EE 202 (122) - HW4

Due Saturday April 6, 2013

Dr. Abdallah Al-Ahmari

Question 1:

For the circuit shown in Figure 1, find the following:
a) What is the value of R_{L} that will maximize the power transfer to the load $\left(\mathrm{R}_{\mathrm{L}}\right)$.
b) With this value of R_{L} (part a), what the maximum power in R_{L}.

Figure 1

Question 2:

For the circuit shown in Figure 2, find the following:
a) What is the value of R_{L} that will maximize the power transfer to the load $\left(\mathrm{R}_{\mathrm{L}}\right)$.
b) With this value of R_{L} (part a), what the maximum power in R_{L}.

Figure 2

Question 3:

For the circuit shown in Figure 3, use the superposition principle to find the current i_{o}.

Figure 3

Question 4:

For the circuit shown in Figure 4, find the following:
a) Find and sketch the current $\mathrm{i}(\mathrm{t})$.
b) Find and sketch the power $\mathrm{p}(\mathrm{t})$ in the inductor.
c) Find and sketch the energy $\mathrm{w}(\mathrm{t})$ stored in the inductor.

Figure 4

Question 5:

The four capacitors in the circuit below are connected across the terminals of a black box at $\mathrm{t}=0$. The resulting current i_{b} for $\mathrm{t}>0$ is known to be

$$
i_{b}=500 e^{-40 t} \mu \mathrm{~A} .
$$

If $\mathrm{v}_{\mathrm{a}}(0)=25 \mathrm{~V}, \mathrm{v}_{\mathrm{c}}(0)=-20 \mathrm{~V}, \mathrm{v}_{\mathrm{d}}(0)=45 \mathrm{~V}$, find the following for $\mathrm{t} \geq 0$.
a) $v_{b}(t)$,
b) $\mathrm{v}_{\mathrm{a}}(\mathrm{t})$,
c) $\mathrm{v}_{\mathrm{c}}(\mathrm{t})$,
d) $\mathrm{v}_{\mathrm{d}}(\mathrm{t})$,
e) $i_{1}(t)$, and
f) $i_{2}(t)$

Question 6:

In the circuit shown in Figure 6, the switch has been closed for a long time. At $t=0$ it is opened. Find the current $i_{o}(t)$ for $t \geq 0$.

Figure 6

Question 7:

In the circuit shown in Figure 7, the two switches operate together; that is, they either open or close at the same time. The switches have been closed for a long time before opening at $\mathrm{t}=0$.
a) How many microjoules of energy have been dissipated in the $68 \mathrm{k} \Omega$ resistor 10 ms after the switches open.
b) How long does it take to dissipate 90% of the initially stored energy?

Figure 7

