King Fahd University

of Petroleum \& Minerals

Department of Electrical Engineering
EE 207 Signals and Systems
Second Semester (141)

Exam I
Tuesday, 28 Octobor 2014
7:00 pm - 8:30 pm

Name:
KEY
ID: \qquad
Serial: \qquad

Problem	Score	Out of
1		30
2		10
3		10
4		20
5		10
6		20
Total		100

Problem 1: (MCQ)

Choose the correct answer of each question
(1) A System has the following input-output relationship: $y(t)=3 x^{2}(t)-5 x(t-2)$, where $x(t)$ is the input signal and $y(t)$ is the output signal. The unit step response of the system is given by:
A) $3 u(t)-5 u(t-2)$
B) $5 t u^{2}(t)-3 u(t-2)$
C) $-3 u(t-2)+5 u(t)$
D) $3 \delta(t)-5 u(t-2)$
E) $3 u(t)-5 \delta(t-2)$
(2) Let $x(t)=e^{-t} u(t)$ and $y(t)=2 t e^{-t}$. The convolution $x(t) * y(t)$ equals:
A) $t^{2} e^{-t} u(t)$
B) $2 t e^{-t} u(t)$
C) $t^{2} e^{-t}$
D) $2 t e^{-t}$
E) $\left(1-e^{-t}\right) u(t)$
(3) The unit step response of a linear time invariant system is given by $t u(t-4)$. The unit impulse response of the system is given by
A) $h(t)=u(t-4)+4 \delta(t-4)$
B) $h(t)=\delta(t-4)$
C) $h(t)=u(t-4)+\delta(t)$
D) $h(t)=u(t)+t \delta(t)$
E) $h(t)=t u(t-4)+\delta(t-4)$
(4) A linear time invariant system has the impulse response $h(t)=(c+1) \delta(t)-\left(c^{2}-1\right) u(t), \quad$ where c is some constant.

The possible value of the constant c such that the system will be memoryless is
A) $c=1$
B) $c=-1$
C) $c=2$
D) $c=0$
E) The system will be dynamic regardless of the value of c.
(5) If $x(t)=2 u(t-2)-r(t-2)+2 r(t-4)+2 u(t-4)$, where $u(t)$ is the unit step function and $r(t)=t u(t)$ is the unit ramp function, the value of $x(5)$ is
A) -1
B) 1
C) 2
D) 5
E) 0

Answer is 3 (was not included by mistake)

Problem 2:

Sketch and label $y(t)=-4 x(-2 t+1)+2$, where $x(\mathrm{t})$ is shown below.
Explain all your steps.

Solution

Problem 3:

Let the input/output of a system described by $y(t)=4 x(t) u(t)$
For each of the system properties listed below decide if the property is valid or not by writing Yes or No and give a brief explanation for deciding Yes or No

Properties	Yes or No	\quad Explanation			
causal	YES	Output do not depend on future input			
BIBO Stable	YES	$\|\mathrm{x}(\mathrm{t})\|<\infty$ and $\|\mathrm{u}(\mathrm{t})\|<\infty \rightarrow\|\mathrm{y}(\mathrm{t})\|<\infty$	$	$	Time-Invariant
:---					
No					
$\mathrm{y}(\mathrm{t})=\mathrm{s}[\mathrm{x}(\mathrm{t})]=4 \mathrm{x}(\mathrm{t} \mathrm{u}(\mathrm{t}) \rightarrow \mathrm{y}(\mathrm{t}-1)=4 \mathrm{x}(\mathrm{t}-1) \mathrm{u}(\mathrm{t}-1)$ $\mathrm{s}[\mathrm{x}(\mathrm{t}-1)]=4 \mathrm{x}(\mathrm{t}-1) \mathrm{u}(\mathrm{t})$ $\mathrm{y}(\mathrm{t}-1) \neq \mathrm{s}[\mathrm{x}(\mathrm{t}-1)] \rightarrow$ Time variant					
YES					
$y_{1}(t)=4 x_{1}(t) u(t) y_{2}(t)=4 x_{2}(t) u(t)$ $s\left[\alpha_{1} x_{1}(t)+\alpha_{2} x_{2}(t)\right]=4\left(\alpha_{1} x_{1}(t)+\alpha_{2} x_{2}(t)\right) u(t)$ $\left.=\alpha_{1} 4 x_{1}(t) u(t)+\alpha_{2} 4 x_{2}(t)\right) u(t)=\alpha_{1} y_{1}(t)+\alpha_{2} y_{2}(t)$ \Rightarrow Linear					

Problem 4:

Consider the functions $x_{1}(t)$ and $x_{2}(t)$ sketched below, and let $y(t)=x_{1}(t) * x_{2}(t)$.
a) Calculate $y(0)$ before performing the convolution.
b) Perform the convolution showing all the steps and sketch $y(t)$ showing all labels and important values.

(a)

(a) $y(0)=\int_{-\infty}^{\infty} x_{1}(z) x_{2}(0-z) d z$

$$
\begin{aligned}
& =\int_{-2}^{0}(-1)(2) d \tau \\
& =-2[0-(-2)]=-4
\end{aligned}
$$

(b)
(b) $t \leqslant-4: y(-)=0$

$$
\frac{\frac{t \leqslant-4}{4<t \leqslant-2}: y(-1)=0}{t+2<-4:} y(t)=\int_{-4}^{t}(-1)(2) d t=-2(t+4)
$$

$-2<t \leqslant 0$: Full over lab with thengative box $\Rightarrow y(t):(-1)(2)(2)=-4$
$0<t \leqslant 2$: Partial over lap with both boxes:

$$
\begin{aligned}
y(t) & =\int_{t-2}^{0}(-1)(2) d \tau+\int_{0}^{t}(1)(2) d z \\
& =+2(t-2)+2 t=4 t-4
\end{aligned}
$$

$2<t \leqslant 4$: Full overlab with the positive box $\Rightarrow y(t)=(1)(2)(2)=4$

$$
\begin{aligned}
& 4<t \leqslant 6: y(t)=\int_{t-2}^{4}(1)(2) d r=2(4-(t-2))=2(6-t) \\
& t>6: y(t)=0 \\
& \Rightarrow y(t)=\left\{\begin{array}{cc}
0 ; t<-48 t>6 \\
-2(t+4) & ; 4<t \leqslant-2 \\
-4, & -2<t<0 \\
4 t-4 & 2 \ll 2 \\
2(6-t) & ; 4<t \leqslant 6
\end{array}\right.
\end{aligned}
$$

Problem 5:

Let $x(t)$ be periodical function with period $T_{\mathrm{o}}=0.1 \mathrm{~s}$, given as

$$
x(t)=12 \sin (20 \pi t) \cdot \cos (40 \pi t)+8 \cos (60 \pi t)+16 \sin ^{2}(20 \pi t)
$$

(a) Show that the complex Fourier Series coefficients C_{k} are

$$
C_{o}=8 \quad C_{1}=3 \angle 90^{\circ} \quad C_{2}=-4 \quad C_{3}=5 \angle-36.87^{\circ}
$$

Let $\mathrm{x}(\mathrm{t})$ be periodical function with period $\mathrm{To}=(1 / 10) \mathrm{s}$, given as $x(t)=12 \sin (20 \pi t) \cdot \cos (40 \pi t)+8 \cos (60 \pi t)+16 \sin ^{2}(20 \pi t)$
(a) Find the complex Fourier Series coefficients C_{k} ?
(b) Plot the magnitude and phase of C_{k} (i.e, line spectra)
solution using Trig identies we have

$$
\begin{aligned}
x(t) & =6 \sin (60 \pi t)-6 \sin (20 \pi t)+8 \cos (60 \pi t)+8[1-\cos (40 \pi t)] \\
& =8-8 \cos (40 \pi t)+8 \cos (60 \pi t)-6 \sin (20 \pi t)+6 \sin (60 \pi t) \\
& =8-\left[4 e^{(j 40 \pi t)}+4 e^{-(j 40 \pi t)}\right]+\left[4 e^{(j 60 \pi t)}+4 e^{-(j 60 \pi t)}\right]-\left[\frac{3}{j} e^{(j 20 \pi t)}-\frac{3}{j} e^{-(j 20 \pi t)}\right] \\
& +\left[\frac{3}{j} e^{(j 60 \pi t)}-\frac{3}{j} e^{-(j 60 \pi t)}\right] \\
= & {\left[4-\frac{3}{j}\right] e^{-(j 60 \pi t)}-4 e^{-(j 40 \pi t)}+\frac{3}{j} e^{-(j 20 \pi t)}+8-\frac{3}{j} e^{(j 20 \pi t)}-4 e^{(j 40 \pi t)}+\left[4+\frac{3}{j}\right] e^{(j 60 \pi t)} } \\
\Rightarrow & C_{o}=8 \quad C_{1}=-\frac{3}{j}=3 \angle 90^{\circ} \quad C_{2}=-4 \quad C_{3}=\left[4+\frac{3}{j}\right]=[4-3 j]=5 \angle-36.87^{\circ}
\end{aligned}
$$

(b) Plot the double sided line spectra (magnitude and phase) of C_{k}

