Chapter 10 Sinusoidal Steady- State Power Calculations

In Chapter 9 , we calculated the steady state voltages and currents in electric circuits driven by sinusoidal sources

We used phasor method to find the steady state voltages and currents
In this chapter, we consider power in such circuits
The techniques we develop are useful for analyzing many of the electric devices we encounter daily, because sinusoidal sources are predominate means of providing electric power in our homes, school and businesses

Examples

Electric Heater which transform electric energy to thermal energy
Electric Stove and oven
Toasters
Iron
Electric water heater
And many others
10.1 Instantaneous Power

Consider the following circuit represented by a black box

The instantaneous power assuming passive sign convention
(Current in the direction of voltage drop $+\square-\quad$)

$$
p(t)=v(t) i(t) \quad(\text { Watts })
$$

If the current is in the direction of voltage rise $(-\square+)$ the instantaneous power is

$$
p(t)=-v(t) i(t)
$$

$$
\begin{aligned}
p(t)=\nu(t) i(t)= & \left\{V_{m} \cos \left(\omega t+\theta_{v}-\theta_{i}\right)\right\}\left\{I_{m} \cos (\omega t)\right\} \\
& =V_{m} I_{m} \cos \left(\omega t+\theta_{v}-\theta_{i}\right) \cos (\omega t)
\end{aligned}
$$

Since

$$
\cos \alpha \cos \beta=\frac{1}{2} \cos (\alpha-\beta)+\frac{1}{2} \cos (\alpha+\beta)
$$

Therefore

$$
p(t)=\frac{V_{m} I_{m}}{2} \cos \left(\theta_{v}-\theta_{i}\right)+\frac{V_{m} I_{m}}{2} \cos \left(2 \omega t+\theta_{v}-\theta_{i}\right)
$$

Since

$$
\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta
$$

$\longrightarrow \cos \left(2 \omega t+\theta_{v}-\theta_{i}\right)=\cos \left(\theta_{v}-\theta_{i}\right) \cos (2 \omega t)-\sin \left(\theta_{v}-\theta_{i}\right) \sin (2 \omega t)$
$\longrightarrow p(t)=\frac{V_{m} I_{m}}{2} \cos \left(\theta_{v}-\theta_{i}\right)+\frac{V_{m} I_{m}}{2} \cos \left(\theta_{v}-\theta_{i}\right) \cos (2 \omega t)-\frac{V_{m} I_{m}}{2} \sin \left(\theta_{v}-\theta_{i}\right) \sin (2 \omega t)$

$i(t)$

$$
\begin{aligned}
& i(t)=I_{m} \cos (\omega t) \\
& v(t)=V_{m} \cos \left(\omega t+\theta_{v}-\theta_{i}\right)
\end{aligned}
$$

$$
p(t)=\frac{V_{m} I_{m}}{2} \cos \left(\theta_{i}-\theta_{i}\right)+\frac{V_{m} I_{m}}{2} \cos \left(\theta_{i}-\theta_{i}\right) \cos (2 \omega t)-\frac{V_{m} I_{m}}{2} \sin \left(\theta_{i}-\theta_{i}\right) \sin (2 \omega t)
$$

You can see that that the frequency of the Instantaneous power is twice the frequency of the voltage or current
10.2 Average and Reactive Power

Recall the Instantaneous power $p(\mathrm{t})$
$p(t)=\frac{V_{m} I_{m}}{2} \cos \left(\theta_{v}-\theta_{i}\right)+\frac{V_{m} I_{m}}{2} \cos \left(\theta_{v}-\theta_{i}\right) \cos (2 \omega t)-\frac{V_{m} I_{m}}{2} \sin \left(\theta_{v}-\theta_{i}\right) \sin (2 \omega t)$
$p(t)=P+P \cos (2 \omega t)-Q \sin (2 \omega t)$
where

$$
\begin{array}{ll}
P=\frac{V_{m} I_{m}}{2} \cos \left(\theta_{i}-\theta_{i}\right) & \text { Average Power (Real Power) } \\
Q=\frac{V_{m} I_{m}}{2} \sin \left(\theta_{v}-\theta_{i}\right) & \text { Reactive Power }
\end{array}
$$

Average Power P is sometimes called Real power because it describes the power in a circuit that is transformed from electric to non electric (Example Heat)

It is easy to see why P is called Average Power because

$$
\frac{1}{T} \int_{\mathrm{t}_{0}}^{\mathrm{t}_{0}+T} p(t) d t=\frac{1}{T} \int_{\mathrm{t}_{0}}^{\mathrm{t}_{0}+T}\{P+P \cos (2 \omega t)-Q \sin (2 \omega t)\} d t=P
$$

Power for purely resistive Circuits

$$
p(t)=P+P \cos (2 \omega t)-Q \sin (2 \omega t)
$$

$\theta_{v}=\theta_{i} \quad \square P=\frac{V_{m} I_{m}}{2} \cos \left(\theta_{v}-\theta_{i}\right)=\frac{V_{m} I_{m}}{2} \cos (0)=\frac{V_{m} I_{m}}{2}$

$$
Q=\frac{V_{m} I_{m}}{2} \sin \left(\theta_{i}-\theta_{i}\right)=\frac{V_{m} I_{m}}{2} \sin (0)=0
$$

$$
p(t)=\frac{V_{m} I_{m}}{2}+\frac{V_{m} I_{m}}{2} \cos (2 \omega t)
$$

The Instantaneous power can never be negative

Power for purely Inductive Circuits $\quad p(t)=P+P \cos (2 \omega t)-Q \sin (2 \omega t)$

$$
\begin{array}{rlrl}
\theta_{v}=\theta_{i}+90^{\circ} & \longmapsto \theta_{v}-\theta_{i}=90^{\circ} & \longmapsto & P=\frac{V_{m} I_{m}}{2} \cos \left(\theta_{v}-\theta_{i}\right)=\frac{V_{m} I_{m}}{2} \cos \left(90^{\circ}\right)=0 \\
& Q p(t)=-\frac{V_{m} I_{m}}{2} \sin (2 \omega t) & Q=\frac{V_{m} I_{m}}{2} \sin \left(\theta_{v}-\theta_{i}\right)=\frac{V_{m} I_{m}}{2} \sin \left(90^{\circ}\right)=\frac{V_{m} I_{m}}{2}
\end{array}
$$

The Instantaneous power $p(\mathrm{t})$ is continuously exchanged between the circuit and the source driving the circuit. The average power is zero When $p(\mathrm{t})$ is positive, energy is being stored in the magnetic field associated with the inductive element

When $p(\mathrm{t})$ is negative, energy is being extracted from the magnetic field
The power associated with purely inductive circuits is the reactive power Q

The dimension of reactive power Q is the same as the average power P. To distinguish them we use the unit VAR (Volt Ampere Reactive) for reactive power

Power for purely Capacitive Circuits $\quad p(t)=P+P \cos (2 \omega t)-Q \sin (2 \omega t)$

$$
\begin{array}{ll}
\theta_{v}=\theta_{i}-90^{\circ} \longleftrightarrow \theta_{v}-\theta_{i}=-90^{\circ} \longleftrightarrow & P=\frac{V_{m} I_{m}}{2} \cos \left(\theta_{v}-\theta_{i}\right)=\frac{V_{m} I_{m}}{2} \cos \left(-90^{\circ}\right)=0 \\
& Q=\frac{V_{m} I_{m}}{2} \sin \left(\theta_{v}-\theta_{i}\right)=\frac{V_{m} I_{m}}{2} \sin \left(-90^{\circ}\right)=-\frac{V_{m} I_{m}}{2}
\end{array}
$$

The Instantaneous power $p(\mathrm{t})$ is continuously exchanged between the circuit and the source driving the circuit. The average power is zero When $p(\mathrm{t})$ is positive, energy is being stored in the electric field associated with the capacitive element

When $p(\mathrm{t})$ is negative, energy is being extracted from the electric field

The power associated with purely capacitive circuits is the reactive power Q (VAR)

The power factor

Recall the Instantaneous power $p(\mathrm{t})$

$$
\begin{aligned}
& p(t)=\underbrace{\frac{V_{m} I_{m}}{2} \cos \left(\theta_{i}-\theta_{i}\right)}_{P \text { average }}+\underbrace{\frac{V_{m} I_{m}}{2} \cos \left(\theta_{i}-\theta_{i}\right)}_{P \text { aver }} \cos (2 \omega t)-\underbrace{\frac{V_{m} I_{m}}{2} \sin \left(\theta_{i}-\theta_{i}\right)}_{\begin{array}{c}
\text { average }
\end{array}} \sin (2 \omega t) \\
& \text { power }
\end{aligned}
$$

The angle $\theta_{v}-\theta_{i}$ plays a role in the computation of both average and reactive power

The angle $\theta_{v}-\theta_{i}$ is referred to as the power factor angle

We now define the following :

The power factor

$$
\mathbf{p f}=\cos \left(\theta_{v}-\theta_{i}\right)
$$

The reactive factor

$$
\mathbf{r f}=\sin \left(\theta_{v}-\theta_{i}\right)
$$

The power factor

$$
\mathbf{p f}=\cos \left(\theta_{v}-\theta_{i}\right)
$$

Knowing the power factor $\mathbf{p f}$ does not tell you the power factor angle , because

$$
\cos \left(\theta_{v}-\theta_{i}\right)=\cos \left(\theta_{i}-\theta_{v}\right)
$$

To completely describe this angle, we use the descriptive phrases lagging power factor and leading power factor

Lagging power factor implies that current lags voltage hence an inductive load
Leading power factor implies that current leads voltage hence a capacitive load

10.3 The rms Value and Power Calculations

Assume that a sinusoidal voltage is applied to the terminals of a resistor as shown

Suppose we want to determine the average power delivered to the resistor
$P=\frac{1}{T} \int_{\mathrm{t}_{0}}^{\mathrm{t}_{0}+T} p(t) d t=\frac{1}{T} \int_{\mathrm{t}_{0}}^{\mathrm{t}_{0}+T} \frac{\left\{V m \cos \left(\omega \mathrm{t}+\theta_{v}\right)\right\}^{2}}{R} d t=\frac{1}{R}\left[\frac{1}{T} \int_{\mathrm{t}_{0}}^{\mathrm{t}_{0}+T} V_{m}^{2} \cos ^{2}\left(\omega t+\theta_{V}\right) d t\right]$

However since

$$
V_{\mathrm{rms}}=\sqrt{\frac{1}{T} \int_{\mathrm{t}_{0}}^{\mathrm{t}_{0}+T} V_{m}^{2} \cos ^{2}\left(\omega t+\theta_{V}\right) d t}
$$

V^{2}
$P=\frac{r m s}{R}$

If the resistor carry sinusoidal current
$P=R I_{\text {r }}^{2}$

Recall the Average and Reactive power

$$
P=\frac{V_{m} I_{m}}{2} \cos \left(\theta_{v}-\theta_{i}\right) \quad Q=\frac{V_{m} I_{m}}{2} \sin \left(\theta_{v}-\theta_{i}\right)
$$

Which can be written as

$$
P=\frac{V_{m} I_{m}}{\sqrt{2} \sqrt{2}} \cos \left(\theta_{i}-\theta_{i}\right) \quad Q=\frac{V_{m} I_{m}}{\sqrt{2} \sqrt{2}} \sin \left(\theta_{v}-\theta_{i}\right)
$$

Therefore the Average and Reactive power can be written in terms of the rms value as

$$
P=V_{\mathrm{rms}} I_{\mathrm{rms}} \cos \left(\theta_{v}-\theta_{i}\right) \quad Q=V_{r m s} I_{r m s} \sin \left(\theta_{v}-\theta_{i}\right)
$$

The rms value is also referred to as the effective value eff

Therefore the Average and Reactive power can be written in terms of the eff value as

$$
P=V_{\mathrm{eff}} I_{\mathrm{eff}} \cos \left(\theta_{v}-\theta_{i}\right) \quad Q=V_{\mathrm{eff}} I_{\mathrm{eff}} \sin \left(\theta_{v}-\theta_{i}\right)
$$

Example 10.3

10.4 Complex Power

Previously, we found it convenient to introduce sinusoidal voltage and current in terms of the complex number the phasor

Definition

Let the complex power be the complex sum of real power and reactive power

$$
\boldsymbol{S}=P+j Q
$$

were
$\boldsymbol{S} \quad$ is the complex power
P is the average power
Q is the reactive power

Advantages of using complex power $\quad \boldsymbol{S}=P+j Q$

- We can compute the average and reactive power from the complex power \boldsymbol{S}

$$
P=\mathfrak{R}\{\boldsymbol{S}\} \quad Q=\mathfrak{J}\{\boldsymbol{S}\}
$$

- complex power \boldsymbol{S} provide a geometric interpretation

$$
\boldsymbol{S}=P+j Q=|\boldsymbol{S}| \mathbf{e}^{j \theta}
$$

were

$$
|\boldsymbol{S}|=\sqrt{P^{2}+Q^{2}} \quad \text { Is called apparent power }
$$

(reactive power)
(average power)
$\theta=\tan ^{-1}\left(\frac{Q}{P}\right)=\tan ^{-1}\left(\frac{V_{m} I_{m} \cos \left(\theta_{v}-\theta_{i}\right)}{V_{m} I_{m} \sin \left(\theta_{v}-\theta_{i}\right)}\right)=\tan ^{-1}\left(\frac{\cos \left(\theta_{v}-\theta_{i}\right)}{\sin \left(\theta_{v}-\theta_{i}\right)}\right)=\tan ^{-1}\left(\tan \left(\theta_{v}-\theta_{i}\right)\right)=\underbrace{\theta_{v}-\theta_{i}}_{\text {power factor angle }}$

The geometric relations for a right triangle mean the four power triangle dimensions $(|\boldsymbol{S}|, P, \mathrm{Q}, \theta)$ can be determined if any two of the four are known

Example 10.4

10.5 Power Calculations

$$
\begin{aligned}
\boldsymbol{S} & =P+j Q=\frac{V_{m} I_{m}}{2} \cos \left(\theta_{v}-\theta_{i}\right)+j \frac{V_{m} I_{m}}{2} \sin \left(\theta_{v}-\theta_{i}\right) \\
& =\frac{V_{m} I_{m}}{2}\left[\cos \left(\theta_{v}-\theta_{i}\right)+j \sin \left(\theta_{v}-\theta_{i}\right)\right]=\frac{V_{m} I_{m}}{2} \mathrm{e}^{j\left(\theta_{v}-\theta_{i}\right)}=V_{\text {eff }} I_{\mathrm{eff}} \mathrm{e}^{j\left(\theta_{v}-\theta_{i}\right)} \\
& =V_{\text {eff }} \mathrm{e}^{j \theta_{v}} I_{\text {eff }} \mathrm{e}^{j \theta_{i}}=V_{\text {eff }} \boldsymbol{I}_{\text {eff }}^{*}
\end{aligned}
$$

were $\quad \boldsymbol{I}_{\text {eff }}^{*} \quad$ Is the conjugate of the current phasor $\quad \boldsymbol{I}_{\text {eff }}$

Also $\quad \boldsymbol{S}=\frac{1}{2} V I^{*}$

Alternate Forms for Complex Power

The complex power was defined as

$$
\boldsymbol{S}=P+j Q
$$

Then complex power was calculated to be

$$
\boldsymbol{S}=\boldsymbol{V}_{\mathrm{eff}} \boldsymbol{I}_{\mathrm{eff}}^{*} \quad \text { OR } \quad \boldsymbol{S}=\frac{1}{2} V \boldsymbol{I}^{*}
$$

However there several useful variations as follows:

First variation

$$
\begin{aligned}
\boldsymbol{S} & =V_{\text {eff }} \boldsymbol{I}_{\text {eff }}^{*}=\left(\mathbf{Z} \boldsymbol{I}_{\text {eff }}\right) \boldsymbol{I}_{\text {eff }}^{*}=\mathbf{Z} \boldsymbol{I}_{\text {eff }} \boldsymbol{I}_{\text {eff }}^{*}=\mathbf{Z}\left|\boldsymbol{I}_{\text {eff }}\right|^{2} \\
& =(\boldsymbol{R}+j \boldsymbol{X})\left|\boldsymbol{I}_{\text {eff }}\right|^{2}=\left.\underbrace{\boldsymbol{R} \mid \boldsymbol{I}_{\text {eff }}}_{P}\right|^{2}+\left.\underbrace{j \boldsymbol{X} \mid \boldsymbol{I}}_{Q} \boldsymbol{I}_{\text {eff }}\right|^{2}
\end{aligned}
$$

$$
\Rightarrow P=\boldsymbol{R}\left|\boldsymbol{I}_{\mathrm{eff}}\right|^{2}=\boldsymbol{R} \boldsymbol{I}_{\mathrm{eff}}^{2}=\frac{1}{2} \boldsymbol{R} \boldsymbol{I}_{\mathrm{m}}^{2}
$$

$$
Q=\boldsymbol{X}\left|\boldsymbol{I}_{\mathrm{eff}}\right|^{2}=\boldsymbol{X} \boldsymbol{I}_{\mathrm{eff}}^{2}=\frac{1}{2} \boldsymbol{X} \boldsymbol{I}_{\mathrm{m}}^{2}
$$

Second variation

$$
P=\frac{\boldsymbol{R}}{\boldsymbol{R}^{2}+\boldsymbol{X}^{2}}\left|V_{\mathrm{eff}}\right|^{2}=\frac{\boldsymbol{R}}{\boldsymbol{R}^{2}+\boldsymbol{X}^{2}} V_{\mathrm{eff}}^{2}=\frac{1}{2} \frac{\boldsymbol{R}}{\boldsymbol{R}^{2}+\boldsymbol{X}^{2}} V_{\mathrm{m}}^{2}
$$

$$
Q=\frac{\boldsymbol{X}}{\boldsymbol{R}^{2}+\boldsymbol{X}}\left|\boldsymbol{V}_{\mathrm{eff}}\right|^{2}=\frac{\boldsymbol{X}}{\boldsymbol{R}^{2}+\boldsymbol{X}^{2}} V_{\mathrm{eff}}^{2}=\frac{1}{2} \frac{\boldsymbol{X}}{\boldsymbol{R}^{2}+\boldsymbol{X}^{2}} V_{\mathrm{m}}^{2}
$$

If $\mathbf{Z}=\boldsymbol{R}$ (pure resistive) $\boldsymbol{X}=0 \quad \square \quad P=\frac{\boldsymbol{R}}{\boldsymbol{R}^{2}+\boldsymbol{X}^{2}}\left|\boldsymbol{V}_{\mathrm{eff}}\right|^{2}=\frac{\left|\boldsymbol{V}_{\mathrm{eff}}\right|^{2}}{\boldsymbol{R}}$
If $\mathrm{Z}=\boldsymbol{X}$ (pure reactive) $\boldsymbol{R}=0 \quad \square \quad P=0 \quad Q=\frac{\boldsymbol{X}}{\boldsymbol{R}^{2}+\boldsymbol{X}}{ }^{2}\left|V_{\text {eff }}\right|^{2}=\frac{\left|V_{\text {eff }}\right|^{2}}{\boldsymbol{X}}$

$$
\begin{aligned}
& \boldsymbol{S}=\boldsymbol{V}_{\mathrm{eff}} \boldsymbol{I}_{\mathrm{eff}}^{*}=\boldsymbol{V}_{\mathrm{eff}}\left(\frac{\boldsymbol{V}_{\text {eff }}}{\mathbf{Z}}\right)^{*}=\frac{\boldsymbol{V}_{\mathrm{eff}} \boldsymbol{V}_{\text {eff }}^{*}}{\mathrm{Z}^{*}}=\frac{\left|\boldsymbol{V}_{\mathrm{eff}}\right|^{2}}{\mathbf{Z}^{*}} \\
& =\frac{\left|\boldsymbol{V}_{\text {eff }}\right|^{2}}{\boldsymbol{R}-\boldsymbol{j} \boldsymbol{X}}=\frac{\left|\boldsymbol{V}_{\text {eff }}\right|^{2}}{\boldsymbol{R}-\boldsymbol{j} \boldsymbol{X}} \frac{\boldsymbol{R}+\boldsymbol{j} \boldsymbol{X}}{\boldsymbol{R}+\boldsymbol{j} \boldsymbol{X}}=\frac{\boldsymbol{R}+\boldsymbol{j} \boldsymbol{X}}{\boldsymbol{R}^{2}+\boldsymbol{X}^{2}}\left|\boldsymbol{V}_{\text {eff }}\right|^{2}
\end{aligned}
$$

Example 10.5

In the circuit shown
a load having an impedance of $39+j 26 \Omega$ is fed from a voltage source through a line having an impedance of $1+$ $j 4 \Omega$. The effective, or rms, value of the source voltage is 250 V .

a) Calculate the load current \mathbf{I}_{L} and voltage \mathbf{V}_{L}

SOLUTION

a) The line and load impedances are in series across the voltage source, so the load current equals the voltage divided by the total impedance, or

$$
\begin{aligned}
\Rightarrow \mathrm{I}_{\mathrm{L}} & =\frac{250 \angle 0^{\circ}}{40+j 30}=4-j 3 \\
& =5 \angle-36.87^{\circ} \mathrm{A}(\mathrm{rms})
\end{aligned}
$$

rms because the voltage is given in terms of rms
$\square \mathbf{V}_{\mathbf{L}}=(39+j 26) \mathbf{I}_{\mathrm{L}}=234-j 13=234.36 \angle-3.18^{\circ} \mathrm{V}(\mathrm{rms})$

b) Calculate the average and reactive power delivered to the load.

Another solution \quad The load average power is the power absorb by the load resistor 39Ω
Recall the average Power for purely resistive Circuits $P=\frac{V^{R} I^{R}}{2}=V_{\text {eff }}^{R} I_{\text {eff }}^{R}$
were $\quad V_{\text {eff }}^{R}$ and $I_{\text {eff }}^{R} \quad$ Are the rms voltage across the resistor and the rms current through

$$
P=\underset{\text { eff }}{R} I_{\text {eff }}^{R}=R I_{\text {eff }}^{2}
$$

$$
\begin{array}{r}
\mathbf{I}_{\mathbf{L}}=4-j 3=5 \angle-36.87^{\circ} \mathrm{A}(\mathrm{rms}) \\
\mathbf{V}_{\mathbf{L}}=234-j 13=234.36 \angle-3.18^{\circ} \mathrm{V}(\mathrm{rms}) \\
S=\mathbf{V}_{\mathbf{L}} \mathbf{I}_{\mathbf{L}}^{*}=(234-j 13)(4+j 3)=975+j 650 \mathrm{VA}
\end{array}
$$

From Power for purely resistive Circuits

$$
Q=V_{\text {eff }} I_{\text {eff }} \square Q=V_{\text {eff }}^{\text {Inductor }} \underbrace{I_{\text {eff }}^{\text {Inductor }}}_{I_{L}=5} \quad V_{\text {eff }}^{\text {Inductor }}=\frac{j 26}{39+j 26 \quad V}=\frac{j 26}{39+j 26} 234.36 \mathbf{e}^{-j 3.18^{\circ}}=130 \mathbf{e}^{j 93^{\circ}}
$$

$$
\Rightarrow \quad V_{\text {eff }}^{\text {Inductor }}=130 \Rightarrow \quad Q=(130)(5)=650 \quad \text { VAR } \quad \text { OR } \quad Q=X I_{\text {eff }}^{2} \quad=650 \text { var }
$$

$$
\begin{aligned}
& P=\frac{1}{2} V_{m} I_{m}=V_{\text {eff }} I_{\text {eff }} \quad \square P=\left|V_{\text {eff }}^{R}\right||\underbrace{R}_{\text {eff }}|=V_{\text {eff }}^{R} I_{\text {eff }}^{R} \\
& \boldsymbol{V}_{\text {eff }}^{R}=\frac{39}{39+j 26} \boldsymbol{V}_{L}=\frac{39}{39+j 26} 234.36 \mathbf{e}^{-j 3.18^{\circ}}=\underbrace{195 \mathbf{e}^{j 36.87^{\circ}}}_{\left|\boldsymbol{V}_{\text {eff }}^{R}\right|} \Rightarrow V_{\text {eff }}^{R}=195 \\
& \square P=V_{\text {eff }}^{R} I_{\text {eff }}^{R} \quad=(195)(5)=975 \mathrm{~W} \\
& \text { OR } \quad P=\underset{\text { eff }}{V} I_{\text {eff }}^{R} \quad=\left(R I_{\text {eff }}^{R}\right) I_{\text {eff }}^{R} \quad=R\left(I_{\text {eff }}^{R}\right)^{2}=(39)\left(5^{2}\right)=(39)(25)=\mathbf{9 7 5} \mathbf{W}
\end{aligned}
$$

Line

$$
\begin{array}{r}
\mathbf{I}_{\mathrm{L}}=4-j 3=5 \angle-36.87^{\circ} \mathrm{A}(\mathrm{rms}) \\
\mathbf{V}_{\mathbf{L}}=234-j 13=234.36 \angle-3.18^{\circ} \mathrm{V}(\mathrm{rms})
\end{array}
$$

c) Calculate the average and reactive power delivered to the line.

\[

\]

OR using complex power

$$
\begin{aligned}
& \boldsymbol{S}_{\text {Line }}=V_{\text {eff }}^{\text {Line }} \boldsymbol{I}_{\text {eff }}^{*} \quad V_{\text {eff }}^{\text {Line }}=\frac{1+j 4}{(1+j 4)+(39+j 26)}(250) \quad \text { OR } \quad V_{\text {eff }}^{\text {Line }}=250-V_{L} \\
& V_{\text {eff }}^{\text {Line }}=20.6 / 39.1^{\circ} \mathrm{V} \mathrm{rms} \\
& \Rightarrow \boldsymbol{S}_{\text {Line }}=V_{\text {eff }}^{\text {Line }} \boldsymbol{I}_{\text {eff }}^{*}=20.6 \angle 39.1^{\circ} \quad 5 \angle 36.87^{\circ}=103<75.97^{\circ}=25+j 100 \mathrm{VA}
\end{aligned}
$$

d) Calculate the average and reactive power supplied by the source.

$$
\begin{aligned}
& \boldsymbol{S}_{\text {Absorb }}=\boldsymbol{S}_{\text {Line }}+\boldsymbol{S}_{\text {Loa\& }} \overbrace{(25+j 100)}^{\text {From part (c) }}+\overbrace{(975+j 650)}^{\text {From part (b) }}=(25+975)+j(100+650)=1000+j 750 \mathrm{VA} \\
& \Rightarrow \boldsymbol{S}_{\text {Supply }}=-\boldsymbol{S} \text { Absorb }=-(1000+j 750) \mathrm{VA} \\
& \text { OR } \quad \boldsymbol{S}_{\text {Supply }}=-250 / 0^{\circ}\left(\boldsymbol{I}_{L}^{*}\right)=-250<0^{\circ} 5 \angle 36.87^{\circ}=-\mathbf{1 2 5 0} / 36.87^{\circ} \mathrm{VA} \\
& =-1000-j 750 \mathrm{VA}
\end{aligned}
$$

Example 10.6 Calculating Power in Parallel Loads

The two loads in the circuit shown
can be described as follows: Load 1 absorbs an average power of 8 kW at a leading power factor of 0.8 . Load 2 absorbs 20 kVA at a lagging power factor of 0.6 .

a) Determine the power factor of the two loads in parallel.

$$
\mathbf{I}_{s}=\mathbf{I}_{1}+\mathbf{I}_{2} \quad S=(250) \mathbf{I}_{s}^{*}=(250)\left(\mathbf{I}_{1}+\mathbf{I}_{2}\right)^{*}=(250) \mathbf{I}_{1}^{*}+(250) \mathbf{I}_{2}^{*}=S_{1}+S_{2}
$$

$$
S_{1}=8000-j \frac{8000(.6)}{(.8)}=8000-j 6000 \mathrm{VA}
$$

$$
S_{2}=20,000(.6)+j 20,000(.8)=12,000+j 16,000 \mathrm{VA}
$$

$$
S=20,000+j 10,000 \mathrm{VA}
$$

\square

$$
\mathbf{I}_{s}^{*}=\frac{20,000+j 10,000}{250}=80+j 40 \mathrm{~A} \quad \mathbf{I}_{s}=80-j 40=89.44 \angle-26.57^{\circ} \mathrm{A}
$$

$$
\mathbf{p f}=\cos \left(\theta_{v}-\theta_{i}\right) \quad \mathrm{pf}=\cos \left(0+26.57^{\circ}\right) \quad=0.8944 \text { lagging }
$$

The power factor of the two loads in parallel is lagging because the net reactive power is positive.

b) Determine the apparent power required to supply the loads, the magnitude of the current, \mathbf{I}_{s}, and the average power loss in the transmission line.

$$
\mathbf{I}_{s}=80-j 40=89.44 \angle-26.57^{\circ} \mathrm{A}
$$

$$
\boldsymbol{S}_{\mathbf{1}}=8000-j 6000 \mathrm{VA} \quad \boldsymbol{S}_{2}=12000+j 16000 \mathrm{VA} \quad \boldsymbol{S}=20000+j 10000 \mathrm{VA}
$$

The apparent power which must be supplied to these loads is

$$
|\boldsymbol{S}|=|20000+j 10000| \quad \mathrm{VA}=22.36 \mathrm{kVA}
$$

The magnitude of the current that supplies this apparent power is

The average power lost in the line results from the current flowing through the line resistance

Note that the power supplied totals $20,000+$ $400=20,400 \mathrm{~W}$, even though the loads require a total of only $20,000 \mathrm{~W}$.

$$
\left|\mathbf{I}_{s}\right|=|80-j 40|=89.44 \mathrm{~A}
$$

$$
P_{\text {line }}=\left|\mathbf{I}_{s}\right|^{2} R=(89.44)^{2}(0.05)=400 \mathrm{~W}
$$

c) Given that the frequency of the source is 60 Hz , compute the value of the capacitor that would correct the power factor to 1 if placed in parallet with the two loads. Recompute the values in (b) for the load with the corrected power factor.

As we can see from the power triangle
We can correct the power factor to 1 if we place a cap itor in parallel with the existing load
the capacitive reactance

$$
X=\frac{\left|V_{\mathrm{eff}}\right|^{2}}{Q}=\frac{(250)^{2}}{-10,000}=-6.25 \Omega
$$

Recall that $\quad X=-\frac{1}{\omega C}$

$$
C=\frac{-1}{\omega X}=\frac{-1}{(376.99)(-6.25)}=424.4 \mu \mathrm{~F}
$$

When the power factor is 1 , the apparent power and the average power are the same

$$
|S|=P=20 \mathrm{kVA}
$$

The magnitude of the current that supplies this apparent power is

$$
\begin{aligned}
& \left|\mathbf{I}_{s}\right|=\frac{20,000}{250}=80 \mathrm{~A} \\
& P_{\text {line }}=\left|\mathbf{I}_{s}\right|^{2} R=(80)^{2}(0.05)=320 \mathrm{~W}
\end{aligned}
$$

The average power lost in the line is thus reduced to

Now, the power supplied totals $20,000+320=$ 20,320 W

The addition of the capacitor has reduced the line loss from 400 W to 320 W

10.6 Maximum Power Transfer

For maximum average power transfer, Z_{L} must equal the conjugate of the Thévenin impedance; that is,

$$
\mathrm{Z}_{\mathrm{L}}=\mathrm{Z}_{\mathrm{Th}}^{*}
$$

Find Z_{L} that will absorb the maximum power

$$
Z_{\mathrm{Th}}=R_{\mathrm{Th}}+j X_{\mathrm{Th}} \quad Z_{\mathrm{L}}=R_{\mathrm{L}}+j X_{\mathrm{L}}
$$

load current I is

$$
\mathbf{I}=\frac{\mathbf{V}_{\mathrm{Th}}}{\left(R_{\mathrm{Th}}+R_{\mathrm{L}}\right)+j\left(X_{\mathrm{Th}}+X_{\mathrm{L}}\right)}
$$

The average power delivered to the load is $\quad P=|\mathbf{I}|^{2} R_{\mathrm{L}} \quad P=\frac{\left|\mathbf{V}_{\mathrm{Th}}\right|^{2} R_{\mathrm{L}}}{\left(R_{\mathrm{Th}}+R_{\mathrm{L}}\right)^{2}+\left(X_{\mathrm{Th}}+X_{\mathrm{L}}\right)^{2}}$

$$
\begin{aligned}
\frac{\partial P}{\partial X_{\mathrm{L}}} & =\frac{-\left|\mathbf{V}_{\mathrm{Th}}\right|^{2} 2 R_{\mathrm{L}}\left(X_{\mathrm{L}}+X_{\mathrm{Th}}\right)}{\left[\left(R_{\mathrm{L}}+R_{\mathrm{Th}}\right)^{2}+\left(X_{\mathrm{L}}+X_{\mathrm{Th}}\right)^{2}\right]^{2}} \\
\frac{\partial P}{\partial R_{\mathrm{L}}} & =\frac{\left|\mathbf{V}_{\mathrm{Th}}\right|^{2}\left[\left(R_{\mathrm{L}}+R_{\mathrm{Th}}\right)^{2}+\left(X_{\mathrm{L}}+X_{\mathrm{Th}}\right)^{2}-2 R_{\mathrm{L}}\left(R_{\mathrm{L}}+R_{\mathrm{Th}}\right)\right]}{\left[\left(R_{\mathrm{L}}+R_{\mathrm{Th}}\right)^{2}+\left(X_{\mathrm{L}}+X_{\mathrm{Th}}\right)^{2}\right]^{2}}
\end{aligned}
$$

$\partial P / \partial X_{\mathrm{L}}$ is zero when $\quad X_{\mathrm{L}}=-X_{\mathrm{Th}}$
$\partial P / \partial R_{\mathrm{L}}$ is zero when $\quad R_{\mathrm{L}}=\sqrt{R_{\mathrm{Th}}^{2}+\left(X_{\mathrm{L}}+X_{\mathrm{Th}}\right)^{2}}=\sqrt{\mathrm{R}_{t h}^{2}+\left(X / /_{L}+X_{t h}\right)^{2}}=\mathrm{R}_{\text {th }}$

$$
\mathrm{Z}_{\mathrm{L}}=\mathrm{R}_{\mathrm{th}}-\mathrm{X}_{\mathrm{th}}=\mathrm{Z}_{\mathrm{th}}^{*}
$$

