The ASP.NET TreeView control is designed to present users with data in a hierarchical structure. Users can open individual nodes that can in turn contain child nodes. The TreeView control is suitable for displaying XML data, but can be used for any data that can be represented in a hierarchy. This walkthrough shows you the basics of using the TreeView control and various ways to display hierarchical data.

Tasks illustrated in this walkthrough include:

· Using the TreeView control to display XML data.

· Customizing the display of the TreeView control.

· Displaying records from related database tables in the TreeView control.

Creating the Web Site

Create a new Web site and page by following these steps.

To create a file system Web site

1. Open Visual Web Developer.

2. On the File menu, click New, and then click Web Site. If you are using Visual Web Developer Express, on the File menu, click New Web Site.

The New Web Site dialog box appears.

3. Under Visual Studio installed templates, click ASP.NET Web Site.

4. In the Location box, select File System, and enter the name of the folder where you want to keep the pages of your Web site.

For example, type the folder name C:\WebSites\HierarchicalData.

5. In the Language list, click the programming language you prefer to work in.

6. Click OK.

Visual Web Developer creates the folder and a new page named Default.aspx.

Creating an XML File for Data

Create a new XML file by following these steps.

To create the XML file

1. In Solution Explorer, right-click the Web site, and then click Add New Item.

2. In the Add New Item dialog box, under Standard Templates, click XML File.

3. In the Name box, type Bookstore.xml, and then click Add.

Visual Web Developer creates the new Bookstore.xml file and opens the code editor.

4. Copy the following XML data, and then paste it into the Bookstore.xml file, overwriting what is already in the file.

	
	

	<?xml version="1.0" standalone="yes"?>

<bookstore>

 <genre name="fiction">

 <book ISBN="10-000000-001">

 <title>The Iliad and The Odyssey</title>

 <price>12.95</price>

 <comments>

 <userComment rating="4">

 Best translation I've read.

 </userComment>

 <userComment rating="2">

 I like other versions better.

 </userComment>

 </comments>

 </book>

 <book ISBN="10-000000-999">

 <title>Anthology of World Literature</title>

 <price>24.95</price>

 <comments>

 <userComment rating="3">

 Needs more modern literature.

 </userComment>

 <userComment rating="4">

 Excellent overview of world literature.

 </userComment>

 </comments>

 </book>

 </genre>

 <genre name="nonfiction">

 <book ISBN="11-000000-002">

 <title>Computer Dictionary</title>

 <price>24.95</price>

 <comments>

 <userComment rating="3">A valuable resource.</userComment>

 </comments>

 </book>

 <book ISBN="11-000000-003">

 <title>Cooking on a Budget</title>

 <price>23.95</price>

 <comments>

 <userComment rating="4">Delicious!</userComment>

 </comments>

 </book>

 </genre>

</bookstore>

5. The XML file contains information about books that might be available from an online bookstore.

6. Save the Bookstore.xml file, and then close it.

[image: image1.png]Displaying XML Data in the TreeView Control

In this section, you will use the TreeView control to display the XML data. To begin, you can display the XML information without any special configuration.

To display the XML data

1. Open the Default.aspx page, and then switch to Design view.

2. In the Toolbox, from the Navigation group, drag a TreeView control onto the page.

3. Right-click the TreeView control, and then click Show Smart Tag.

4. On the TreeView Tasks menu, in the Choose Data Source drop-down list, select New Data Source. The Data Source Configuration Wizard appears.

5. In the Where will the application get data from? window, select XML File. Leave the default ID for the data source. Click OK.

6. In the Configure Data Source dialog box, in the Data file box, enter ~/Bookstore.xml, and then click OK.

You can now test the page.

To test the page

1. Press CTRL+F5 to run the page.

2. Collapse, and then expand, the nodes in the control.

By default, the nodes display only the tag names of the elements in the Bookstore.xml file.

You can customize the information displayed in the TreeView control by creating custom bindings, which allow you to specify what information from the XML file to display for each node.

To create custom bindings

1. On the Default.aspx page, right-click the TreeView control, and then click Show Smart Tag.

2. On the TreeView Tasks menu, click Edit TreeNode Databindings.

The TreeView DataBindings Editor dialog box appears.

3. Clear the Auto generate data bindings check box, because you will define the data bindings.

4. Click Add to create a new binding, and then, under Data binding properties, set DataMember to bookstore and set Text to Book Information.

You are configuring the binding to display a static value, because the Bookstore node is the top-most node in the .xml file and appears only once in the TreeView control.

5. Click Add to create a second binding, and then, under Data binding properties, set DataMember to genre and TextField to name.

This specifies that the node will read the <genre> element in the .xml file and assign its name attribute to the TextField property.

6. Click Add to create a third binding for books, and then, under DataBinding Properties, set DataMember to book and TextField to ISBN.

7. Click OK.

You can now test the page.

To test the page

· Press CTRL+F5 to run the page.

This time, the TreeView control displays the three levels corresponding to the bindings that you have defined. The three levels are the root node, labeled Book Information, the genre groups, and the ISBN details.

You can create a data binding for any element in an XML file, but you can bind only to the attributes of the element, the inner text, the name of the element, or the value of the element. You cannot bind to any of the nested elements. To display values in the nested elements, you create separate bindings to those elements. An alternative method is to transform the XML file using XSLT, so that the inner elements are converted to attributes. For more information and an example, see the System.Web.UI.WebControls.XmlDataSource.TransformFile property.

[image: image2.png]Displaying Relational Data in the TreeView Control

The TreeView control can display any type of hierarchical data, even if the data hierarchy is logical, as in a database, and not physical, as in an XML file. In this section, you will use the TreeView control to display data from related tables in the Northwind database.

To start, you will create a connection to the computer running SQL Server where you have the Northwind database.

To create a connection to SQL Server

1. In Server Explorer, right-click Data Connections, and then click Add Connection. If you are using Visual Web Developer Express, use Database Explorer.

The Add Connection dialog box appears.

· If the Data source list does not display Microsoft SQL Server (SqlClient), click Change, and in the Change Data Source dialog box, select Microsoft SQL Server.

· If the Choose Data Source page appears, in the Data source list, select the type of data source you will use. For this walkthrough, the data source type is Microsoft SQL Server. In the Data provider list, click .NET Framework Data Provider for SQL Server, and then click Continue.

	[image: image3.png]Note

	If the Server Explorer tab is not visible in Visual Web Developer, in the View menu, click Server Explorer. If the Database Explorer tab is not visible, in the View menu, click Database Explorer.

2. In the Add Connection box, enter your server name in the Server Name box.

3. For the Log on to the server section, select the option that is appropriate to access the running the SQL Server database (integrated security or specific ID and password) and, if required, enter a user name and password.

4. Select the Save my Password check box.

	[image: image4.png]Note

	In production applications, do not use Save my Password because this embeds the user name and password in the application files.

5. Under Select or enter a database name, enter Northwind.

6. Click Test Connection, and when you are sure that it works, click OK.

Your new connection has been created under Data Connections in Server Explorer (or Database Explorer).

Configuring a TreeView Control to Display Database Data

In this section, you will dynamically populate nodes with data. The first-level nodes will represent master data — in this case, categories. When users click a node, the child nodes for the category will be created by making a query to the database that retrieves the products for that category. To retrieve the data, you can use a data source control. However, in this walkthrough, you will create and execute a query programmatically.

To begin, create a new page and a new TreeView control.

To create the new page and TreeView control

1. Add an ASP.NET Web page (Web Form page) named TreeViewDynamic.aspx to your Web site.

2. Open the TreeViewDynamic.aspx page, switch to Design view, and then in the Toolbox, from the Standard group, drag a Label control onto the page and name it labelStatus.

The labelStatus control is used for error reporting only.

3. In the Toolbox, from the Navigation group, drag a TreeView control onto the page.

4. Right-click the TreeView control, click Properties, and then set MaxDataBindDepth to 2.

5. Right-click the TreeView control, click Show Smart Tasks, and then on the TreeView Tasks menu, click Edit Nodes.

6. In the TreeView Node Editor dialog box, click the icon labeled Add a root node, and then, under Properties, set Text to Product List and PopulateOnDemand to true.

7. Click OK.

You are creating the topmost node of the tree, which contains only static text.

To configure the Web.config file

1. In the Toolbox, from the Data group, drag a SqlDataSource control onto the page.

2. Select the SqlDataSource control, and then click Show Smart Tag.

3. On the SqlDataSource Tasks menu, click Configure Data Source.

The Configure Data Source - SqlDataSource1 wizard displays a page in which you can choose a connection.

4. In the Which data connection should your application use to connect to the database? box, enter the connection that you created in "To create a connection to SQL Server," and then click Next.

The wizard displays a page in which you can choose to store the connection string in a configuration file. Storing the connection string in the configuration file has two advantages:

· It is more secure than storing it in the page.

· You can use the same connection string in multiple pages.

5. Select the Yes, save this connection as check box, and then click Next.

The wizard displays a page in which you can specify what data you want to retrieve from the database.

6. Under Specify columns from a table or view, in the Name box, click Categories.

7. Under Columns, select the CategoryID and CategoryName boxes.

8. Click Next.

9. Click Finish.

You will use the connection string created in the Web.config file later, in the RunQuery method defined later in this walkthrough. You will not use the SqlDataSource control.

Now, you will add code to populate the control's child nodes when users click the node. To add nodes dynamically, you create an event handler for the TreeNodePopulate event.

To create the event handler

1. Right-click the TreeView control, and then in Properties, click the Events icon.

2. Double-click the box for the TreeNodePopulate event.

Visual Web Developer switches to Source view.

3. Add the following highlighted code to the handler.

	Visual Basic
	

	Protected Sub TreeView1_TreeNodePopulate(ByVal sender As Object, _

ByVal e As System.Web.UI.WebControls.TreeNodeEventArgs) _

Handles TreeView1.TreeNodePopulate

 If e.Node.ChildNodes.Count = 0 Then

 Select Case e.Node.Depth

 Case 0

 PopulateCategories(e.Node)

 Case 1

 PopulateProducts(e.Node)

 End Select

 End If

End Sub

4. This code is called when a user clicks a node to open it. Because you want to display different data at different levels of the tree, you must determine which node depth the user has clicked, and then populate the nodes at that level appropriately. In this walkthrough, the PopulateCategories method is called if the user clicks the root node (depth 0). The PopulateProducts method is called if the user clicks a category name (depth 1). The methods are shown in the next section.

5. The TreeNodeEventArgs object provides programmatic access to the current node. To populate the node, you add elements to it. In the example code, the node is passed to the method that will add the child nodes.

Reading Node Data from the Database

The information to display in each node comes from the database. You must write the code that performs the database query, reads the records, and creates a node for each record. This walkthrough assumes that you are working with the SQL Server Northwind sample database, so you must use ADO.NET objects from the System.Data.SqlClient namespace.

For the first level of nodes (level 0), you will display a list of all available categories. The code you create calls a RunQuery method that you will create later in the walkthrough.

To add nodes for all categories

1. Switch to Source view.

2. If you are working with a single-file page, add the following directives to the top of the code page.

	
	[image: image5.png]Copy Code

	<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.Data.SqlClient" %>

3. Importing the namespaces will make it easier to write the code you need.

4. If you are working with a code-behind page, switch to the code-behind page (TreeViewDynamic.aspx.vb or TreeViewDynamic.aspx.cs) and add the following lines to the top of the code file, outside the class declaration.

	Visual Basic
	

	Imports System.Data

Imports System.Data.SqlClient

5. Make sure the page is still in Source view.

6. Add the following method to the page code.

	Visual Basic
	

	Sub PopulateCategories(ByVal node As TreeNode)

 Dim sqlQuery As New SqlCommand(_

 "Select CategoryName, CategoryID From Categories")

 Dim ResultSet As DataSet

 ResultSet = RunQuery(sqlQuery)

 If ResultSet.Tables.Count > 0 Then

 Dim row As DataRow

 For Each row In ResultSet.Tables(0).Rows

 Dim NewNode As TreeNode = New _

 TreeNode(row("CategoryName").ToString(), _

 row("CategoryID").ToString())

 NewNode.PopulateOnDemand = True

 NewNode.SelectAction = TreeNodeSelectAction.Expand

 node.ChildNodes.Add(NewNode)

 Next

 End If

End Sub

7. The code creates a SqlCommand object that encapsulates the text of the query. It passes the object to a method (which you will write) that performs the database query and returns a DataSet object. The code then loops through the records in the DataSet object and creates a new node for each record, setting the text and value of the node with database information. Then, the code sets the PopulateOnDemand property of each node to true so that the node will raise its TreeNodePopulate event when clicked. The SelectAction property is set so that the nodes are expanded by default.

The second level of nodes will display the products for each category. For this reason, populating the products nodes requires a parameterized query so that you can retrieve the products for the current category and populate the child nodes appropriately.

To add nodes for products

· Add the following method to the page code.

	Visual Basic
	

	Sub PopulateProducts(ByVal node As TreeNode)

 Dim sqlQuery As New SqlCommand

 sqlQuery.CommandText = "Select ProductName From Products " & _

 " Where CategoryID = @categoryid"

 sqlQuery.Parameters.Add("@categoryid", SqlDbType.Int).Value = _

 node.Value

 Dim ResultSet As DataSet = RunQuery(sqlQuery)

 If ResultSet.Tables.Count > 0 Then

 Dim row As DataRow

 For Each row In ResultSet.Tables(0).Rows

 Dim NewNode As TreeNode = New _

 TreeNode(row("ProductName").ToString())

 NewNode.PopulateOnDemand = False

 NewNode.SelectAction = TreeNodeSelectAction.None

 node.ChildNodes.Add(NewNode)

 Next

 End If

End Sub

· This code is similar to the code used to populate the categories node. One difference is that the SqlCommand object is configured with a parameter that is set at run time with the value of the node that the user clicked; that is, of the selected category. Another difference is that the PopulateOnDemand property is set to false. This causes the products nodes to be displayed without an expansion button, which is necessary because there are no more nodes below products.

The final step is to create the method that performs the query and returns the dataset.

To perform the query

· Add the following subroutine to the page.

	Visual Basic
	

	Function RunQuery(ByVal sqlQuery As SqlCommand) As DataSet

 Dim connectionString As String

 connectionString = _

 ConfigurationManager.ConnectionStrings _

 ("NorthwindConnectionString").ConnectionString

 Dim dbConnection As New SqlConnection

 dbConnection.ConnectionString = connectionString

 Dim dbAdapter As New SqlDataAdapter

 dbAdapter.SelectCommand = sqlQuery

 sqlQuery.Connection = dbConnection

 Dim resultsDataSet As DataSet = New DataSet

 Try

 dbAdapter.Fill(resultsDataSet)

 Catch ex As Exception

 labelStatus.Text = "Unable to connect to SQL Server."

 End Try

 Return resultsDataSet

End Function

· This code creates a data adapter based on the SqlCommand object passed to it. Then, it creates and populates a dataset with the adapter.

You can now test the page.

To test the page

1. Press CTRL+F5 to run the page.

The TreeView control is displayed with a list of categories and products.

2. Click a category to confirm that it collapses and expands to show a list of products for each category.
14-Displaying Hierarchical Data in TreeView.doc
4/19/2008 12:52:15 PM
Page: 4 of 8

