P $9.25[\mathbf{a}] j \omega L=R \|(-j / \omega C)=j \omega L+\frac{-j R / \omega C}{R-j / \omega C}$

$$
\begin{aligned}
& j \omega L+\frac{-j R}{\omega C R-j} \\
& j \omega L+\frac{-j R(\omega C R+j)}{\omega^{2} C^{2} R^{2}+1}
\end{aligned}
$$

$\operatorname{Im}\left(Z_{\mathrm{ab}}\right)=\omega L-\frac{\omega C R^{2}}{\omega^{2} C^{2} R^{2}+1}=0$
$\therefore \quad L=\frac{C R^{2}}{\omega^{2} C^{2} R^{2}+1}$
$\therefore \quad \omega^{2} C^{2} R^{2}+1=\frac{C R^{2}}{L}$
$\therefore \quad \omega^{2}=\frac{\left(C R^{2} / L\right)-1}{C^{2} R^{2}}=\frac{\frac{\left(25 \times 10^{-9}\right)(100)^{2}}{160 \times 10^{-6}}-1}{\left(25 \times 10^{-9}\right)^{2}(100)^{2}}=900 \times 10^{8}$
$\omega=300 \mathrm{krad} / \mathrm{s}$
$\left[\right.$ b] $Z_{\text {ab }}\left(300 \times 10^{3}\right)=j 48+\frac{(100)(-j 133.33)}{100-j 133.33}=64 \Omega$

P $9.27 Z_{\mathrm{ab}}=1-j 8+(2+j 4) \|(10-j 20)+(40 \| j 20)$

$$
=1-j 8+3+j 4+8+j 16=12+j 12 \Omega=16.97 / \underline{45^{\circ}} \Omega
$$

$$
\begin{aligned}
& \text { P } 9.39[\mathbf{a}] Z_{\text {eq }}=\frac{50,000}{3}+\frac{-j 20 \times 10^{6}}{\omega} \|(1200+j 0.2 \omega) \\
& =\frac{50,000}{3}+\frac{-j 20 \times 10^{6}}{\omega} \frac{(1200+j 0.2 \omega)}{1200+j\left[0.2 \omega-\frac{20 \times 10^{6}}{\omega}\right]} \\
& =\frac{50,000}{3}+\frac{\frac{-j 20 \times 10^{6}}{\omega}(1200+j 0.2 \omega)\left[1200-j\left(0.2 \omega-\frac{20 \times 10^{6}}{\omega}\right)\right]}{1200^{2}+\left(0.2 \omega-\frac{20 \times 10^{6}}{\omega}\right)^{2}} \\
& \operatorname{Im}\left(Z_{\text {eq }}\right)=-\frac{20 \times 10^{6}}{\omega}(1200)^{2}-\frac{20 \times 10^{6}}{\omega}\left[0.2 \omega\left(0.2 \omega-\frac{20 \times 10^{6}}{\omega}\right)\right]=0 \\
& -20 \times 10^{6}(1200)^{2}-20 \times 10^{6}\left[0.2 \omega\left(0.2 \omega-\frac{20 \times 10^{6}}{\omega}\right)\right]=0 \\
& -(1200)^{2}=0.2 \omega\left(0.2 \omega-\frac{20 \times 10^{6}}{\omega}\right) \\
& 0.2^{2} \omega^{2}-0.2\left(20 \times 10^{6}\right)-1200^{2}=0 \\
& \omega^{2}=64 \times 10^{6} \quad \therefore \quad \omega=8000 \mathrm{rad} / \mathrm{s} \\
& \therefore \quad f=1273.24 \mathrm{~Hz} \\
& \text { [b] } Z_{\text {eq }}=\frac{50,000}{3}+-j 2500 \|(1200+j 1600) \\
& =\frac{50,000}{3}+\frac{(-j 2500)(1200+j 1600)}{1200-j 900}=20,000 \Omega \\
& \mathbf{I}_{g}=\frac{30 / \underline{0}^{\circ}}{20,000}=1.5 / \underline{0^{\circ}} \mathrm{mA} \\
& i_{g}(t)=1.5 \cos 8000 t \mathrm{~mA}
\end{aligned}
$$

P 9.45 Step 1 to Step 2:

$$
\frac{240 / \underline{0^{\circ}}}{j 12}=-j 20=20 / \underline{-90^{\circ}} \mathrm{A}
$$

Step 2 to Step 3:
$(j 12) \| 36=3.6+j 10.8 \Omega$

Step 3 to Step 4:

$$
\left(20 /-90^{\circ}\right)(3.6+j 10.8)=216-j 72=227.68 /-18.43^{\circ} \mathrm{V}
$$

P 9.48 Open circuit voltage:

$$
\begin{aligned}
& \frac{\mathbf{V}_{1}-250}{20+j 10}-0.03 \mathbf{V}_{o}+\frac{\mathbf{V}_{1}}{50-j 100}=0 \\
& \therefore \quad \mathbf{V}_{o}=\frac{-j 100}{50-j 100} \mathbf{V}_{1} \\
& \frac{\mathbf{V}_{1}}{20+j 10}+\frac{j 3 \mathbf{V}_{1}}{50-j 100}+\frac{\mathbf{V}_{1}}{50-j 100}=\frac{250}{20+j 10} \\
& \mathbf{V}_{1}=500-j 250 \mathrm{~V} ; \quad \mathbf{V}_{o}=300-j 400 \mathrm{~V}=\mathbf{V}_{\mathrm{Th}}
\end{aligned}
$$

Short circuit current:

$\mathbf{I}_{\mathrm{sc}}=\frac{250 / \underline{0}^{\circ}}{70+j 10}=3.5-j 0.5 \mathrm{~A}$
$Z_{\mathrm{Th}}=\frac{\mathbf{V}_{\mathrm{Th}}}{\mathbf{I}_{\mathrm{sc}}}=\frac{300-j 400}{3.5-j 0.5}=100-j 100 \Omega$
The Thévenin equivalent circuit:

P 9.59 Write a KCL equation at the top node:

$$
\frac{\mathbf{V}_{o}}{-j 8}+\frac{\mathbf{V}_{o}-2.4 \mathbf{I}_{\Delta}}{j 4}+\frac{\mathbf{V}_{o}}{5}-(10+j 10)=0
$$

The constraint equation is:

$$
\mathbf{I}_{\Delta}=\frac{\mathbf{V}_{o}}{-j 8}
$$

Solving,

$$
\mathbf{V}_{o}=j 80=80 / 90^{\circ} \mathrm{V}
$$

