Homework \#7, Ch. 9 EE 202
DUE DATE: May 13 ${ }^{\text {th }}, 2013$

Problem \#1

The circuit shown is operating in the sinusoidal steady state. Find the value of ω if

$$
\begin{aligned}
& i_{0}=10 \sin \left(\omega t+111.87^{0}\right) m A \\
& v_{g}=5 \cos \left(\omega t-15^{0}\right) V
\end{aligned}
$$

What is the phase difference between the voltage and current, take the voltage as reference.

Problem \#2

Find the voltages V_{1} and V_{0} of the circuit shown below:

Problem \#3

Find the Thevenin equivalent circuit with respect to the terminals a, b of the circuit shown below:

Problem \#4

A) Use the node-voltage method (Check using Mesh Analysis) to find the phasor voltage $\mathbf{V}_{\mathbf{g}}$ and phasor current \mathbf{I}_{g}.in the circuit shown below:

Problem 1

$$
\begin{aligned}
& I_{g}=10151.8-90=10 L-38.2 \mathrm{~mA} \\
& V_{g}=5 L-15^{\circ} \mathrm{V} \\
& Z=\frac{V_{r}}{I_{g}}=\frac{5}{10} L-15+38.2=0,5 \angle 23,2^{\circ} \mathrm{k} \Omega \\
& =500\left(23.2=459.6+\jmath^{197.0 \Omega}\right. \\
& Z=459.6+\jmath\left(0,04 \omega-\frac{2,5 \times 10^{6}}{\omega}\right) \\
& \therefore \quad 0.04 \omega-\frac{2.5 \times 10^{6}}{\omega}=197 \\
& 4 \omega^{2}-2.5 \times 10^{8}-19700 \omega=0 \\
& \omega^{2}-4924 \omega-2.5 \times 10^{8}=0 \\
& =:(w>0)
\end{aligned}
$$

$$
\frac{\mathbf{V}_{1}-240}{j 10}+\frac{\mathbf{V}_{1}}{50}+\frac{\mathbf{V}_{1}}{30+j 10}=0
$$

Solving for \mathbf{V}_{1} yields

$$
\begin{aligned}
& \mathbf{V}_{1}=198.63 /-24.44^{\circ} \mathrm{V} \\
& \mathbf{V}_{o}=\frac{30}{30+j 10}\left(\mathbf{V}_{1}\right)=188.43 /-42.88^{\circ} \mathrm{V}
\end{aligned}
$$

$$
\frac{\mathbf{V}_{1}-75}{150(4+j 1)}-\frac{0.02 \mathbf{V}_{1}(40)}{40-j 150}+\frac{\mathbf{V}_{1}}{40-j 150}=0
$$

$$
\begin{aligned}
& \therefore \quad \mathbf{V}_{1}=\frac{75(4-j 15)}{16-j 12} \\
& \mathbf{V}_{\mathrm{Th}}=\frac{40 \mathbf{V}_{1}}{40-j 150}=\frac{4}{4-j 15} \cdot \frac{75(4-j 15)}{16-j 12} \\
& \quad=\frac{75}{4-j 3}=15 / 36.87^{\circ} \mathrm{V}
\end{aligned}
$$

$$
\mathbf{I}_{\mathrm{sc}}=\frac{75}{600}=\frac{1}{8} \mathrm{~A}
$$

$$
Z_{\mathrm{Th}}=\frac{\mathbf{V}_{\mathrm{Th}}}{\mathbf{I}_{\mathrm{sc}}}=120 / 36.87^{\circ}=96+j 72 \Omega
$$

$$
\begin{aligned}
& \frac{\mathbf{V}_{o}}{j 2}+\frac{\mathbf{V}_{o}+j 5}{5}+\frac{\mathbf{V}_{o}-\mathbf{V}_{1}}{-j 3}=0 \\
& (5+j 6) \mathbf{V}_{o}+10 \mathbf{V}_{1}=30 \\
& -5+\frac{\mathbf{V}_{1}-\mathbf{V}_{o}}{-j 3}+\frac{\mathbf{V}_{1}+j 5}{j 3}=0 \\
& \mathbf{V}_{o}=j 10 ; \quad \mathbf{V}_{1}=9-j 5 \\
& \mathbf{V}_{\mathrm{g}}=\mathbf{V}_{1}-\mathbf{V}_{o}=9-j 5-j 10=9-j 15=17.49 /-59.04^{\circ} \mathrm{V}
\end{aligned}
$$

