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Abstract - A few stabilizing controls for a synch-
ronous induction generator is examined through the quad-
ratic bilinear and linear regulator theory. |t has been
found that the unstable bilinear system can be stabiliz-
ed quite easily without resorting to complicated comput-
ations., A feedback control derived from minimum time for-
mulation is found to be very effective in stabilization,

Introduction

An induction motor when run at supersynchronous
speed will deliver power as a generator. A wound rotor
motor if supplied with polyphase excitation at both
stator and rotor terminals will run at double normal
synchronous speed. The phase sequence of the rotor
voltage has to be opposite to that of the stator.
doubly fed machine will either motor or generate
depending on the angle between the stator and rotor
phase magnetic axes.

The

Though the principle of operation of the doubly
fed synchronous-induction machine has been known for
long time, it has not found appltication primarily
because of lack of effective solution to the starting
problem and also for the problem associated with the
inherent instability of the machine [1]. Though an
induction motor run at double synchronous speed can
deliver power much more than rated, generation through
this mode did not draw much attention. Stabilization
of the synchronous-induction machine in the doubly fed
motor mode has been studied by the author [2]. This
article reports various stabilizing control strategies
for the synchronous-induction generator through the
modification of the slip ring voltage.

The Mathematical Model of the Doubly Fed Machine

The equations of a synchronous-induction generator
in state notation can be written as [2]

y = f [y, V] (1)

where y is a 6 x 1 state vector comprising of the stator
and rotor currents along direct and quadrature axes of
the machine, the speed variation and the angular
position between the stator and rotor magnetic axes.

V is a vector of rotor input voltage along the direct
and quadrature axes given as

17 (2)

The subscripts d and g refer to the direct and quadra-
ture axes while r represents the rotor guantities,
respectively. The components of the rotor voltage may
be expressed as

Vdr Vr Cos & (3)

vqr= -V_Sin § (%)

The angle & (which is a component of the state vector y)
is related to the machine speed (wm) as follows

§ =

V= [Vdr Vqr

~wet - Aupt - S4 (5)
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where We is the frequency of the excitation voltage.

Substituting (3), (4) and (5) in (1), the small pertur-
bation model of (1) can be expressed by the following
bilinear relationship

X = Ax + (b1 +b, x6) u (6)

where Xg = AS and u = AV
r

Quadratic Feedback Controls

The matrix A in (6) has a pair of complex eigen-
values in the right half plane. _Gutman [3] demonstra-
ted that if there exists a P = PT> 0 such that

(b, + bz)T P x#0 (7)

in the set {x | x # 0, xT(PA + AT P) x > 0} (8)

Then there exists an o > 0 such that control

us= -ot(b1 +b, x6)T P x (9)

will stabilize (6).

The crucial point here is the determination of the P
matrix satisfying its positive definiteness criterion
and relation (8) simultaneously. The computational
methods suggested are quite complicated, and for higher
order systems as the present one, the amount of compu-
tation may be too much. From implementation viewpoint,
the matter is worse because for each possible point of
operation of the generator, the P matrix has to be re-
computed. The following extensions of Gutman's theorem
simplifies calculation of P matrix to a great extent[2].

# 1. The matrix P satisfying the matrix equation
T

PA+ATP-b Pb +0Q=0 (10)
is positive definite and symmetric, and the control
strategy which will stabilize (6) is given as
u = -a(b1+b2x6)T P x for the set {x | x#0, ¥ > 0} (11a)
u=0 for the set { x | x # 0, ¥ < 0} (11b)
where Ly_A_xT (PA + AT P) x {(12)
Both P and Q are positive definite matrices. Selecting
the weighting matrix Q appropriately, relation (11a)
can be made to satisfy almost for all xeRM, Note P is

the solution of the steady state matrix Riccati equation

# 2. The diagonal matrix P', constructed by setting
all the off-diagonal elements of the Riccati matrix to
zero, satisfies all the requirements and hence is also
a candidate in (9).
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# 3. The linear state regulator type control

(13)
is a candidate for stabilization of the synchronous-
induction generator when the trajectory is sufficiently
near the equilibrium point., Hence for relatively

smaller disturbances control (13) is satisfactory.

A Quasi-Optimal Feedback Control

A feedback control strategy derived on the basis
of transient control in minimum time as used for
synchronous generators [4] involves differentiation of
of the electromechanical torque equation and substi-
tution of the other current derivative relations to
yield a second order time varying equation of the form

d2 Aw
m
2

= L{x) + b(x) u(t) (14)

dt

The minimum time feedback control is obtained by quasi=
linearization of the terms L(x) and b(x). The control
action instead of being bang bang is made proportional
through selection of a suitable constant K and is
given as
o« 12
(Awm)

-64,86 9765.98 34.32 9758.70 3.62 -603.14
-9765.98 -64,86 -9758.7 34.32 0.94 1293.44
62.40 -9758.70 ~35.67 -9765.98 -3.77 626,89
9758.70 62.40 9765.98 =-35.67 -0.98 -1344,38
-591.58 -178.59 -590.92 =-179.38 -0.0047 0.0

0.0 0.0 0.0 0.0 1.0 0.0

Vectors b1 and b, respectively are

2

b 626.894 0.0 0.01"

1

b,

The eigenvalues of the A matrix are

[-1293.448
[-603.144

-603.144  1344.381

-1293.448 626.894 -1344.381 0.0 0.0]"

065.03 + j373.12, -35.55 + j372.88, .0515 + j9.78

The first two pairs correspond to the power frequency
stator and rotor transients while the dominant pole
pair with positive real parts are responsible for the
growing response.

Figures 2, 3 and 4 show the response of the system
for a 30% input step with various stabilizing signals.
Curve a in Figs. 2 and 4 show angle and speed variation
in the absence of any stabilizing control. Curve b in
both figures are with stabilizing control
)T

u= -oc(b1 +b P x

2 %6

u(t) = -K[Awm -

2[L)X) - b(X) Sgn{Awm ]]

b(x) >0

A&m is the acceleration of the machine.

Numerical Example and Results

(15)

Figure 1 gives a plot of the angle dependent
electrical torque Te for a doubly fed machine as ¢ is

varied from -135° to 1359,

It can be seen that the

10 hp motor when excited by nominal volitage on the
rotor terminals can deliver about 30 hp (3 p.u.) as

where Riccati matrix P is

0.364
0.056
0.357
0.05
-0.132
-0.08

The elements of diagonal matrix Q are

0.1

0.056
0.442
0.056
0.431
-0.092
-0.103

0.

0.357
0.056
0.35
0.05
-0.137
-0.077

0.1

0.05
0.431
0.05
0.421
~0.074
-0.108

0.1

-0.
-0.
-0.
-0.

0.
-0.

10

132
092
137
074
335
003

-0.
-0.
-0.
-0.
-0.
43,

10]

The value of o used for the response shown is 1.

08
103
077
108
003
89

It is

motor and 45 hp as generator at a slip of -1. An noted that the system is stabilized with a value of o
as low as 0.1, Curve ¢ in figures 3 and 4 are with the
control

3.0 . u= b P x
3
Motor & while curve d shows response recorded with proportional
1.5}, control derived from the minimum time strategy (15).
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Figure 1, Variation of angle dependent torque showing - = _——

the generator and motoring regions of the doubly fed
machine at double synchronous speed.
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Figure 2. Torque angle variations for a 30% torque
step, (a) the uncontrolled machine (b) with stabilizing
control from the bilinear formulation.

operating point in the generator mode corresponding to

§ = -25° is selected for this example.
ding A matrix is

The correspon-
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Figure 3. Continuation of figure 2, (c) response with

optimal linear regulator control (d) with proportional
control from frequency variation and acceleration only.

3

Angular frequency change (rad/sec.)

Figure 4, Angular frequency variation of the doubly
fed machine in generator mode corresponding to Fig. 2,
(a) envelope for the uncontrolled case (b) control
from bilinear formulation (c) optimal control from
linear formulation (d) proportional control from
frequency variation and acceleration.

A comparison of the responses recorded show that while
the bilinear system can be stabilized with a control
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strategy derived from bilinear regulater problem, the
control derived from linear part is more effective in
stabilization, This is because the disturbance con-
sidered is relatively small and so the swing of the
machine is also less. For larger disturbances the
linear regulator control is ineffective. The
proportional control from minimum time formulation
appears to be most effective. Also this strategy may
be applied to the original nonlinear set of equations

(1}.
Conclusions

Stabilization of a doubly fed synchronous-
induction machine in the generator mode has been
investigated. It has been demonstrated that the
bilinear system can be stabilized quite easily, without
resorting to complicated computation techniques, from
linear regulator theory. A proportional control
derived from minimum time formulation seems to provide
the best response. This control is also easily
realizable and has the potential of application to the
nonlinear model as well. Large perturbation studies
are in progress and will be Teported later.
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