

6. Uncertainty

Geographic Information Systems and Science SECOND EDITION
Paul A. Longley, Michael F. Goodchild, David J. Maguire, David W. Rhind © 2005 J ohn Wiley and Sons, Ltd

Overview

- Definition, and relationship to geographic representation
- Conception, measurement and analysis
- Vagueness, indeterminacy accuracy
- Statistical models of uncertainty
- Error propagation
- Living with uncertainty

Introduction

- Imperfect or uncertain reconciliation
nas [science, practice]
[${ }^{2}$ [concepts, application]
4 [analytical capability, social context]
- It is impossible to make a perfect representation of the world, so uncertainty about it is inevitable

Sources of Uncertainty

- Measurement error. different observers, measuring instruments
- Specification error. omitted variables
- Ambiguity, vagueness and the quality of a GIS representation
- A catch-all for 'incomplete’ representations or a ‘quality’ measure

© 2005 John Wiley \& Sons, Ltd

U1: Conception

- Spatial uncertainty

圆 Natural geographic units?
ㅈㄼ Bivariate/multivariate extensions?
, Discrete objects

- Vagueness
${ }^{4}$ Statistical, cartographic, cognitive
- Ambiguity
nalues, language

Scale \& Geographic Individuals

- Regions
taniformity
b ${ }^{6}$ Function
- Relationships typically grow stronger when based on larger geographic units

复

Fuzzy Approaches to Uncertainty

- In fuzzy set theory, it is possible to have partial membership in a set
${ }^{5}$ membership can vary, e.g. from 0 to 1
, this adds a third option to classification:
yes, no, and maybe
- Fuzzy approaches have been applied to the mapping of soils, vegetation cover, and land use

Scale and Spatial Autocorrelation

No. of geographic areas

48
24
12
6
3

Correlation
.2189
. 2963
. 5757
.7649
.9902

U2: Measurement/representation

- Representational models filter reality differently
bat Vector
四 Raster

\square 0.9-1.0
$\square \quad 0.5-0.9$
$\square \quad 0.1-0.5$
© 2005 John Wiley \& Sons, Ltd $\quad \square$ - 0.1

Statistical measures of uncertainty: nominal case

- How to measure the accuracy of nominal attributes?

논 e.g., a vegetation cover map

- The confusion matrix
win compares recorded classes (the observations) with classes obtained by some more accurate process, or from a more accurate source (the reference)

Example of a misclassification or confusion matrix. A grand total of 304 parcels have been checked. The rows of the table correspond to the land use class of each parcel as recorded in the database, and the columns to the class as recorded in the field. The numbers appearing on the principal diagonal of the table (from top left to bottom right) reflect correct classification.

	A	B	C	D	E	Total
A	80	4	0	15	7	106
B	2	17	0	9	2	30
C	12	5	9	4	8	38
D	7	8	0	65	0	80
E	3	2	1	6	38	50
Total	104	36	10	99	55	304

Confusion Matrix Statistics

－Percent correctly classified
： times 100
（209／304＊ $100=68.8 \%$
be but chance would give a score of better than 0
－Kappa statistic
⿴囗十⿰幺幺 normalized to range from 0 （chance）to 100
国 evaluates to 58.3%

Sampling for the Confusion Matrix

- Examining every parcel may not be practical
- Rarer classes should be sampled more often in order to assess accuracy reliably
bampling is often stratified by class

Per-Polygon and Per-Pixel Assessment

- Error can occur in both attributes of polygons, and positions of boundaries ta better to conceive of the map as a field, and to sample points
${ }_{0}$ this reflects how the data are likely to be used, to query class at points

An example of a vegetation cover map. Two strategies for accuracy assessment are available: to check by area (polygon), or to check by point. In the former case a strategy would be devised for field checking each area, to determine the area's correct class. In the latter, points would be sampled across the state and the correct class determined at each point.

Interval/Ratio Case

- Errors distort measurements by small amounts
- Accuracy refers to the amount of distortion from the true value
- Precision

2 refers to the variation among repeated measurements
䛛 and also to the amount of detail in the reporting of a measurement

The term precision is often used to refer to the repeatability of measurements. In both diagrams six measurements have been taken of the same position, represented by the center of the circle. On the left, successive measurements have similar values (they are precise), but show a bias away from the correct value (they are inaccurate). On the right, precision is lower but accuracy is higher.

Reporting Measurements

- The amount of detail in a reported measurement (e.g., output from a GIS) should reflect its accuracy
[6: " 14.4 m " implies an accuracy of 0.1 m
[14 " 14 m " implies an accuracy of 1 m
- Excess precision should be removed by rounding

Measuring Accuracy

- Root Mean Square Error is the square root of the average squared error
暐 the primary measure of accuracy in map accuracy standards and GIS databases
변 e.g., elevations in a digital elevation model might have an RMSE of 2 m
the abundances of errors of different magnitudes often closely follow a Gaussian or normal distribution

The Gaussian or Normal distribution. The height of the curve at any value of x gives the relative abundance of observations with that value of x. The area under the curve between any two values of x gives the probability that observations will fall in that range. The range between $\mathbf{- 1}$ standard deviation and +1 standard deviation is in blue. It encloses 68\% of the area under the curve, indicating that 68\% of observations will fall between these limits.

Plot of the 350 m contour for the State College, Pennsylvania, U.S.A. topographic quadrangle. The contour has been computed from the U.S. Geological Survey's digital elevation model for this area.
© 2005 John Wiley \& Sons, Ltd

Uncertainty in the location of the 350 m contour based on an assumed RMSE of 7 m . The Gaussian distribution with a mean of 350 m and a standard deviation of 7 m gives a 95% probability that the true location of the 350 m contour lies in the colored area, and a 5\% probability that it lies outside.

A Useful Rule of Thumb for Positional Accuracy

- Positional accuracy of features on a paper map is roughly 0.5 mm on the map
国 e.g., 0.5 mm on a map at scale 1:24,000 gives a positional accuracy of 12 m
(${ }^{2}$ this is approximately the U.S. National Map Accuracy Standard
比 and also allows for digitizing error, stretching of the paper, and other common sources of positional error

A useful rule of thumb is that positions measured from maps are accurate to about 0.5 mm on the map. Multiplying this by the scale of the map gives the corresponding distance on the ground.

Map scale	Ground distance corresponding to 0.5 mm map distance
$1: 1250$	62.5 cm
$1: 2500$	1.25 m
$1: 5000$	2.5 m
$1: 10,000$	5 m
$1: 24,000$	12 m
$1: 50,000$	25 m
$1: 100,000$	50 m
$1: 250,000$	125 m
$1: 1,000,000$	500 m
$1: 10,000,000$	5 km

Correlation of Errors

- Absolute positional errors may be high
[0] reflecting the technical difficulty of measuring distances from the Equator and the Greenwich Meridian
- Relative positional errors over short distances may be much lower
, positional errors tend to be strongly correlated over short distances
- As a result, positional errors can largely cancel out in the calculation of properties such as distance or area
© 2005 John Wiley \& Sons, Ltd

U3: Analysis. Error Propagation

- Addresses the effects of errors and uncertainty on the results of GIS analysis
- Almost every input to a GIS is subject to error and uncertainty
6 In principle, every output should have confidence limits or some other expression of uncertainty

Error in the measurement of the area of a square 100 m on a side. Each of the four corner points has
been surveyed; the errors are subject to bivariate Gaussian distributions with standard deviations in x and y of 1 m (dashed circles). The red polygon shows one possible surveyed square (one realization of the error model).

In this case the measurement of area is subject to a standard deviation of 200 sq m ; a result such as $10,014.603$ is quite likely, though the true area is $10,000 \mathrm{sq} \mathrm{m}$. In principle, the result of $10,014.603$ should be rounded to the known accuracy and reported as as 10,000.

Three realizations of a model simulating the effects of error on a digital elevation model. The three data sets differ only to a degree consistent with known error. Error has been simulated using a model designed to replicate the known error properties of this data set - the distribution of error magnitude, and the spatial autocorrelation

MAUP

- Scale + aggregation = MAUP

图 can be investigated through simulation of large numbers of alternative zoning schemes

Toun
Centres
Area of Town Centre Activity: Camden Town, LB Camden

Indicates possible unreliability in the marked data
The map background is based upon the $O S$ map by the Office of the Deputy Prime Minster (ODN) with permission of Ordnance Survey on behalf of The Controller of Her Majesty' $=$ Stationery Office, © Crown Copyright. All rights reserved Unauthorised reproduction infringes Crown Copyright and may lead to prosecution or civil proceedings. Licence Numben GD272671.

Employment (Persons)

Convenience retail	1,143
Comparison retail	1,008
Service retail	1,750
Offices	5,852
Civic and Public Administration	412

Restaurants \& Licensed Premises 1,335 Arts, Gulture and Entertainment 408

Turnover ($£ 000 \mathrm{~s}$)

Convenience retall	130,336
Comparison retall	89,475
Service retail	Disclosive

Restaurants \& Licensed Premises 40,015 Arts, Gulture and Entertainment 35,399

Floorspace (Sqm)

$\underline{A 1}$	55,496
$\underline{A 2}$	6,726
$\underline{A 3}$	12,967
Retail	81,278
Offices	147,663

[^0]Printer friendly Version

Living with Uncertainty

- It is easy to see the importance of uncertainty in GIS
${ }^{2}$ as but much more difficult to deal with it effectively
ta but we may have no option, especially in disputes that are likely to involve litigation

Some Basic Principles

- Uncertainty is inevitable in GIS
- Data obtained from others should never be taken as truth
은 efforts should be made to determine quality
- Effects on GlS outputs are often much greater than expected

回 there is an automatic tendency to regard outputs from a computer as the truth

More Basic Principles

- Use as many sources of data as possible
본 and cross-check them for accuracy
- Be honest and informative in reporting results

분 add plenty of caveats and cautions

Consolidation

- Uncertainty is more than error
- Richer representations create uncertainty!
- Need for a priori understanding of data and sensitivity analysis

[^0]: Back to Camden list Back to Camden map

