
Chapter 10  Sinusoidal Steady- State Power Calculations 

In Chapter 9 , we calculated the steady state voltages and currents in electric circuits 
driven by sinusoidal sources 

We used phasor method to find the steady state voltages and currents  

In this  chapter, we consider power in such circuits 

The techniques we develop are useful for analyzing many of the electric devices we 
encounter daily, because sinusoidal sources are predominate means of providing electric 
power in our homes, school and  businesses 

Examples 
     Electric Heater which transform electric energy to thermal energy 

    Electric Stove and oven 
    Toasters 
    Iron   
    Electric water heater 
   And many others  



10.1  Instantaneous Power 

Consider the following circuit represented by a black box 
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You can see that that the frequency of the Instantaneous  
 power is twice the frequency of the voltage or current 



10.2  Average and Reactive Power 
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Recall the Instantaneous power p(t)  
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Average Power   P  is sometimes called  Real power  because it describes the power in  
a circuit that is transformed from electric to non electric ( Example Heat ) 

It is easy to see why   P  is called Average Power because 
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Power for purely resistive Circuits 
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Power for purely Inductive Circuits 
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The Instantaneous power p(t) is continuously 
exchanged  between the circuit and the source 
driving the circuit. The average power is zero 

When  p(t) is positive, energy is being stored in 
the magnetic field  associated with the inductive 
element 

When  p(t) is negative, energy is being extracted 
from  the magnetic field 
The power associated with purely inductive 
circuits is the reactive power  Q   

The dimension of reactive power  Q  is the same 
as the average power P. To distinguish them we 
use the unit  VAR (Volt Ampere Reactive) for 
reactive power 



Power for purely Capacitive Circuits 
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The Instantaneous power p(t) is continuously 
exchanged  between the circuit and the source 
driving the circuit. The average power is zero 

When  p(t) is positive, energy is being stored in 
the electric field  associated with the capacitive 
element 

When  p(t) is negative, energy is being extracted 
from  the electric field 
The power associated with purely capacitive 
circuits is the reactive power  Q (VAR)   
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Recall the Instantaneous power p(t)  
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The angle θv − θi  plays a role in the computation of both average and reactive power 

The angle θv − θi  is referred to as the power factor angle 

We now define the following : 

The power factor cos(  )v iθ θ= −pf

The reactive factor sin(  )v iθ θ= −rf



The power factor cos(  )v iθ θ= −pf

Knowing the power factor pf  does not tell you the power factor angle , because  
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To completely describe this angle, we use the descriptive phrases lagging power factor  
and leading power factor  

Lagging power factor  implies that  current  lags  voltage hence an inductive load 

 Leading power factor  implies that  current  leads  voltage hence a capacitive load 



10.3  The rms Value and Power Calculations 
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Assume that a sinusoidal voltage is applied to the terminals of a resistor as shown  

Suppose we want to determine the average power delivered to the resistor 
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Recall the Average and Reactive power 
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Therefore the Average and Reactive power can be written in terms of the rms value as  
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The rms value is also referred to as the effective value  eff 

Therefore the Average and Reactive power can be written in terms of the eff value as  
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Example 10.3 



10.4  Complex Power 

Previously, we found it convenient to introduce sinusoidal voltage and current in terms 
of the complex number the phasor  
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Let the complex power be the complex sum of real power and reactive power  



Advantages of using complex power 
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− We can compute the average and reactive power from the complex power S  

− complex power S  provide a geometric interpretation  
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The geometric relations for a right triangle mean the four power triangle dimensions  
(|S|, P, Q, θ ) can be determined if any two of the four are known 
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10.5  Power Calculations 
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Alternate Forms for Complex Power 
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Example 10.5 Line 
Load 

rms because  
the voltage is  
given in terms  
of rms 
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Another solution  The load average power is the power absorb by the load resistor  39 Ω 
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Example 10.6  Calculating Power in Parallel Loads 
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The addition of the capacitor has reduced the line loss from 400 W  to  320 W  
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