M
do =[f.gl= D (10}
ds M?
with 5(0)=0, and @(0) =0 wobtain§ = -tsand & = %s.meM.E}wecan
arrive at the following
i 0
dty g |
dawm| 27 W G
dr,

with 8(s,0) = 8(s) and Aw(s,0) = Aw(s) to obtain §=~ s and A = +r + %s,

Finally, by setting T, =sand = —:—‘5 from (A.4) we have the ransformation

o= 8,
T, = MAwm,
aiid n:%}sma ¢ DA - u (12)

To demonstrate that such a transformation does indeed transform system (3) into a
system of the form (2), let 5y = Ty, 2, =T4, and v =T, Then

4z, daT, 98

7 = my = Mae =T, = g {13.2)
and

dz, Ty dAw ~Zsind - DAm + u

= = T = - X = =

dr dAw o # [T} b v 34)

Thus the ransformed system is linear sysiem.

5. MINIMUM TIME DYNAMIC BERAKING CONTROL

Having mansform the power system model (5) into a linear systerm we are in a posi-
tion to apply any linear design technique 1o stabilize the transformed system which in tumn
will stabilize the original system.

A power system s said to be stable if, following a disturbance, it returns to a state of
equilibrivm. Although, in theory, the system can take an infinite amount of Gme to return
te equilibrium, itis necessary that this happens in a finite interval of time in practice. By an
equilibrium state we mean a condition where the angular velocity and acceleration are
zero. Also, the sieady-state torque angle of each generator connected to the system must be
less chan 907 with respect to the chosen frame of reference.
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In transient stability problems, the objective is to restore the power sysiem near its
equilibrium state in the shortest possible ime. One way of achieving this objective is o
switch the braking resistor/ractor optimally and the problem then can be defined as fol-
lovrs:

Given the sysiem described by equation {13), and the target set 5, defined fora >0
by the relation:

3, = fizmy & =0 <025 5 5, £ 0} (14)
Find the control vt} which minimizes the cost function (7) and mansfers the system from
any initial state to 5, at the same time satisfying the inequality constraint.

Voo o5 vty = v (15}

|Mote that the range in equation (14) corresponds to 0, 8{r) < ;—t and Az =0]
The comtrol vii) is related to wir) by the ransformation

V
vt} = E? sind + DAw - u (1)
w=F, =P, is limited by an upper and lower bound from the limits of P, given as

0P, <1 (7

The bounds on &, in turn, decide the maximum and minimom allowable values of wil.

This is the minimum time problem of the so-called double integral plant [11] for
which the switching curves are given by

1

E =5 - Evm,‘z: {z; =)

2 o= g - j—l-zf + 0025 (>0 (18)
A T

and £ = £, 05, E s the switch curve. The control is given by
y=1 ¥o(z.5) & RyUE

man

v=v_, ¥V (z,2) & R, UL (19

where Ry and R; are regions divided by the switch curve I as shown in Figurme 3.
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L2

FIGURE 3. Switch curves in z; z, plane.

The steps involved in realization of the conmoller would be

I. Measure stares x; and  x..

2. Find z, and z; in terms of x, and x; .

3. Determine the location of states in the z; - 2, plane (R, R; or on the switch curves).
4.  Depending whether vis v orv determine if P, is 1 or 0.

5. If Py =1 switch in the braking resistor {reactor off),

6.  If P, =0 switch in the reactor (resistor off).

Not that when the reactor is switched in, the machine output power will be virmally
zero. v, is calculated on the basis of this assumprion.

6. RESULTS

The proposed tme optimal braking resisior control strategy through the linear model
was tested on the single machine infinite bus system given in Fig 2. The system data and
the operdting points considered are in Appendix B. The control was tested for 3-¢ faults of
different durarions on the high voltage bus of the ransmission link, The faults were cleared
by opening breakers on the transmission line, isolating a section of it. Resulis for only two
sample cases are presented here.

The rotor angle variation of the generator for a fault duration of 0.22 secis given in
Figure 4 while Figure 5 shows the ransient frequency variation following the fault. The
fault duration was chosen such that the system is just unstable for this particular operating
condition. The optimum brake controls stabilize the ransiently unstable system in a frac-
uon of a second, withour virtually any oscillation. There is no control action when the fault
is on. Figure & shows the varation of control. The braking resistor is swirched in first
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FIGURE 4: varition of rotor angle with time following a three phase fault of .22 sec dura-
tion, with (a) no control (b) proposed controd,

g 15 . .
=

E 1w

g s

o

£ 0

5

= -5

T

_'“] i i

“ a 1 2 3

TIME (sec)

FIGURE 5: varition of the frequency with ime following a three phase fault of 22 sec
duration, with (2) no conmol (b) proposed control.
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FIGURE 6: vadation in the control v corresponding to Fig, 4
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OUTPUT POWER, p.u,

FIGURE 7: wariation in the output power with ime corresponding to Fig. 3, with {a) no
control (b) proposed control
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FIGURE &; wvarition of rotor angle with time following a three phase fault of .18 sec dura-
dan, with (2} no control {b) proposed contral.
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FIGURE @: wvarition of the frequency with ime following a three phase fault of .18 sec
duration, with (&) no control (b) proposed control.
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followed by switching of reactors. When the resistor is switched in, reactor i off and vice
versa, Notice that the maximum and minimum values of v are not exactly constant because
of the dependence of v on the transient power variations dictated by equadon (16}, This, in
essence, introduces a small degree of suboptimality in the algorithms {18) and (19). Figure
< exhibits the variation of the output power of the machine for both controlled and uncon-
rrofled cases.

Figure 8 gives the angle variation for a 0.18 sec fault duration on high voltage bus,
The machine has a slightly higher load in this case (operating point 2 in Appendix B), The
coresponding frequency variation is shown in Fig. 9. Variation of control in Fig. 10 shows
that again only one set of {(optimal) switiching of the resistor and reactor stabilizes the tran-
siently unstable system in a very short fime.

1 ' 1

=
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I

CONTROL, p.u.
=
Lh
T
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TIME (5ec)

FIGURE 10: variation in the control v corresponding to Fig. 8.

7. CONCLUSIONS

A coordinated dynamic braking-resistor-shunt-reactor switching strategy has been
used to stabilize a ransiently unstable single machine infinite bus power system. The con-
trol algorithms have been derived by converting the nonlinear dynamic model to a linear
orie through a novel technique. The minimum fime swilching strategy for the transient
stability problem is then obtained from simple linear control technigues. The resisior-
reactor switching control was so effective that only one optimum switching of each stabi-
lized the system in  fraction of a second eliminating the osciliations almost completely,

The switching strategy was obtained considering an approximaie dynamic model of

the system. Application of the method considering higher order dynamics and alse mult-
machine system studies are under consideration,

#. REFERENCES

1.  W.H.Croft and R H. Hartley, "Improving Transient Stability by use of Dynamic
Braking", [EEE Trans. on Power App. & systems, Vol. PAS-39, pp 17-26, 1962,

2. K. Yoshida, "Development of System Damping Resistor for Stabilization of Bulk
Power Transmission”, Elect. Eng. in Japan, Yol. 91 No. 93, pp. 79-90, 1971.



STRATEGIES FOR DYNAMIC BRAKING RESISTOR-REACTOR 553

10.

kL

U.0. Aliyu and AH. El-Abiad, "A Local Control Strategy for Power Systems in
Transient Emergency State, Part I: Functional Design”, IEEE Trans. Power App. &
System, Vol PAS-101, pp. 4245-4253, 1982,

A FL.M.A. Rahim and D.H. Alamegir, "A closed-loop Quasi-optimal Dynamic Brak-
ing Resistor and Shunt Reactor Control Strategy for Transient Srability”, [EEE Trans.
Power Systemn, Vol.3, No.3, pp. 879-886, 1988,

A.J, Jakubczyk, "On Linearization of Control Systems”, Bull. Acad. Polon.5c1.Math.,
Vol 28, pp.517-521, 1980,

R. Su, "On the Linear Equivalents of Nonlinear Sytems”, Syst. Contr. Lett., Vol 2,
pp.48-52, 1982.

LK. Hunt, B, Su, and G, Meyer, "Gloval Transformations of Nonlinear Systems”,
[EEE Tran. Automat, Contr., Vol AC-28, No.1, pp. 24-31, 1983,

B.W._ Hrockett, "Feedback Invariants for Nonlinear Systems”, IFAC Cong., Helsinki,
Finland, pp 1115-1120, 1978.

H A In-Joong, A.K., Tugcu, and N.M. Boustamy, "Feedback Linearization Control
of Vehicle Longindinal Acceleration”, [EEE Tran. Automat. Contr. Vol. AC-34,
No.7, pp. 689-608, 1989,

W.M. Boothby, An introduction to Differential Manifolds and Riemmanian Geome-
ry. New York: Academic, 1973,

M. Athans, and P.L_ Falb, Optimal Control, New York: McGraw-Hill, 1966,

9. APPENDICES

APPENDIX A

Theorem: The svstem (1) is ransformable to system (2) if and only if

ijthe marix { g, [f el .. o {ad" 'f, 2 )}has rank n in some neighborhood of the ori-
gin R*, and

iiythe set of vector field { g, [ £ gL . . . (ad"7*f, g)}His involutive in some
neighborhood of the origin RS

where, the Lie bracket of the two vector fizlds fand g is defined as

[f.g] =(@gsox)f — (dfidx g (4.1}

with g /dx, and afidx denoting n x n Jacobain matrices. Also,

(ad’f.g)=2¢
{ad'f.g)=1f.g]
(ad’f.2)=[f.1f.2]]

(ad"f,g)=1f.(ad" " 'f.g)). (A.2)
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A set of vector fields { f;, 2 . . . . fa | on R* is said 1o be involutive [10] if there exist
scalar functions o (x) such that

Ul = ia,uﬂ[xl, 1sijsm, i#]. (4.3)

It was shown in {6] that if the desired transformation, T={T|,Ta. . .. T Ta ), exist the fol-
lowing partial differential equations must hold:

<dlg> = 0
gdT. 0z = T f=1,...n=1

{drl'f_'-gu} = TJIH-I m'dj

where dT, is the gradient of T, with respect to the vector of independent variables x, and <,
> is the inner product. Note that T, T, . . ., T, are functions of x only while T, is function
of x and u this leads to a set of n-1, first order partial differential equations for 1)

<dT, (ad'f,g)> = 0 k=0,..,n-2 (A.5)
with the addifional property

<dl, (ad" 'f.g)> # O (A.6)

A solution of the preceding set of partial differential equation will give the requined
transformation. Normally this salution is not unique since no initial conditions are speci-
fied. Equations (A 5) and (A.6) can be solved by reducing them to systems of first order

partial differential equations {7). This can be achieved by introducting the parameters 5, f,,
f3. oy feg 25 follows. Forall 5 € R we solve

& (ad™ f.g) (A7)

with inizial conditions x{0% = 0. Then for every f, € R we solve

elx

alaa _ n=2
dr, (ad™"f.8) (4 .8)

with initial conditions xs.0) = x(5). This argument is repeated until the last step is reached,
by solving

dx
bt s A9
dt,_4 g Gl
with initial conditions x{s, £, ... Jp20) = X(8hie 0 daak

By letting T; to be any infinitely differentible function of s which vanishes at (0.0, ..
) and nonvanishing derivative will give a solution to the system of equations (A.5) and
{A.6) provided that the following Jacobian matrix is nonsingular
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T Lo
gs o 0 dhy
(A1
A o,
dg  An 77 O

The implication of the nonsingularity of the preceding Jacobian matrix is that we can
solve for s, b, b, .- .1, 45 functions of x,, %, ...x, . Clearly that will give a soludon for T,
interms of X5, Xs .. X0 s

APPENDIX B
The parameters of the single machine infinite bus system are
Machine rating 46 MV A, 133 KV
%, =0.2 pat.
Rorams =0-1 Pl
%, =0.5 pa.
V=10pu
D=0.0055 p.u.
M=3.0
f=60 HZ
The various operating points considered are
1) P.=10pu
8=36.8°
E =1.0p.u
2) P, =08 pu
6=247"

E =1.15 pu.
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