Problem 1: 20 points
a) For the circuit shown, write the expression for the current $i(t)$ for all t in the capacitor given that (15 points)
$v(t)= \begin{cases}0, & t<0 \\ 5 t, & 0 \leq t \leq 4 \\ 20, & 4 \leq t \leq 6 \\ 50-5 t, & 6 \leq t \leq 10 \\ 0, & t>10\end{cases}$
b) Sketch $i(\mathrm{t})$ for $0 \leq \mathrm{t} \leq 15$ seconds

$$
\begin{aligned}
& \text { a) Answer: } \\
& i(t)=5 \times 10^{-6} d v(t) / d t= \begin{cases}0, & t<0 \\
25 \mu \mathrm{~A}, & 0 \leq t \leq 4 \\
0, & 4 \leq t \leq 6 \\
-25 \mu \mathrm{~A}, & 6 \leq t \leq 10 \\
0, & t>10\end{cases}
\end{aligned}
$$

(5 point)

Problem 2: 20 points
a) Write the mesh equations for the circuit shown and put them in the matrix form. (15 points)
b) Calculate the power absorbed by the 3Ω resistor.

Answer:
a) The mesh equations are:

$$
\begin{aligned}
& M 1: 3 I A+2(I A-I B)+6 I A=30 \\
& M 2: 8 I B+5(I B-I C)+4 I B+2(I B-I A)=0 \\
& M 3: I C=-16
\end{aligned}
$$

Simplify
$11 I A-2 I B=30$

$$
-2 I A+19 I B-5 I C=0 \text { or }-2 I A+19 I B=-80
$$

$$
\left(\begin{array}{cc}
11 & -2 \\
-2 & 19
\end{array}\right)\binom{I A}{I B}=\binom{30}{-80}
$$

or

$$
\left(\begin{array}{ccc}
11 & -2 & 0 \\
-2 & 19 & -5 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
I A \\
I B \\
I C
\end{array}\right)=\left(\begin{array}{c}
30 \\
0 \\
-16
\end{array}\right)
$$

Answer:
b) $I A=2 \mathrm{~A}$
$I B=-4 \mathrm{~A}$
$\mathrm{P}_{3 \Omega}=3 I A^{2}=12 \mathrm{~W}$

Problem 3: 20 points

Use the concept of superposition only to find the current I_{x} in the following circuit
Answer:
$I_{x}=$

$$
\begin{equation*}
I_{x_{1}}=2 I_{y_{1}} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\sigma I_{x_{1}}=I_{y_{1} \cdot(1)} \tag{2}
\end{equation*}
$$

from (1) and (2) $I_{x_{1}}=I_{y_{1}}=0$
ohm's law oven the in resistor

$$
\begin{equation*}
I_{y_{2}}=\frac{6 I_{x_{2}}}{1} \tag{B}
\end{equation*}
$$

KCL at node A

$$
11+2 I_{y_{2}}=I_{x_{2}}
$$

Solving (3) and (4)

$$
\begin{aligned}
& I_{x_{2}}=-1 \mathrm{~A} \quad I_{y_{2}}=-6 \mathrm{~A} \\
& I_{x}=I_{x_{1}}+I_{x_{2}}=-1 \mathrm{~A} \\
& I_{y}=I_{y_{1}}+I_{y_{2}}=-6 \mathrm{~A}
\end{aligned}
$$

Problem 4: 20 points

For the Op-Amp circuit shown, answer the following
a) The circuit implements (performs as): Circle only one correct answer (2 points)
I. Inverting amplifier.
II. Difference amplifier.
III. Non inverting amplifier.
IV. Summing amplifier
b) Find the gain of the amplifier vo $/ v_{g}$.
c) Find the range of the input vg for linear operation of the circuit, show your steps
d) If $v_{\mathrm{g}}=1 \mathrm{~V}$, find the output current of the amplifier, I_{o}. (5 points)

Answers
b) $\mathrm{vo} / \mathrm{vg}_{\mathrm{g}}$
c) $\quad \leq v_{\mathrm{g}} \leq$
d) $\mathrm{I}_{\mathrm{o}}=$

Solution to Problem 4
a) III nonituratiog Amplifier
b) g an $=\frac{v_{0}}{v_{9}}=1+\frac{200}{16}=13.5$

9 $V_{\text {OM }}= \pm V_{\text {Sat }}= \pm 15$

$$
\begin{aligned}
I_{0} & =\frac{I_{L}}{V_{0}}+I_{f} \\
& =\frac{V_{0}-V_{3}}{200 k} \\
I_{L} & =\frac{13.5}{27 k}+\frac{13.5-1}{200 k}=
\end{aligned}
$$

Problem 5: 20 points

a) Find the Thevenin's Equivalent between terminals a-b for the circuit shown below using ONLY source transformation method (from the beginning to the end). (16 points)
Answer: Thevenin's Equivalent is (Draw the circuit with its values):

b) If a load resistor R_{L} is connected between the terminals a-b as shown in the circuit below, then what is the value of R_{L} that will assure a maximum power transfer to it, and what is the maximum power it absorbs. (4 points)

Answers:

$R_{L}=$
maximum power transfer to $R_{L}=$

Part A: 8 simple stages of simplification

Stage 1: two independent source transformations from the left and the right.

Stage $2: 40 / / 160=32 \Omega \& 5+15=20 \mathrm{~A}$.

Stage 3 : source transformation from the left.

Stage $4: 32+18=50 \Omega$.

Stage 5 : source transformation from the left.

Stage $6: 50 / / 75=30 \Omega$ And $12.8 \mathrm{~A} / / 5.2 \mathrm{~A}=18 \mathrm{~A}$.

Stage 7 : source transformation from the left.

Stage $8: 30+20=50 \Omega$.

Part B:

R_{L} that will achieve maximum power transfer is $\mathrm{R}_{\mathrm{th}}=50 \Omega$.
$P_{L, \max }=(540)^{2} /(4 \times 50)=1458 \mathrm{~W}$.

