Problem 1: 8points

For the circuit shown, find the equivalent resistance across the terminals a and b.
Show the steps of the solution, marks will be given based on the steps shown.

Block1(B1) correct $===\rightarrow 2$ points $\quad 1+0.5+.5=2 \mathrm{II} 2=1$
Block (B2) correct $===\rightarrow 4$ points (2 points for each triangle) (1+1)II2=>(1+1)II2=1
Block (B3) Correct $=\rightarrow 2$ points ($1+.5+0.5) \mathrm{II} 2=1$
Req $=1$

Problem 2: 10 points

Use the current divider rule and the voltage divider rule to determine the currents i_{x}, i_{y}, the voltage v_{x}, and the power supplied by the 10 V source shown in the following circuits. Show the steps of the solution.

THE POINTS ARE GIVEN FOR USING CDR AND VDR ONLY, OTHERWISE ZERO POINTS (-1 POINT FOR EACH WRONG SIGN)

CDR: $I w=12(1) /(1+1+1)=4 \mathrm{~A}$
VDR: $\boldsymbol{v x}=-10(2 / 3) /(2+2 / 3)=-2.5 \mathrm{~V}$
CDR: iy $=12(2) /(1+1+1)=8 \mathrm{~A}$
CDR: $\mathbf{i x}=-4(2) /(2+2)=-2 \mathrm{~A}$
$\mathrm{P}_{10 \mathrm{~V}}=10 \mathrm{I}=10 \times 10 /(2+2 / 3)=37.5 \mathrm{~W}$

i_{x}	i_{y}	v_{x}	Power supplied by the 10 V source
-2 A	8 A	-2.5 V	37.5 W
4 points	2 points	2 points	2 points

Problem 3: 12 points

i) For the circuit shown below write the node equations needed to solve for the nodes voltages v_{1}, v_{2} and v_{3} ?
(9 points)
The equations must be simplified and put in the form:
$a v_{1}+b v_{2}+c v_{3}=d \quad$ Where a, b, c and $d \quad$ are scaled to be integers
ii) Determine the value for $v_{0} \quad$ (3 points)

The simplified node equations are:

1) $-3 v_{1}+4 v_{2}+4 v_{3}=4$
2) $\quad 4 v_{1}-v_{3}=20$
3) $v_{1}-v_{2}+v_{3}=0$

KCl at $\mathrm{SN} v_{1}, v_{2}$
$-1+\frac{V_{1}}{4}+\frac{V_{1}-V_{3}}{1}+\frac{V_{2}}{1}-2 V_{0}=0$
$V_{0}=V_{1}-V_{3}$
$-1+\frac{v_{1}}{4}+\frac{v_{1}-v_{3}}{1}+\frac{v_{2}}{1}-2\left(v_{1}-v_{3}\right)=0$
$-4+\underline{v_{1}}+4 v_{1}-4 v_{3}+4 v_{2}-8 v_{1}+8 v_{3}=0$
$-3 v_{1}+4 v_{2}+4 v_{3}=4-$ (1)
kcl of v_{3}
$\frac{v_{3}-v_{1}}{1}+2 v_{0}+\frac{v_{3}}{4}+\frac{v_{3}-10}{2}=0$
$v_{3}-v_{1}+2\left(v_{1}-v_{3}\right)+\frac{v_{3}}{4}+\frac{v_{3}-10}{2}=0$
$4 v_{3}-4 v_{1}+8 v_{1}-8 v_{3}+v_{3}+2 v_{3}-20=0$
Restriction $v_{2}-v_{1}=4 \Gamma_{0}=4 \frac{v_{3}}{4}=v_{3}$

$$
\begin{equation*}
v_{1}-v_{2}+v_{3}=0 \tag{3}
\end{equation*}
$$

Problem 4: 10 points

Given that $\mathrm{i}_{\mathrm{o}}=3 \mathrm{~A}$ and $\mathrm{V}_{\mathrm{x}}=5 \mathrm{~V}$, find the power dissipated (absorbed) in every element of the following circuit. Put the values in the following table.

Show the steps of the solution.

1) For the resistor 80Ω : the current is $i_{o} \& p=80 *\left(i_{o}\right)^{2}=720 \mathrm{~W}$ dissipated.
2) For the resistor 24Ω : the voltage is $v_{o}=80 \times i_{o}=240 \mathrm{~V}$,

$$
\mathrm{p}=\mathrm{v}_{\mathrm{o}}{ }^{2} / 24=2400 \mathrm{~W} \text { dissipated }
$$

3) For the resistor 1Ω : the voltage is $\mathrm{V}_{\mathrm{x}}=5 \mathrm{~V}, \mathrm{p}=5^{2} / 1=25 \mathrm{~W}$ dissipated.
4) For the resistor 9Ω : the current $\mathrm{i}_{\mathrm{x}}=5 \mathrm{~A}, \mathrm{p}=9^{*}(5)^{2}=225 \mathrm{~W}$ dissipated.
5) For the 22 A current source: $\mathrm{p}=22^{*} \mathrm{Vo}=5240 \mathrm{~W}$.
6) For the dependent source: $p=6 \mathrm{Vx}(\mathrm{Vo})=-7200 \mathrm{~W}$ dissipated.
7) For the voltage source: $p=-290 i x=-1450 W$ dissipated.

Element	
80Ω resistor	$=80(3)^{2}=720 \mathrm{~W}, \mathrm{v}_{\mathrm{o}}=80(3)=240 \mathrm{~V}$
24Ω resistor	$=\mathrm{v}_{\mathrm{o}}{ }^{2} / 24=2400 \mathrm{~W}$
9Ω resistor	$=9 * 5^{\wedge} 2=225$
1Ω resistor	$1^{*} 5^{\wedge} 2=25$
22 A current source	$22^{*} 240=5280$
290 V voltage source	$-290(5)=-1450$
$6 \mathrm{~V}_{\mathrm{x}}$ Dependent current source	$-6(5)(240)=-7200$

Problem 5: 10 points

i) Use ONLY KVL, KCL, and Ohm's law to find the value of the current I in the following circuit. (8 points)
(NO MARKS WILL BE GIVEN FOR USING ANY OTHER TECHNIQUE TO SOLVE THIS PROBLEM)
Show the steps of the solution, marks will be given based on the steps shown.

* USing KCL it Gam be shown that

$$
I=3 A
$$

$$
\text { the current in the } 2 \Omega \text { resistor }=3-I
$$

$$
\text { the current in the ir resistor }=9-I
$$

$*$

$$
\begin{aligned}
& \text { applytag KVL } \\
& 2 I-2(3-I)-1(g-I)=0 \\
& 5 I=15 \quad I=3 A
\end{aligned}
$$

ii) The value of the voltage V_{1} is
(CIRCLE THE CORRECT ANSWER ONLY)
a) $V_{1}=I$
b) $\mathrm{V}_{1}=-\mathrm{I}$
c) $V_{1}=9-I$
d) $V_{1}=I-9$
e) $V_{1}=I-3$
f) $V_{1}=3-I$
g) $\mathrm{V}_{1}=-9$
h) $\mathrm{V}_{1}=9$
j) none of the above

