EE 202 (122) - HW4 - Solution
 Due Saturday April 6, 2013
 Dr. Abdallah Al-Ahmari

Question 1:

First, we find the Thevenin Equivalent circuit by finding V_{th} and R_{th}
$\mathrm{V}_{\mathrm{th}}=8.75 \mathrm{~V}, \mathrm{R}_{\mathrm{th}}=5 \mathrm{k} \Omega$.
a) $\mathrm{R}_{\mathrm{L}}=\mathrm{R}_{\mathrm{th}}=5 \mathrm{k} \Omega$.
b) $\mathrm{P}_{\text {max, load }}=\left(\mathrm{V}_{\mathrm{th}}\right)^{2} /\left(4 \mathrm{R}_{\mathrm{th}}\right)=3.828 \mathrm{~mW}$.

Question 2:

First, we find the Thevenin Equivalent circuit by finding V_{th} and R_{th}
$\mathrm{V}_{\mathrm{th}}=3775.55 \mathrm{~V}, \mathrm{R}_{\mathrm{th}}=42 \Omega$.
a) $\mathrm{R}_{\mathrm{L}}=\mathrm{R}_{\mathrm{th}}=42 \Omega$.
b) $\mathrm{P}_{\text {max, load }}=\left(\mathrm{V}_{\mathrm{th}}\right)^{2} /\left(4 \mathrm{R}_{\mathrm{th}}\right)=84,849.87 \mathrm{~W}$.

Question 3:

Using cdr, $\mathrm{i}_{\mathrm{o} 1}=-7.5 \mathrm{~A}$

Using cdr, $\mathrm{i}_{\mathrm{o} 2}=-1.263 \mathrm{~A}$

Using cdr, $\mathrm{i}_{03}=1.579 \mathrm{~A}$
$\mathrm{i}_{\mathrm{o}}=\mathrm{i}_{01}+\mathrm{i}_{02}+\mathrm{i}_{03}=-7.184 \mathrm{~A}$.
Question 4:
$v(t)= \begin{cases}10 & 0<t<2 \\ 0 & 2<5<4 \\ 2.5 t-20 & 4<t<8 \\ 0 & \text { othewise }\end{cases}$
$i(t)=i\left(t_{o}\right)+\frac{1}{L} \int_{t_{o}}^{t} v(x) d x$
$i(t)= \begin{cases}100 t & 0<t<2 \\ 200 & 2<5<4 \\ 12.5 t^{2}-200 t+800 & 4<t<8 \\ 0 & \text { othewise }\end{cases}$

For the energy $w(t)=0.5 L i^{2}(t)$
$w(t)= \begin{cases}0.05(100 t)^{2} & 0<t<2 \\ 2000 & 2<5<4 \\ 0.05\left(12.5 t^{2}-200 t+800\right)^{2} & 4<t<8 \\ 0 & \text { othewise }\end{cases}$

For the power $p(t)=v(t) i(t)$

$$
p(t)= \begin{cases}1000 t & 0<t<2 \\ 0 & 2<5<4 \\ (2.5 t-20)\left(12.5 t^{2}-200 t+800\right) & 4<t<8 \\ 0 & \text { othewise }\end{cases}
$$

Question 5:

$\mathrm{v}_{\mathrm{b}}(0)=-\mathrm{v}_{\mathrm{a}}(0)-\mathrm{v}_{\mathrm{d}}(0)-\mathrm{v}_{\mathrm{c}}(0)=-25-45+20=-50 \mathrm{~V}$.
$v_{b}(t)=v_{b}(0)-\frac{1}{0.5 \mu} \int_{0}^{t} i_{b}(x) d x=-50-\frac{1}{0.5 \mu} \int_{0}^{t} 500 e^{-40 x} \mu d x=25 e^{-40 t}-75$
$v_{a}(t)=v_{a}(0)+\frac{1}{5 \mu} \int_{0}^{t} i_{b}(x) d x=25+\frac{1}{5 \mu} \int_{0}^{t} 500 e^{-40 x} \mu d x=-2.5 e^{-40 t}+27.5$

$$
\begin{aligned}
& v_{c}(t)=v_{c}(0)+\frac{1}{1.25 \mu} \int_{0}^{t} i_{b}(x) d x=-20+\frac{1}{1.25 \mu} \int_{0}^{t} 500 e^{-40 x} \mu d x=-10 e^{-40 t}-10 \\
& v_{d}(t)=v_{d}(0)+\frac{1}{1 \mu} \int_{0}^{t} i_{b}(x) d x=45+\frac{1}{1 \mu} \int_{0}^{t} 500 e^{-40 x} \mu d x=-12.5 e^{-40 t}+57.5 \\
& i_{1}(t)=200 n F \frac{d v_{d}(t)}{d t}=200 n F \frac{d\left[-12.5 e^{-40 t}+57.5\right]}{d t}=100 e^{-40 t} \mu \mathrm{~A} \\
& i_{2}(t)=800 n F \frac{d v_{d}(t)}{d t}=800 n F \frac{d\left[-12.5 e^{-40 t}+57.5\right]}{d t}=400 e^{-40 t} \mu \mathrm{~A}
\end{aligned}
$$

Question 6:

For $\mathrm{t}<0$ we have the following circuit:

The inductor will be act as a short circuit. Start with a source transformation from the left then apply CDR to get $i_{o}(0)=15 \mathrm{~A}$.
For $\mathrm{t} \geq 0$ we have the following circuit that can be simplified to RL circuit shown below:

From the circuit we find the time constant

$$
\tau=L / R=0.01091 \mathrm{~s}
$$

And the current in the inductor becomes

$$
i_{o}(t)=15 e^{-91.64 t} \mathrm{~A}
$$

Question 7:

For t < 0 , we have the following circuit:

The capacitor will act as an open circuit and $\mathrm{v}_{\mathrm{c}}(0)=38.25 \mathrm{~V}$.

For $\mathrm{t} \geq 0$, we have the following RC circuit.

From the circuit we find the time constant of the RC circuit as follows:

$$
\tau=R C=0.68 \mathrm{~s}
$$

And the voltage across the capacitor becomes.
$v(t)=38.25 e^{-1.4706 t} \mathrm{~V}$
a) The amount of energy dissipated in the $68 \mathrm{k} \Omega$ is the initial energy stored in the capacitor which is equal to $0.5 \mathrm{C} \mathrm{v}^{2}=7.315 \mathrm{~mJ}$.
b) To dissipate 90% of the initial energy the voltage across the capacitor has to be 12.096 V and to reach this we need 782.88 ms .

