9.2 The Sinusoidal Response

KVL $\quad L \frac{d i}{d t}+R i=10 \cos \left(3 t+40^{\circ}\right)$
Solution for $i(t)$ should be a sinusoidal of frequency 3
$i(t)=1.58 \cos \left(3 t-31.56^{\circ}\right)$ $v_{R}(t)=3.1 \cos \left(3 t-31.56^{\circ}\right)$

We notice that only the amplitude and phase change
$v_{L}(t)=9.5 \cos \left(3 t-58.43^{\circ}\right)$
In this chapter, we develop a technique for calculating the response directly without solving the differential equation

Time Domain

Complex Domain

Deferential Equation

Algebraic Equation

$$
L \frac{d i}{d t}+R i=V_{s}(t)
$$

9.3 The phasor

The phasor is a complex number that carries the amplitude and phase angle information of a sinusoidal function
The phasor concept is rooted in Euler's identity $e^{ \pm j \theta}=\cos (\theta) \pm j \sin (\theta)$
Euler's identity relates the complex exponential function to the trigonometric function
We can think of the cosine function as the real part of the complex exponential and the sine function as the imaginary part

$$
\cos (\theta)=\Re\left\{e^{j \theta}\right\} \quad \sin (\theta)=\mathfrak{J}\left\{e^{j \theta}\right\}
$$

Because we are going to use the cosine function on analyzing the sinusoidal steady-state we can apply

$$
\cos (\theta)=\mathfrak{R}\left\{e^{j \theta}\right\}
$$

$e^{ \pm j \theta}=\cos (\theta) \pm j \sin (\theta) \quad \cos (\theta)=\mathfrak{R}\left\{e^{j \theta}\right\} \quad \sin (\theta)=\mathfrak{I}\left\{e^{j \theta}\right\}$
$v=V_{m} \cos (\omega t+\phi)=V_{m} \mathfrak{R}\left\{e^{j(\omega t+\phi)}\right\}=V_{m} \mathfrak{R}\left\{e^{j \omega t} e^{j \phi}\right\}$
We can move the coefficient V_{m} inside $\Longrightarrow v=\mathfrak{R}\left\{V_{m} e^{j \phi} e^{j \omega t}\right\}$
The quantity $V_{m} e^{j \phi}$ is a complex number define to be the phasor that carries the amplitude and phase angle of a given sinusoidal function
Phasor Transform

$$
P\left\{V_{m} \cos (\omega t+\phi)\right\}=V_{m} e^{j \phi}=\boldsymbol{V}
$$

Were the notation $\quad P\left\{V_{m} \cos (\omega t+\phi)\right\}$
Is read " the phasor transform of $V_{m} \cos (\omega t+\phi)$

The V-I Relationship for a Resistor

Let the current through the resistor be a sinusoidal given as
$\longmapsto v(t)=R i(t)=R\left[I_{m} \cos \left(\omega t+\theta_{i}\right)\right]=R I_{m}\left[\cos \left(\omega t+\theta_{i}\right)\right]$
$\longrightarrow v(t)=R I_{m}\left[\cos \left(\omega t+\underset{\text { volagepensee }}{\theta_{i}}\right)\right]$ Is also sinusoidal with

$$
\text { amplitude } V_{m}=R I_{m} \quad \text { And phase } \quad \theta_{v}=\theta_{i}
$$

The sinusoidal voltage and current in a resistor are in phase

Now let us see the pharos domain representation or pharos transform of the current and voltage
$i(t)=I_{m} \cos \left(\omega t+\theta_{i}\right)$

$V(t)=R I_{m}\left[\operatorname{COS}\left(\cot +\theta_{i}\right)\right]$

Which is Ohm's law on the phasor (or complex) domain

$$
V=R I
$$

The voltage and the current are in phase

The V-I Relationship for an Inductor

Let the current through the resistor be a sinusoidal given as $\quad i(t)=I_{m} \cos \left(\omega t+\theta_{i}\right)$

$$
v(t)=L \frac{d i(t)}{d t}=-\omega L I_{m} \sin \left(\omega t+\theta_{i}\right)
$$

\square The sinusoidal voltage and current in an inductor are out of phase by $\mathbf{9 0}^{\circ}$ The voltage lead the current by $\mathbf{9 0}^{\circ}$ or the current lagging the voltage by $\mathbf{9 0}^{\circ}$

You can express the voltage leading the current by $T / 4$ or $1 / 4 f$ seconds were T is the period and f is the frequency

Now we rewrite the sin function as a cosine function (remember the phasor is defined in terms of a cosine function)
$\longmapsto v(t)=-\omega L I_{m} \cos \left(\omega t+\theta_{i}-90^{\circ}\right)$
The pharos representation or transform of the current and voltage

$$
\begin{aligned}
& i(t)=I_{m} \cos \left(\omega t+\theta_{i}\right) \longleftrightarrow I=I_{m} e^{j \theta_{i}}=I_{m}\left\langle\theta_{i}\right. \\
& v(t)=-\omega L I_{m} \cos \left(\omega t+\theta_{i}-90^{\circ}\right) \longmapsto V=-\omega L I_{m} e^{j\left(\theta_{i}-90^{\circ}\right)}=-\omega L I_{m} e^{j \theta_{i}} \underbrace{e^{-j 90^{\circ}}}_{=-j}=j \omega L I_{m} e^{j \theta_{i}}
\end{aligned}
$$

But since $\quad j=1 e^{j 90^{\circ}}=1 \quad \angle 90^{\circ}$
Therefore $\quad V=j \omega L I_{m} e^{j \theta_{i}}=\omega L I_{m} e^{j 90^{\circ}} e^{j \theta_{i}}=\omega L I_{m} e^{j\left(\theta_{i}+90^{\circ}\right)}=\omega L I_{m} \quad\left(\theta_{i}+90^{\circ}\right)$
$\longmapsto V_{m}=\omega L I_{m}$ and $\quad \theta_{v}=\theta_{i}+90^{\circ}$

The voltage lead the current by $\mathbf{9 0 ^ { \circ }}$ or the current lagging the voltage by $\mathbf{9 0}^{\circ}$

The V-I Relationship for a Capacitor

C

$$
i(t)=C \frac{d v(t)}{d t}
$$

Let the voltage across the capacitor be a sinusoidal given as $\quad v(t)=V_{m} \cos \left(\omega t+\theta_{v}\right)$

$$
i(t)=C \frac{d v(t)}{d t}=-\omega C V_{m} \sin \left(\omega t+\theta_{v}\right)
$$

The sinusoidal voltage and current in an inductor are out of phase by 90° The voltage lag the current by $\mathbf{9 0}^{\circ}$ or the current leading the voltage by $\mathbf{9 0}^{\circ}$

The V-I Relationship for a Capacitor

The pharos representation or transform of the voltage and current

$$
v(t)=V_{m} \cos \left(\omega t+\theta_{v}\right) \longleftrightarrow V=V_{m} e^{j \theta_{v}}=V_{m} / \theta_{v}
$$

$$
i(t)=-\omega C V_{m} \sin \left(\omega t+\theta_{v}\right)=-\omega C V_{m} \cos \left(\omega t+\theta_{v}-90^{\circ}\right) \quad \Longrightarrow I=-\omega L V_{m} e^{j\left(\theta_{v}-90^{\circ}\right)}
$$

$$
\longmapsto I=-\omega C V_{m} e^{j \theta_{v}} \underbrace{e^{j-90^{\circ}}}_{-j}=j \omega C V_{m} e^{j \theta_{v}} \quad=j \omega C V
$$

$$
\begin{aligned}
& \longleftrightarrow V=\frac{\boldsymbol{I}}{j \omega C}=\frac{I_{m} e^{j \theta_{i}}}{\underbrace{1 e^{j 90^{\circ}}}_{j} \omega C}=\frac{I_{m} e^{j\left(\theta_{i}-90^{\circ}\right)}}{\omega C}=\underbrace{\frac{I_{m}}{\omega C}}_{V_{\mathrm{m}}} \underbrace{\left(\theta_{i}-90^{\circ}\right)}_{\theta_{\mathrm{v}}} \\
& \longmapsto V_{m}=\frac{I_{m}}{\omega C} \text { and } \quad \theta_{v}=\theta_{i}-90^{\circ}
\end{aligned}
$$

$$
\begin{array}{ll}
& 1 / j \omega C \\
\hdashline & - \\
+\quad & \\
\longrightarrow & \boldsymbol{V}=\frac{\boldsymbol{I}}{j \omega C} \\
\longrightarrow & V_{m}=\frac{I_{m}}{\omega C} \quad \text { and } \quad \theta_{v}=\theta_{i}-90^{\circ}
\end{array}
$$

The voltage lag the current by $\mathbf{9 0}^{\circ}$ or the current lead the voltage by $\mathbf{9 0 ^ { \circ }}$

Time-Domain

$i(t)=I_{m} \cos \left(\omega t+\theta_{i}\right)$
$v(t)=R I_{m}\left[\cos \left(\omega t+\theta_{i}\right)\right]$

$$
\begin{gathered}
i(t)=I_{m} \cos \left(\omega t+\theta_{i}\right) \quad v(t)=L \frac{d i(t)}{d t} \\
v(t)=-\omega L I_{m} \sin \left(\omega t+\theta_{i}\right)
\end{gathered}
$$

$$
i(t)=C \frac{d v(t)}{d t}
$$

Phasor (Complex or Frequency) Domain

$$
\begin{aligned}
& v(t)=V_{m} \cos \left(\omega t+\theta_{v}\right) \\
& i(t)=-\omega C V_{m} \sin \left(\omega t+\theta_{v}\right)
\end{aligned}
$$

Impedance and Reactance

The relation between the voltage and current on the phasor domain (complex or frequency) for the three elements R, L, and C we have

$$
V=R I \quad V=j \omega L I \quad V=\frac{\boldsymbol{I}}{j \omega C}=\frac{\mathbf{1}}{j \omega C} \boldsymbol{I}
$$

When we compare the relation between the voltage and current, we note that they are all of form:

$$
\begin{array}{ll}
V=Z \boldsymbol{I} \quad \text { Which the state that the phasor voltage is some complex constant (Z) } \\
\text { times the phasor current }
\end{array}
$$

This resemble (شبه) Ohm’s law were the complex constant (Z) is called "Impedance" (أعاقّه)

Recall on Ohm's law previously defined , the proportionality content R was real and called "Resistant" (مقّاومه)

Solving for (Z) we have $Z=\frac{V}{I}$

The Impedance of a resistor is
The Impedance of an indictor is

$$
\begin{array}{ll}
\mathrm{Z}_{R}=R & \text { In all cases the impedance is measured } \\
\mathrm{Z}_{L}=j \omega L & \text { in Ohm's } \Omega \\
\mathrm{Z}_{C}=\frac{1}{j \omega C} &
\end{array}
$$

$$
V=R I \quad V=j \omega L I \quad V=\frac{1}{j \omega C} I
$$

Impedance $\mathrm{Z}=\frac{V}{I}$
The Impedance of a resistor is $\quad \mathrm{Z}_{R}=R \quad$ In all cases the impedance is measured
The Impedance of an indictor is $\quad \mathrm{Z}_{L}=j \omega L \quad$ in Ohm's Ω
The Impedance of a capacitor is $\quad Z_{C}=\frac{1}{j \omega C}$
The imaginary part of the impedance is called "reactance"
The reactance of a resistor is $\quad \mathrm{X}_{R}=0 \quad$ We note the "reactance" is associated
The reactance of an inductor is $\quad X_{L}=\omega L \quad$ with energy storage elements like the
The reactance of a capacitor is

$$
\mathrm{X}_{C}=\frac{-1}{\omega C}
$$

Note that the impedance in general (exception is the resistor) is a function of frequency
At $\omega=0$ (DC), we have the following

$$
\begin{aligned}
& \mathrm{Z}_{L}=j \omega L=j(0) L=\mathbf{0} \\
& \mathrm{Z}_{C}=\frac{1}{j \omega C}=\frac{1}{j(0) C}=\infty
\end{aligned}
$$

short
open

9.5 Kirchhoff's Laws in the Frequency Domain (Phasor or Complex Domain)

Consider the following circuit

$$
\begin{aligned}
& v_{1}(t)=V_{1} \cos \left(\omega t+\theta_{1}\right) \\
& v_{2}(t)=V_{2} \cos \left(\omega t+\theta_{2}\right) \\
& v_{3}(t)=V_{3} \cos \left(\omega t+\theta_{3}\right) \\
& v_{4}(t)=V_{4} \cos \left(\omega t+\theta_{4}\right) \quad \begin{array}{l}
V_{1}=V_{1} e^{j \theta_{1}} \\
V_{3}=V_{2} e^{j \theta_{2}}
\end{array} \\
& \mathrm{KVL} V_{3} e^{j \theta_{3}} \\
& V_{4}=V_{4} e^{j \theta_{4}} \\
& v_{1}(t)+v_{2}(t)+v_{3}(t)+v_{4}(t)=0
\end{aligned}
$$

$\longmapsto V_{1} \cos \left(\omega t+\theta_{1}\right)+V_{2} \cos \left(\omega t+\theta_{2}\right)+V_{3} \cos \left(\omega t+\theta_{3}\right)+V_{4} \cos \left(\omega t+\theta_{4}\right)=0$
Using Euler Identity we have $\mathfrak{R}\left\{V_{1} e^{j \theta_{1}} e^{j \omega t}\right\}+\mathfrak{R}\left\{V_{2} e^{j \theta_{2}} e^{j \omega t}\right\}+\mathfrak{R}\left\{V_{3} e^{j \theta_{3}} e^{j \omega t}\right\}+\mathfrak{R}\left\{V_{4} e^{j \theta_{4}} e^{j \omega t}\right\}=0$ Which can be written as $\mathfrak{R}\left\{V_{1} e^{j \theta_{1}} e^{j \omega t}+V_{2} e^{j \theta_{2}} e^{j \omega t}+V_{3} e^{j \theta_{3}} e^{j \omega t}+V_{4} e^{j \theta_{4}} e^{j \omega t}\right\}=0$

Factoring $e^{j \omega t} \longmapsto \mathfrak{R}\left\{\left(V_{1} e^{j \theta_{1}}+V_{2} e^{j \theta_{2}}+V_{3} e^{j \theta_{3}}+V_{4} e^{j \theta_{4}}\right) e^{j \omega t}\right\}=0 \quad V_{1}+\boldsymbol{V}_{2}+V_{3}+\boldsymbol{V}_{4}=0$

So in general

$$
\boldsymbol{V}_{1}+\boldsymbol{V}_{2}+\cdots+\boldsymbol{V}_{\mathrm{n}}=0
$$

KVL on the phasor domain

Kirchhoff's Current Law

A similar derivation applies to a set of sinusoidal current summing at a node

$$
i_{1}(t)=I_{1} \cos \left(\omega t+\theta_{1}\right) \quad i_{2}(t)=I_{2} \cos \left(\omega t+\theta_{2}\right) \quad \cdots \quad i_{n}(t)=I_{n} \cos \left(\omega t+\theta_{n}\right)
$$

Phasor
Transformation

$$
\boldsymbol{I}_{2}=I_{2} e^{j \theta_{2}} \quad \boldsymbol{I}_{n}=I_{n} e^{j \theta_{n}}
$$

$$
\mathrm{KCL} \quad \square \quad i_{1}(t)+i_{2}(t)+\ldots+i_{n}(t)=0
$$

$$
\longmapsto \boldsymbol{I}_{1}+\boldsymbol{I}_{2}+\cdots+\boldsymbol{I}_{\mathrm{n}}=0
$$

KCL on the phasor domain

9.6 Series, Parallel, and Delta-to Wye Simplifications

Example 9.6 for the circuit shown below the source voltage is sinusoidal

(a) Construct the frequency-domain (phasor, complex) equivalent circuit ?
(b) Calculte the steady state current $i(\mathrm{t})$?

The source voltage pahsor transformation or equivalent $\longrightarrow \boldsymbol{V}_{s}=750 e^{j 30^{\circ}}=750 \angle 30^{\circ}$

$$
\begin{aligned}
& \text { The Impedance of the indictor is } \quad Z_{\mathrm{L}}=j \omega L=j(5000)\left(32 \mathrm{X} \mathrm{10} 0^{-3}\right)=j 160 \Omega \\
& \text { The Impedance of the capacitor is } \quad \mathrm{Z}_{C}=\frac{1}{j \omega C}=\frac{1}{j(5000)\left(5 \times 10^{-6}\right)}=-j 40 \Omega
\end{aligned}
$$

To Calculate the phasor current I

$$
I=\frac{\boldsymbol{V}_{s}}{Z_{\mathrm{ab}}} \quad=\frac{750 e^{j 30^{\circ}}}{90+j 160-j 40}=\frac{750 e^{j 30^{\circ}}}{90+j 120}=\frac{750 \angle 30^{\circ}}{150 \angle 53.13^{\circ}}=5 \angle-23.13^{\circ} \quad \mathrm{A}
$$

$$
i(t)=5 \cos \left(5000 t-23.13^{\circ}\right) \quad A
$$

Example 9.7 Combining Impedances in series and in Parallel

$$
i_{s}(t)=8 \cos (200,000 t) \quad \mathrm{A}
$$

(a) Construct the frequency-domain (phasor, complex) equivalent circuit ?
(b) Find the steady state expressions for $v, \mathrm{i}_{1}, \mathrm{i}_{2}$, and i_{3} ? ?
(a)

$$
\begin{aligned}
Y_{1} & =\frac{1}{10}=0.1 \mathrm{~S} \\
Y_{2} & =\frac{1}{6+j 8}=\frac{6-j 8}{100}=0.06-j 0.08 \mathrm{~S} \\
Y_{3} & =\frac{1}{-j 5}=j 0.2 \mathrm{~S}
\end{aligned}
$$

The admittance of the three branches is $\quad Y=Y_{1}+Y_{2}+Y_{3}=0.16+j 0.12=0.2 \angle 36.87^{\circ} \mathrm{S}$

$$
\begin{aligned}
& Z=\frac{1}{Y}=5 \angle-36.87^{\circ} \Omega \quad \mathbf{V}=Z \mathbf{I}=40 \angle-36.87^{\circ} \mathrm{V} \quad \square v=40 \cos \left(200,000 t-36.87^{\circ}\right) \mathrm{V} \\
& \mathbf{I}_{1}=\frac{40 \angle-36.87^{\circ}}{10}=4 \angle-36.87^{\circ}=3.2-j 2.4 \mathrm{~A} \quad \square i_{1}=4 \cos \left(200,000 t-36.87^{\circ}\right) \mathrm{A} \\
& \mathbf{I}_{2}=\frac{40 \angle-36.87^{\circ}}{6+j 8}=4 \angle-90^{\circ}=-j 4 \mathrm{~A} \\
& \mathbf{I}_{3}=\frac{40 \angle-36.87^{\circ}}{5 \angle-90^{\circ}}=8 \angle 53.13^{\circ}=4.8+j 6.4 \mathrm{~A} \quad \square i_{2}=4 \cos \left(200,000 t-90^{\circ}\right) \mathrm{A}
\end{aligned}
$$

We check the computations $\quad \mathbf{I}_{1}+\mathbf{I}_{2}+\mathbf{I}_{3}=3.2-j 2.4-j 4+4.8+j 6.4=8+j 0=\mathbf{I}$

Delta-to Wye Transformations

Δ to Y

$$
\begin{aligned}
Z_{1} & =\frac{Z_{\mathrm{b}} Z_{\mathrm{c}}}{Z_{\mathrm{a}}+Z_{\mathrm{b}}+Z_{\mathrm{c}}} \\
Z_{2} & =\frac{Z_{\mathrm{c}} Z_{\mathrm{a}}}{Z_{\mathrm{a}}+Z_{\mathrm{b}}+Z_{\mathrm{c}}} \\
Z_{3} & =\frac{Z_{\mathrm{a}} Z_{\mathrm{b}}}{Z_{\mathrm{a}}+Z_{\mathrm{b}}+Z_{\mathrm{c}}}
\end{aligned}
$$

Y to Δ

$$
\begin{gathered}
Z_{\mathrm{a}}=\frac{Z_{1} Z_{2}+Z_{2} Z_{3}+Z_{3} Z_{1}}{Z_{1}} \\
Z_{\mathrm{b}}=\frac{Z_{1} Z_{2}+Z_{2} Z_{3}+Z_{3} Z_{1}}{Z_{2}} \\
Z_{\mathrm{c}}=\frac{Z_{1} Z_{2}+Z_{2} Z_{3}+Z_{3} Z_{1}}{Z_{3}}
\end{gathered}
$$

Example 9.8 Use a Δ-to- Y impedance transformation to find $\mathbf{I}_{0}, \mathbf{I}_{1}, \mathbf{I}_{2}, \mathbf{I}_{3}, \mathbf{I}_{4}, \mathbf{I}_{5}, \mathbf{V}_{1}$, and \mathbf{V}_{2} in the circuit

$$
\begin{aligned}
& \mathbf{V}_{\mathrm{nd}}=(8-j 24) \mathbf{I}_{0}=96-j 32 \mathrm{~V} \\
& \mathbf{V}=\mathbf{V}_{\mathrm{an}}+\mathbf{V}_{\mathrm{nd}} \\
& \mathbf{V}_{\mathrm{an}}=120-96+j 32=24+j 32 \mathrm{~V} \\
& \mathbf{I}_{\mathrm{abn}}=\frac{24+j 32}{12}=2+j \frac{8}{3} \mathrm{~A} \\
& \mathbf{I}_{\mathrm{acn}}=\frac{24+j 32}{60}=\frac{4}{10}+j \frac{8}{15} \mathrm{~A}
\end{aligned}
$$

the branch currents

$$
\begin{aligned}
& \mathbf{I}_{1}=\mathbf{I}_{\mathrm{abn}}=2+j \frac{8}{3} \mathrm{~A} \\
& \mathbf{I}_{2}=\mathbf{I}_{\mathrm{acn}}=\frac{4}{10}+j \frac{8}{15} \mathrm{~A}
\end{aligned}
$$

check the calculations

$$
\mathbf{I}_{1}+\mathbf{I}_{2}=2.4+j 3.2=\mathbf{I}_{0}
$$

9.7 Source Transformations and Thevenin-Norton Equivalent Circuits

Source Transformations

Thevenin-Norton Equivalent Circuits

Frequency-domain linear circuit; may contain both independent and dependent sources.

Example 9.9 Use the concept of source transformation to find the phasor voltage V_{0} in the circuit shown

$$
\begin{aligned}
\mathbf{I}_{0} & =\frac{36-j 12}{12-j 16}=\frac{12(3-j 1)}{4(3-j 4)} \\
& =\frac{39+j 27}{25}=1.56+j 1.08 \mathrm{~A}
\end{aligned}
$$

$$
\mathbf{V}_{0}=(1.56+j 1.08)(10-j 19)=36.12-j 18.84
$$

Find the Thévenin equivalent circuit with respect to terminals a, b for the circuit shown

Next we find the Thevenin Impedance

Thevenin Impedance

$Z_{\mathrm{Th}}=\frac{\mathbf{V}_{T}}{\mathbf{I}_{T}} \quad$ Find \mathbf{I}_{T} interms of \mathbf{V}_{T} then form the ratio $\frac{\mathbf{V}_{\mathrm{T}}}{\mathbf{I}_{\mathrm{T}}}$ $\mathbf{I}_{T}=\mathbf{I}_{\mathrm{a}}+\mathbf{I}_{\mathrm{b}} \quad$ Find \mathbf{I}_{a} and \mathbf{I}_{b} interms of \mathbf{V}_{T}

$$
\mathbf{I}_{\mathrm{a}}=\frac{\mathbf{V}_{T}}{10-j 40} \xrightarrow{\longleftrightarrow_{12 \Omega \mid 60 \Omega}^{120}} \quad \mathbf{V}_{x}=10 \mathbf{I}_{\mathrm{a}} \quad \mathbf{I}_{\mathrm{b}}=\frac{\mathbf{V}_{T}-10 \mathbf{V}_{x}}{120}=\frac{-\mathbf{V}_{T}(9+j 4)}{120(1-j 4)}
$$

$$
\begin{aligned}
& \mathbf{I}_{T}=\mathbf{I}_{\mathrm{a}}+\mathbf{I}_{\mathrm{b}}=\frac{\mathbf{V}_{T}}{10-j 40}\left(1-\frac{9+j 4}{12}\right)=\frac{\mathbf{V}_{T}(3-j 4)}{12(10-j 40)} \\
& Z_{\mathrm{Th}}=\frac{\mathbf{V}_{T}}{\mathbf{I}_{T}}=91.2-j 38.4 \Omega
\end{aligned}
$$

9.8 The Node-Voltage Method

Example 9.11 Use the node-voltage method to find the branch currents $\mathbf{I}_{a}, \mathbf{I}_{b}$, and \mathbf{I}_{c} in the circuit shown

KCL at node $1 \quad-10.6+\frac{\mathbf{V}_{1}}{10}+\frac{\mathbf{V}_{1}-\mathbf{V}_{2}}{1+j 2}=0 \quad \mathbf{V}_{1}(1.1+j 0.2)-\mathbf{V}_{2}=10.6+j 21.2$
KCL at node 2

$$
\begin{align*}
& \frac{\mathbf{V}_{2}-\mathbf{V}_{1}}{1+j 2}+\frac{\mathbf{V}_{2}}{-j 5}+\frac{\mathbf{V}_{2}-20 \mathbf{I}_{x}}{5}=0 . \quad \text { Since } \quad \mathbf{I}_{x}=\frac{\mathbf{V}_{1}-\mathbf{V}_{2}}{1+j 2} \tag{1}\\
& \longrightarrow--5 \mathbf{V}_{1}+(4.8+j 0.6) \mathbf{V}_{2}=0 \tag{2}
\end{align*}
$$

Two Equations and Two Unknown, solving

$$
\begin{aligned}
& \mathbf{V}_{1}=68.40-j 16.80 \mathrm{~V} \\
& \mathbf{V}_{2}=68-j 26 \mathrm{~V}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{I}_{\mathrm{a}}=\frac{\mathbf{V}_{1}}{10}=6.84-j 1.68 \mathrm{~A} \quad \mathbf{I}_{x}=\frac{\mathbf{V}_{1}-\mathbf{V}_{2}}{1+j 2}=3.76+j 1.68 \mathrm{~A} \\
& \mathbf{I}_{\mathrm{b}}=\frac{\mathbf{V}_{2}-20 \mathbf{I}_{x}}{5}=-1.44-j 11.92 \mathrm{~A} \quad \mathbf{I}_{\mathrm{c}}=\frac{\mathbf{V}_{2}}{-j 5}=6.84-j 1.68+3.76+j 1.68
\end{aligned}
$$

To Check the work

$$
\begin{aligned}
& \mathbf{I}_{\mathrm{a}}+\mathbf{I}_{x}=6.84-j 1.68+3.76+j 1.68=10.6 \mathrm{~A} \\
& \mathbf{I}_{x}=\mathbf{I}_{\mathrm{b}}+\mathbf{I}_{\mathrm{c}}=-1.44-j 11.92+5.2+j 13.6=3.76+j 1.68 \mathrm{~A}
\end{aligned}
$$

9.9 The Mesh-Current Method

Example 9.12 Use the mesh-current method to find the voltages
$\mathbf{V}_{1}, \mathbf{V}_{2}$, and \mathbf{V}_{3} in the circuit shown

KVL at mesh 1

$$
150=(1+j 2) \mathbf{I}_{1}+(12-j 16)\left(\mathbf{I}_{1}-\mathbf{I}_{2}\right)
$$

$$
150=(13-j 14) \mathbf{I}_{1}-(12-j 16) \mathbf{I}_{2}
$$

KVL at mesh 2

$$
\begin{align*}
& 0=(12-j 16)\left(\mathbf{I}_{2}-\mathbf{I}_{1}\right)+(1+j 3) \mathbf{I}_{2}+39 \mathbf{I}_{x} \tag{1}\\
& \longrightarrow 0=(27+j 16) \mathbf{I}_{1}-(26+j 13) \mathbf{I}_{2} \tag{2}
\end{align*}
$$

$$
\text { Since } \quad \mathbf{I}_{x}=\mathbf{I}_{1}-\mathbf{I}_{2}
$$

Two Equations and Two Unknown, solving

$$
\mathbf{I}_{1}=-26-j 52 \mathrm{~A} \quad \mathbf{I}_{2}=-24-j 58 \mathrm{~A} \quad \mathbf{I}_{x}=\mathbf{I}_{1}-\mathbf{I}_{2}=-2+j 6 \mathrm{~A}
$$

$$
\mathbf{I}_{1}=-26-j 52 \mathrm{~A} \quad \mathbf{I}_{2}=-24-j 58 \mathrm{~A} \quad \mathbf{I}_{x}=-2+j 6 \mathrm{~A}
$$

$$
\begin{aligned}
& \mathbf{V}_{1}=(1+j 2) \mathbf{I}_{1}=78-j 104 \mathrm{~V} \\
& \mathbf{V}_{2}=(12-j 16) \mathbf{I}_{x}=72+j 104 \mathrm{~V} \\
& \mathbf{V}_{3}=(1+j 3) \mathbf{I}_{2}=150-j 130 \mathrm{~V}
\end{aligned}
$$

9.12 The Phasor Diagram

the phasor quantities $10 \angle 30^{\circ}, 12 \angle 150^{\circ}, 5 \angle-45^{\circ}$, and $8 \angle-170^{\circ}$

