# KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS 

## ELECTRICAL ENGINEERING DEPARTMENT

Probabilistic Methods in Electrical Engineering EE 315

FIRST MAJOR

DATE: March 9, 2014
TIME: 6:00-7:30 pm

Name: $\qquad$ KEY $\qquad$

ID :

Section \# : $\qquad$

| QUESTION | MARK |
| :---: | :---: |
| 1 | $/ \mathbf{3 0}$ |
| 2 | $/ \mathbf{3 5}$ |
| 3 | $/ \mathbf{2 5}$ |
| 4 | $/ \mathbf{1 0}$ |
| TOTAL | $/ \mathbf{1 0 0}$ |

## Problem 1: [30 points]

Three Boxes $\mathrm{B}_{1}, \mathrm{~B}_{2}, \mathrm{~B}_{3}$ contain the following colored balls

|  | Red | Green | Blue |
| :---: | :---: | :---: | :---: |
| $\mathrm{B}_{1}$ | 6 | 2 | 1 |
| $\mathrm{~B}_{2}$ | 4 | 3 | 2 |
| $\mathrm{~B}_{3}$ | 2 | 4 | 6 |

The random experiment consists of selecting one box at random and then selecting one ball from that box. If the boxes have equal probabilities of selections, find the following probabilities:
(a) P (Selecting Red Ball | Box $\mathrm{B}_{1}$ was selected)?
(b) $\mathrm{P}\left(\right.$ Selecting Red Ball or Green Ball | Box $\mathrm{B}_{2}$ was selected)?
(c) $\mathrm{P}\left(\right.$ Selecting Blue Ball $\mid$ Box $\mathrm{B}_{2}$ selected or Box $\mathrm{B}_{1}$ selected)?
(d) P (Not selecting Green Ball $\mid$ Box $\mathrm{B}_{3}$ was selected)?
(e) $P($ Selecting Blue Ball)?
(f) $\mathrm{P}\left(\mathrm{Box} \mathrm{B}_{3}\right.$ was selected $\mid$ Selecting Blue Ball)?

## Solution

(a) $\quad P\left(R / B_{1}\right)=\frac{6}{9}=\frac{2}{3}$
(b) $P\left(\{R\right.$ or $\left.G\} \mid B_{2}\right)=P\left(\{R \cup G\} \mid B_{2}\right)$

$$
=\frac{P\left(\{R \cup G\} \cap B_{2}\right)}{P\left(B_{2}\right)}
$$

$$
=\frac{P\left\{\left(R \cap B_{2}\right) U\left(G \cap B_{2}\right)\right\}}{P\left(B_{2}\right)}
$$

$$
=\frac{P\left(R \cap B_{2}\right)+P\left(G \cap B_{2}\right)}{P\left(B_{2}\right)}
$$

$$
\begin{aligned}
& =P\left(R \mid B_{2}\right)+P\left(G \mid B_{2}\right) \\
& =\frac{4}{9}+\frac{3}{9}=\left|\frac{7}{9}\right|
\end{aligned}
$$

(C) $P\left(B \left\lvert\,\left\{B_{1}\right.\right.$ or $\left.B_{2}\right)=\frac{P\left(B \cap\left\{B_{1} \cup B_{2}\right\}\right)}{P\left(\left\{B_{1} \cup B_{2}\right\}\right)}\right.$

$$
=\frac{P\left(\left\{B \cap B_{1}\right\} \cup\left\{B \cap B_{2}\right\}\right)}{P\left(B_{1} \cup B_{2}\right)}
$$

$$
=\frac{P\left(B \cap B_{1}\right)+P\left(B \cap B_{2}\right)}{P\left(B_{1} \cup B_{2}\right)}
$$

$$
=\frac{P\left(B \mid B_{2}\right) P\left(B_{2}\right)+P\left(B \mid B_{1}\right) P\left(B_{1}\right)}{P\left(B_{1}\right)+P\left(B_{2}\right)}
$$

$$
=\frac{\left(\frac{2}{9}\right)\left(\frac{1}{3}\right)+\left(\frac{1}{9}\right)\left(\frac{1}{3}\right)}{\left(\frac{1}{3}\right)+\left(\frac{1}{3}\right)}=\frac{1}{6}
$$

$$
\begin{aligned}
\text { (d) } \begin{aligned}
P\left(\bar{G} \mid B_{3}\right) & =1-P\left(G \mid B_{3}\right) \\
& =1-\frac{4}{12}=1-\frac{1}{3} \\
= & \frac{2}{3} \\
\text { aR } P\left(\bar{G} / B_{3}\right)= & P\left(R \mid B_{3}\right)+P\left(B \mid B_{3}\right)=\frac{2}{12}+\frac{6}{12}=\frac{4}{6}=\frac{2}{3} \\
\text { (e) } P(B)= & P\left(B \cap B_{1}\right)+P\left(B \cap B_{2}\right)+P\left(B \cap B_{3}\right) \\
= & P\left(B \mid B_{1}\right) P\left(B_{1}\right)+P\left(B \mid B_{2}\right) P\left(B_{2}\right) \\
& +P\left(B \mid B_{3}\right) P\left(B_{3}\right) \\
= & \left(\frac{1}{9}\right)\left(\frac{1}{3}\right)+\left(\frac{2}{9}\right)\left(\frac{1}{3}\right)+\left(\frac{6}{12}\right)\left(\frac{1}{3}\right) \\
= & \frac{5}{18} \\
\text { ff) } P\left(B_{3} \mid B\right)= & \frac{P\left(B_{3} \cap B\right)}{P(B)}=\frac{P\left(B \mid B_{3}\right) P\left(B_{3}\right)}{P(B)} \\
= & \frac{(6 / 12)(1 / 3)}{(5 / 18)}=\frac{3}{5}
\end{aligned}
\end{aligned}
$$

## Problem 2: [35 points]

Let $X$ be a discrete random variable with sample space $S_{X}=\{2,4,6,8,10\}$ and mass probability $\mathrm{P}\left(\mathrm{X}=\mathrm{x}_{\mathrm{i}}\right)$ shown below:
$\mathrm{P}(\mathrm{X}=2)=0.1 \quad \mathrm{P}(\mathrm{X}=4)=0.3 \quad \mathrm{P}(\mathrm{X}=6)=0.2 \quad \mathrm{P}(\mathrm{X}=8)=0.1 \quad \mathrm{P}(\mathrm{X}=10)=0.3$
(a) Find and plot the denity function $f_{X}(x)$ ?
(b) Find $\mathrm{F}_{\mathrm{X}}(4)-\mathrm{F}_{\mathrm{X}}(2)$ ? (where $\mathrm{F}_{\mathrm{X}}(\mathrm{x})$ is the cumulative distribution function)
(c) Find and plot the conditional density $\mathrm{f}_{\mathrm{X}}(\mathrm{x} \mid \mathrm{X}<7)$ ?
(d) Find $\mathrm{E}[\mathrm{X} \mid \mathrm{X}<7]$ ?

## Solution

$$
\text { (a) } \begin{aligned}
f_{X}(x) & =\sum_{\forall x_{i} \in S_{X}=\{2,4,6,8,10\}} P\left(X=x_{i}\right) \delta\left(x-x_{i}\right) \\
& =(0.1) \delta(x-2)+(0.3) \delta(x-4)+(0.2) \delta(x-6) \\
& +(0.1) \delta(x-8)+(0.3) \delta(x-10)
\end{aligned}
$$


(b) $F_{X}(4)-F_{X}(2)=P(2<X \leq 4)=P(X=4)=0.3$
(c) $f_{X}(x \mid X<7)=\sum_{\forall x_{i} \in S_{X}=\{2,4,6,8,10\}} P\left(X=x_{i} \mid X<7\right) \delta\left(x-x_{i}\right)$

$$
\begin{aligned}
P(X=2 \mid X<7) & =\frac{P(\{2\} \mid \overbrace{\{2,4,6\}}^{X<7})}{P(\{2,4,6\})}=\frac{P(2)}{P(2)+P(4)+P(6)} \\
& =\frac{0.1}{0.1+0.3+0.2}=\frac{0.1}{0.6}=\frac{1}{6}
\end{aligned}
$$

$$
P(X=4 \mid X<7)=\frac{P(\{4\} \mid\{2,4,6\})}{P(\{2,4,6\})}=\frac{P(4)}{P(2)+P(4)+P(6)}=\frac{0.3}{0.6}=\frac{1}{2}
$$

$$
P(X=6 \mid X<7)=\frac{P(\{6\} \mid\{2,4,6\})}{P(\{2,4,6\})}=\frac{P(6)}{P(2)+P(4)+P(6)}=\frac{0.2}{0.6}=\frac{1}{3}
$$

$$
P(X=8 \mid X<7)=\frac{P(\{8\} \mid\{2,4,6\})}{P(\{2,4,6\})}=\frac{P(\phi)}{P(2)+P(4)+P(6)}=\frac{0}{0.6}=0
$$

$$
P(X=10 \mid X<7)=\frac{P(\{10\} \mid\{2,4,6\})}{P(\{2,4,6\})}=\frac{P(\phi)}{P(2)+P(4)+P(6)}=\frac{0}{0.6}=0
$$



Therefor
$f_{X}(x \mid X<7)=\frac{1}{6} \delta(x-2)+\frac{1}{2} \delta(x-4)+\frac{1}{3} \delta(x-6)$
(d) $\begin{aligned} \mathrm{E}[\mathrm{X} \mid \mathrm{X}<7] & =\sum_{\forall x_{i} \in S_{x}=\{2,4,6,8,10\}} x_{i} P\left(X=x_{i} \mid X<7\right) \\ & =(2)\left(\frac{1}{6}\right)+(4)\left(\frac{1}{2}\right)+(6)\left(\frac{1}{3}\right)=\frac{13}{3}=4.33\end{aligned}$

## Problem 3: [ 25 points]

A random variable X has a uniform density function $\mathrm{f}_{\mathrm{X}}(\mathrm{x})$ which is distributed between $\mathbf{0}$ and 6 . Define the following events
$\mathrm{A}=\{2<\mathrm{X}<\mathbf{5}\} \quad \mathrm{B}=\{0<\mathrm{X}<\mathbf{3}\}$
(a) Find $\mathrm{P}[\mathrm{A}]$ ?
(b) Find P[A U B]?
(c) Are events A and B independent? Explain ?
(d) Find $\mathrm{F}_{\mathrm{X}}(3 \mid \mathrm{A})-\mathrm{F}_{\mathrm{x}}(0 \mid \mathrm{A})$ ? (where $\mathrm{F}_{\mathrm{X}}(\mathrm{x})$ is the cumulative distribution function)

## Solution

(a) $\mathrm{P}[\mathrm{A}]=\int_{2}^{5} \mathrm{f}_{\mathrm{X}}(x) \mathrm{dx}=\int_{2}^{5}\left(\frac{1}{6}\right) \mathrm{dx}=(5-2)\left(\frac{1}{6}\right)=\frac{1}{2}$
(b) $\mathrm{A} \cup \mathrm{B}=\{2<\mathrm{X}<5\} \cup\{0<\mathrm{X}<3\}=\{0<\mathrm{X}<5\}$


$$
\Rightarrow \mathrm{P}[\mathrm{~A} \cup \mathrm{~B}]=\mathrm{P}[\{0<\mathrm{X}<5\}]=\int_{0}^{5} \mathrm{f}_{\mathrm{X}}(x) \mathrm{dx}=\int_{0}^{5}\left(\frac{1}{6}\right) \mathrm{dx}=(5-0)\left(\frac{1}{6}\right)=\frac{5}{6}
$$

OR

$$
\begin{aligned}
& \mathrm{P}[\mathrm{~A} \cup \mathrm{~B}]=\mathrm{P}[\mathrm{~A}]+\mathrm{P}[\mathrm{~B}]-\mathrm{P}[\mathrm{~A} \cap \mathrm{~B}] \\
& \mathrm{P}[\mathrm{~B}]=\mathrm{P}[\{0<\mathrm{X}<3\}]=\int_{0}^{3} \mathrm{f}_{\mathrm{X}}(x) \mathrm{dx}=\int_{0}^{3}\left(\frac{1}{6}\right) \mathrm{dx}=(3-0)\left(\frac{1}{6}\right)=\frac{1}{2} \\
& \mathrm{P}[\mathrm{~A} \cap \mathrm{~B}]=\mathrm{P}[\{2<\mathrm{X}<3\}]=\int_{2}^{3} \mathrm{f}_{\mathrm{X}}(x) \mathrm{dx}=\int_{2}^{3}\left(\frac{1}{6}\right) \mathrm{dx}=(3-2)\left(\frac{1}{6}\right)=\frac{1}{6} \\
& \Rightarrow \mathrm{P}[\mathrm{~A} \cup \mathrm{~B}]=\frac{1}{2}+\frac{1}{2}-\frac{1}{6}=\frac{5}{6}=0.8333
\end{aligned}
$$

(c) $\mathrm{P}[\mathrm{A} \cap \mathrm{B}] \stackrel{?}{=} \mathrm{P}_{\mathrm{P}}[\mathrm{A}] \mathrm{P}[\mathrm{B}]$

$$
\mathrm{P}[\mathrm{~A} \cap \mathrm{~B}]=\frac{1}{6} \text { and } \mathrm{P}[\mathrm{~A}] \mathrm{P}[\mathrm{~B}]=\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)=\frac{1}{4}
$$

$\Rightarrow \mathrm{P}[\mathrm{A} \cap \mathrm{B}] \neq \mathrm{P}[\mathrm{A}] \mathrm{P}[\mathrm{B}]$
$\Rightarrow A$ and $B$ are not independent events
(d) $\mathrm{F}_{\mathrm{X}}(3 \mid \mathrm{A})-\mathrm{F}_{\mathrm{X}}(0 \mid \mathrm{A})=\mathrm{P}[\{0<\mathrm{X}<3\} \mid \mathrm{A}]=\mathrm{P}[\mathrm{B} \mid \mathrm{A}]=\frac{\mathrm{P}[\mathrm{AIB}]}{\mathrm{P}[\mathrm{A}]}$

$$
=\frac{(1 / 6)}{(1 / 2)}=\frac{1}{3}
$$

OR

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{X}}(3 \mid \mathrm{A})=\mathrm{P}[\{\mathrm{X} \leq 3\} \mid \mathrm{A}]=\frac{\mathrm{P}[\{\mathrm{X} \leq 3\} \cap \mathrm{A}]}{\mathrm{P}[\mathrm{~A}]}=\frac{\mathrm{P}[2<\mathrm{X}<3]}{\mathrm{P}[\mathrm{~A}]}=\frac{(1 / 6)(3-2)}{(1 / 6)(5-2)}=\frac{1}{3} \\
& \mathrm{~F}_{\mathrm{X}}(0 \mid \mathrm{A})=\mathrm{P}[\{\mathrm{X} \leq 0\} \mid \mathrm{A}]=\frac{\mathrm{P}[\{\mathrm{X} \leq[\hat{\mathrm{A}} \mathrm{\cap A}]}{\mathrm{P}[\mathrm{~A}]}=\frac{0}{(1 / 2)}=0 \\
& \Rightarrow \mathrm{~F}_{\mathrm{X}}(3 \mid \mathrm{A})-\mathrm{F}_{\mathrm{X}}(0 \mid \mathrm{A})=\frac{1}{3}-0=\frac{1}{3}
\end{aligned}
$$

## Problem 4: [10 points]

Find $\mathrm{P}[2<\mathrm{Y}<5]$, if the random variable Y has a Gaussian probability density function given by

$$
\mathrm{f}_{\mathrm{Y}}(y)=\frac{1}{\sqrt{18 \pi}} e^{-(y-2)^{2} / 18}
$$

## Solution

$$
\mathrm{P}[2<\mathrm{X}<5]=\mathrm{F}_{\mathrm{X}}(5)-\mathrm{F}_{\mathrm{X}}(2) \text { were } \mathrm{F}_{\mathrm{X}}(\mathrm{x})=\underbrace{\int_{-\infty}^{x} \frac{1}{\sqrt{18 \pi}} e^{-(x-2)^{2} / 18} \mathrm{dx}}_{\text {No Closed Form Solution }}
$$

Since the Gaussian Density is given as

$$
\begin{aligned}
& \frac{1}{\sqrt{2 \pi \sigma_{X}^{2}}} e^{-\left(x-\mathrm{a}_{x}\right)^{2} / 2 \sigma_{x}^{2}} \Rightarrow \mathrm{a}_{\mathrm{x}}=2 \text { and } \sigma_{X}=3 \\
& \Rightarrow \mathrm{P}[2<\mathrm{X}<5]=\mathrm{F}\left(\frac{5-2}{3}\right)-\mathrm{F}\left(\frac{2-2}{3}\right) \quad \text { were } \mathrm{F}(\mathrm{x})=\underbrace{}_{\underbrace{\int_{-\infty}^{x}}_{\text {Normalized and Tabulated }} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} \mathrm{dx}} \\
& =\mathrm{F}(1)-\mathrm{F}(0)=0.8413-0.5000=0.3413
\end{aligned}
$$

