SE301:Numerical Methods Topic 8 Solution of ODE

Dr. Samir Al-Amer
Term 053
Modified by Dr. Uthman Baroudi
(072)

Ordinary Differential Equations Taylor Series Method

- Ordinary Differential Equations
- Taylor Series Method to solve ODE

Ordinary Differential Equations

Differential Equations involves one or more derivatives of unknown functions

$$\frac{dx(t)}{dt} - x(t) = e^t$$

$$\frac{d^2x(t)}{dt^2} - 5\frac{dx(t)}{dt} + 2x(t) = \cos(t)$$

A solution to a differential equations is a function that satisfies the equations.

Ordinary Differential Equations

$$x(t) = \cos(2t)$$

is a solution to the ODE Is it unique?

$$\frac{d^2x(t)}{dt^2} + 4x(t) = 0$$

All functions of the form $x(t) = \cos(2t + c)$ (where c is a real constant) are solutions

Uniqueness of a solution

In order to uniquely specify a solution to an *n* th order differential equation we need *n* initial conditions.

$$\frac{d^2y(x)}{dt^2} + 4y(x) = 0$$

$$y(0) = a$$

$$\dot{y}(0) = b$$

Taylor Series Method

Given
$$\frac{dy(x)}{dx} = f(y, x), \quad y(a) = y_a$$

Taylor Series expansion of y(x)

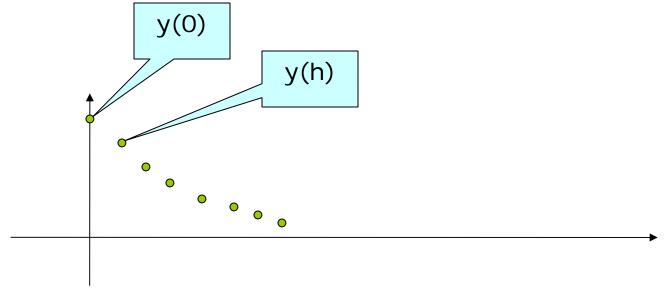
$$y(a+h) = y(a) + h\frac{dy}{dx} + h.o.t \approx y(a) + h f(y(a), a)$$

Similarly

$$y(a+2h) \approx y(a+h) + h f(y(a+h), a+h)$$

We use similar formulas to compute y(a+3h), y(a+4h),....

Solve
$$\frac{dy}{dx} = f(y, x)$$
, $y(0) = y_a$ use $h = 0.01$



SE301_Topic 8

Solve
$$\frac{dy}{dx} = (1+x^2), y(1) = -4$$
 use $h = 0.01$

$$y(a+h) = y(a) + h \dot{f}(y(a), a)$$

$$y(1) = -4$$

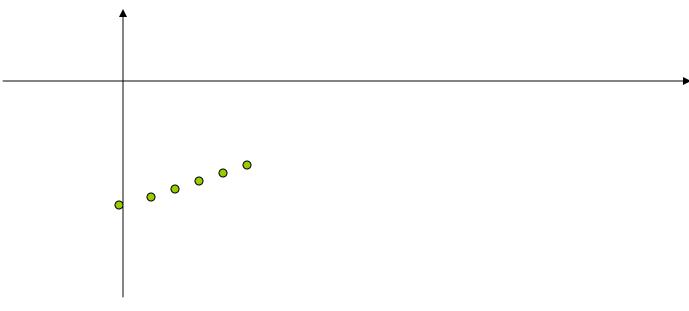
$$y(1.01) = -4 + 0.01(1+(1)^{2}) = -3.98$$

$$y(1.02) = -3.98 + 0.01(1+(1.01)^{2}) = -3.9598$$

$$y(1.03) = -3.9598 + 0.01(1+(1.02)^{2}) = -3.9394$$

SE301_Topic 8

Solve
$$\frac{dx(t)}{dt} = 1 + t^2$$
, $x(1) = -4$ use $h = 0.01$



SE301_Topic 8

(c)Al-Amer 2006

Euler Method

The Euler Method == First order Taylor series method

Given
$$\frac{dy(x)}{dx} = f(y, x), \quad y(a) = y_a$$

Solution:

$$y(a+h) = y(a) + h f(y(a), a)$$

$$y(a+2h) = y(a+h) + h f(y(a+h), a+h)$$

$$y(a+3h) = y(a+2h) + h f(y(a+h), a+2h)$$

Types of Errors

Types of Errors:

Local truncation error:

error due to the use of truncated Taylor series to compute x(t+h).

Round off error:

error due to finite number of bits used in representation of numbers. This error could be accumulated and magnified in succeeding steps.

Solve
$$\frac{dx(t)}{dt} + 2x(t) = 1$$
, $x(0) = 1$ use $h = 0.01$

$$x(a+h) = x(a) + h f(a, x(a))$$

$$f(x) = ?$$

$$x(0.0) = ?$$

$$x(0.01) = ?$$

$$x(0.02) = ?$$

$$x(0.03) = ?$$

SE301_Topic 8

Solve
$$\frac{dx(t)}{dt} + 2x(t) = 1, x(0) = 1$$
 use $h = 0.01$

$$x(a+h) = x(a) + h f (a, x(a))$$

$$f(t,x) = 1 - 2x(t)$$

$$x(0.01) = 1 + .01(1 - 2(1)) = 1 - .01 = .99$$

$$x(0.02) = 0.99 + 0.01(1 - 2(0.99)) = 0.9802$$

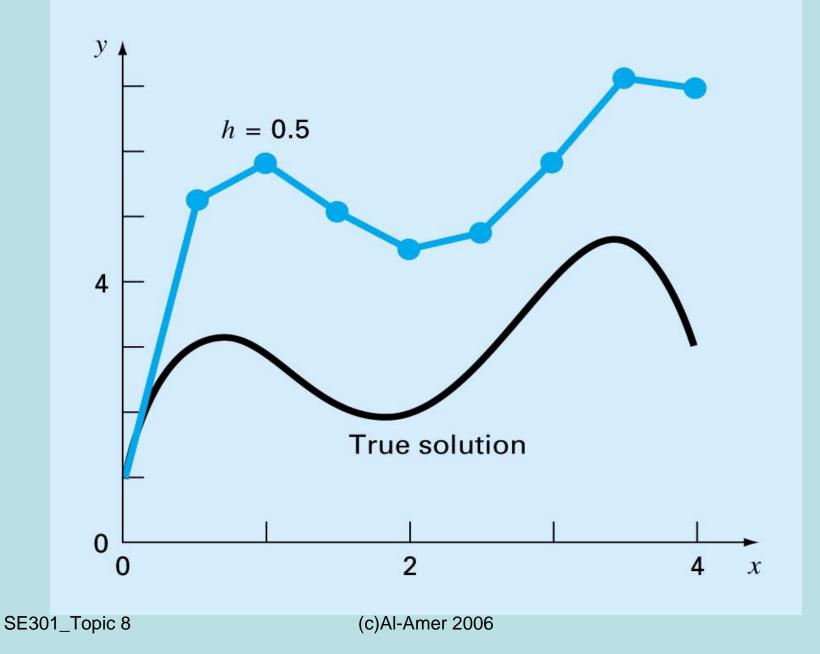
$$x(0.03) = 0.9706$$

$$x(0.04) = 0.9612$$

Lecture 29 Modified Euler Methods

Review Euler Method
Heun's Method
Midpoint method
Runge-Kutta method

Figure 25.3



Error Analysis for Euler's Method/

- Numerical solutions of ODEs involves two types of error:
 - Truncation error –
 - Local truncation error •

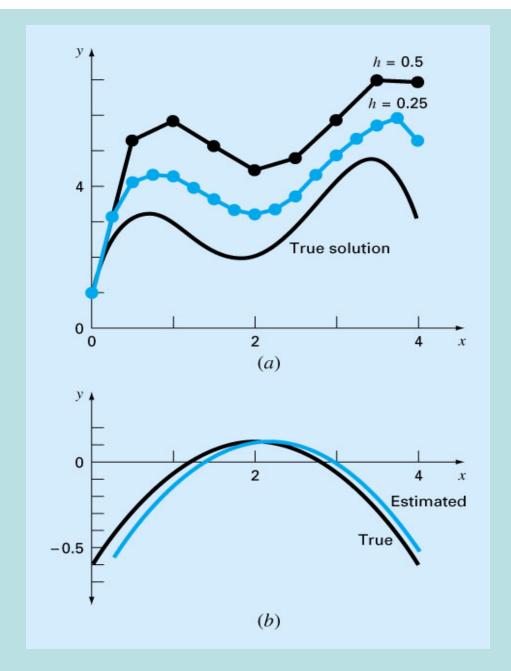
$$E_a = \frac{f'(x_i, y_i)}{2!}h^2$$

$$E_a = O(h^2)$$

- Propagated truncation error •
- The sum of the two is the *total or global truncation error*
 - *Round-off* errors –

- The Taylor series provides a means of quantifying the error in Euler's method. However;
- The Taylor series provides only an estimate of the local truncation error-that is, the error created during a single step of the method.
 - In actual problems, the functions are more complicated than simple polynomials. Consequently, the derivatives needed to evaluate the Taylor series expansion would not always be easy to obtain.
 - In conclusion, •
- the error can be reduced by reducing the step size SE301_Topic 8
 - If the solution to the differential equation is linear, -

Figure 25.4



SE301_Topic 8 (c)Al-Amer 2006 18

Improvements of Euler's method

A fundamental source of error in Euler's • method is that the derivative at the beginning of the interval is assumed to apply across the entire interval.

- Two simple modifications are available to circumvent this shortcoming:
 - Heun's Method -
- The Midpoint (or Improved Polygon) Method –

Outlines

- Euler Method
- Heun's Predictor Corrector
- Midpoint method
- Comparison

Euler Method

Problem

$$\dot{y}(x) = f(x, y)$$
$$y(x_0) = y_0$$

$$y(x_0) = y_0$$

Euler Method

$$y_0 = y(x_0)$$

 $y_{i+1} = y_i + h \ f(x_i, y_i)$
 $for \ i = 1, 2, ...$

Local Truncation Error Global Truncation Error

Heun's Predictor Corrector Method

Problem

$$\dot{y}(x) = f(x, y)$$
$$y(x_0) = y_0$$

$$y(x_0) = y_0$$

Heun's Method

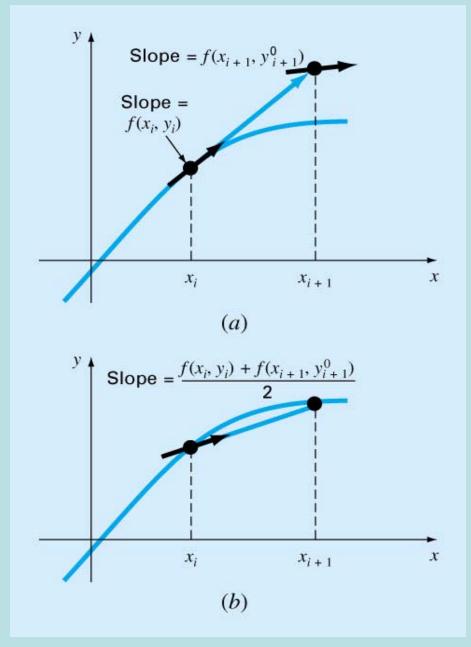
$$y_0 = y(x_0)$$

Predictor: $y_{i+1}^{0} = y_{i} + h f(x_{i}, y_{i})$

Corrector: $y_{i+1}^{k+1} = y_i + \frac{h}{2} \left(f(x_i, y_i) + f(x_{i+1}, y_{i+1}^k) \right)$

 $O(h^3)$ Local Truncation Error

 $O(h^2)$ Global Truncation Error



SE301_Topic 8 (c)Al-Amer 2006 23

Midpoint Method

Problem

$$\dot{y}(x) = f(x, y)$$
$$y(x_0) = y_0$$

$$y(x_0) = y_0$$

Midpoint Method

$$y_0 = y(x_0)$$

$$y_{i+\frac{1}{2}} = y_i + \frac{h}{2} f(x_i, y_i)$$

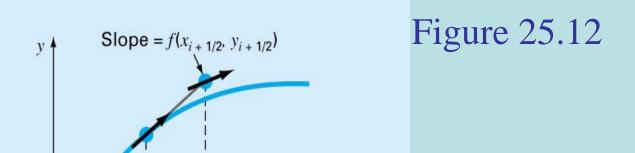
$$y_{i+1} = y_i + h f(x_{i+\frac{1}{2}}, y_{i+\frac{1}{2}})$$

 $O(h^3)$ Local Truncation Error

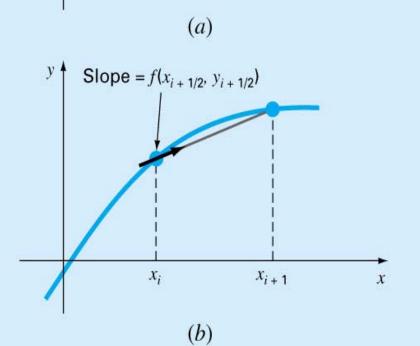
 $O(h^2)$ Global Truncation Error

SE301_Topic 8

(c)Al-Amer 2006



x



 $x_{i+1/2}$

 x_i

SE301_Topic 8 (c)Al-Amer 2006 25

Lecture 28. Runge-Kutta Methods

28. Runge-Kutta Methods

Runge-Kutta Methods

■ These techniques were developed around 1900 by the German mathematicians <u>C.</u> <u>Runge</u> and <u>M.W. Kutta</u>.

Runge-Kutta Methods (RK)

■ Runge-Kutta methods achieve the accuracy of a Taylor series approach without requiring the calculation of higher derivatives.

```
y_{i+1} = y_i + \phi(x_i, y_i, h)h
\phi = a_1 k_1 + a_2 k_2 + \dots + a_n k_n \quad \text{Increment function}
a's = \text{constants}
k_1 = f(x_i, y_i)
k_2 = f(x_i + p_1 h, y_i + q_{11} k_1 h) \quad \text{p's and q's are constants}
k_3 = f(x_i + p_3 h, y_i + q_{21} k_1 h + q_{22} k_2 h)
\vdots
k_n = f(x_i + p_{n-1} h, y_i + q_{n-1} k_1 h + q_{n-1,2} k_2 h + \dots + q_{n-1,n-1} k_{n-1} h)
```

- Arr k's are recurrence functions. Because each k is a functional evaluation, this recurrence makes RK methods efficient for computer calculations.
- \Box Various types of RK methods can be devised by employing different number of terms in the increment function as specified by n.
- \blacksquare First order RK method with n=1 is in fact Euler's method.
- Once n is chosen, values of a's, p's, and q's are evaluated by setting general equation equal to terms in a Taylor series expansion.

$$y_{i+1} = y_i + (a_1 k_1 + a_2 k_2)h$$

$$k_1 = f(x_i, y_i)$$

$$k_2 = f(x_i + p_1 h, y_i + q_{11} k_1 h)$$

■ Values of a_1 , a_2 , p_1 , and q_{11} are evaluated by setting the second order equation to Taylor series expansion to the second order term. Three equations to evaluate four unknowns constants are derived.

$$a_1 + a_2 = 1$$

$$a_2 p_1 = \frac{1}{2}$$

$$a_2 q_{11} = \frac{1}{2}$$

A value is assumed for one of the unknowns to solve for the other three.

- Because we can choose an infinite number of values for a_2 , there are an infinite number of second-order RK methods.
- Every version would yield exactly the same results if the solution to ODE were quadratic, linear, or a constant.
- However, they yield different results if the solution is more complicated (typically the case).
- □ Three of the most commonly used methods are:
 - Huen Method with a Single Corrector $(a_2=1/2)$
 - The Midpoint Method $(a_2=1)$
 - Raltson's Method (a_2 =2/3)

Lecture Taylor Series in Two Variables

The Taylor Series discussed in Chapter 4 is extended to the 2-independent variable case.

This is used to prove RK formula

Taylor Series in One Variable

The Taylor Series expansion of f(x)

$$f(x+h) = \sum_{i=0}^{n-1} \frac{h^i}{i!} f^{(i)}(x) + \frac{h^n}{n!} f^{(n)}(\overline{x})$$
Approximation

Error

where \bar{x} is between x and x+h

Taylor Series in One Variable another look

Define

$$\left(h\frac{d}{dx}\right)^{i} f(x) = h^{i} \frac{d^{i} f(x)}{dx^{i}} = f^{(i)}(x) h^{i}$$

The Taylor Series expansion of f(x)

$$f(x+h) = \sum_{i=0}^{n-1} \frac{1}{i!} \left(h \frac{d}{dx} \right)^i f(x) + \frac{1}{n!} \left(h \frac{d}{dx} \right)^n f(\overline{x})$$

 \overline{x} is between x and x + h

Definitions

Define

$$\left(h \frac{\partial}{\partial x}\right)^{i} f(x, y) = h^{i} \frac{\partial^{i} f}{\partial x^{i}}$$

$$\left(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y}\right)^0 f(x, y) = f(x, y)$$

$$\left(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y}\right)^{1} f(x,y) = h\frac{\partial}{\partial x} \frac{f(x,y)}{\partial x} + k\frac{\partial}{\partial y} \frac{f(x,y)}{\partial y}$$

$$\left(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y}\right)^2 f(x,y) = h^2 \frac{\partial^2 f(x,y)}{\partial x^2} + 2hk\frac{\partial^2 f(x,y)}{\partial x \partial y} + k^2 \frac{\partial^2 f(x,y)}{\partial y^2}$$

Taylor Series in Two Variables

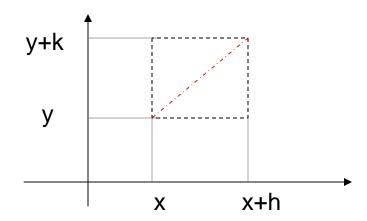
The Taylor Series expansion of f(x, y)

$$f(x+h,y+k) = \sum_{i=0}^{n-1} \frac{1}{i!} \left(h \frac{\partial}{\partial x} + k \frac{\partial}{\partial y} \right)^{i} f(x,y) + \frac{1}{n!} \left(h \frac{\partial}{\partial x} + k \frac{\partial}{\partial y} \right)^{n} f(\overline{x},\overline{y})$$

approximation

error

 (\bar{x}, \bar{y}) is on the line joining between (x, y) and (x + h, y + k)



Taylor Series Expansion

$$f(x, y) = (x+1)(x+y+2)^2$$

Taylor Series Expansion Center of expansion (0,0)

$$\left(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y}\right)^{0} f(x,y)\bigg|_{(0.0)} = 4$$

$$\left(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y}\right)^{1} f(x,y)\bigg|_{(0,0)} = h f_{x} + k f_{y}\bigg|_{(0,0)}$$

Second Order Runge Kutta

$$K_1 = h \ f(t, x)$$

$$K_2 = h f(t + \alpha h, x + \beta K_1)$$

$$x(t+h) = x(t) + w_1 K_1 + w_2 K_2$$

Problem:

Find α, β, w_1, w_2

such that x(t+h) is as accurate as possible.

Problem: Find α, β, w_1, w_2

to match as many terms as possible.

$$x(t+h) = x(t) + hx'(t) + \frac{h^2}{2}x''(t) + \frac{h^3}{6}x'''(t) + \dots$$
$$x(t+h) = x(t) + w_1h \ f(t,x) + w_2f(t+\alpha h, x+\beta h \ f(t,x))$$

$$f(t+\alpha h, x+\beta h f) = f + \alpha h f_t + \beta h f_x + \frac{1}{2} \left(\alpha h \frac{\partial}{\partial t} + \beta h \frac{\partial}{\partial x}\right)^2 f(\bar{t}, \bar{x})$$
$$x(t+h) = x(t) + \left(w_1 + w_2\right)h f(t, x) + \alpha w_2 h^2 f_t + \beta w_2 h^2 f f_t + O(h^3)$$

SE301_Topic 8

$$x(t+h) = x(t) + hx'(t) + \frac{h^2}{2}x''(t) + \frac{h^3}{6}x'''(t) + \dots$$

$$x(t+h) = \begin{cases} x(t) \\ + (w_1 + w_2)h f(t,x) \\ + (\alpha w_2 h^2 f_t + \beta w_2 h^2 f_t \\ + O(h^3) \end{cases}$$

$$\Rightarrow w_1 + w_2 = 1$$
, $\alpha w_2 = 0.5$, $\beta w_2 = 0.5$

One possible solution

$$w_1 = 0.5$$
, $w_2 = 0.5$, $\alpha = 1$, $\beta = 1$

Second Order Runge Kutta

$$K_1 = f(t, x)$$

 $K_2 = f(t+h, x+K_1h)$
 $x(t+h) = x(t) + \frac{1}{2}(K_1 + K_2)h$

Alternative Formula

Second Order Runge Kutta

$$F_{1} = f(t, x)$$

$$F_{2} = f(t + h, x + hF_{1})$$

$$x(t + h) = x(t) + \frac{h}{2}(F_{1} + F_{2})$$

Alternative Formula

$$\Rightarrow w_1 + w_2 = 1$$
, $\alpha w_2 = 0.5$, $\beta w_2 = 0.5$

another solution

Pick α any non - zero number

$$\beta = \alpha$$
, $w_1 = 1 - \frac{1}{2\alpha}$, $w_2 = \frac{1}{2\alpha}$

Second Order Runge Kutta Formulas (select $\alpha \neq 0$)

$$K_1 = h f(t, x)$$

$$K_2 = h f(t + \alpha h, x + \alpha K_1)$$

$$x(t+h) = x(t) + \left(1 - \frac{1}{2\alpha}\right)F_1 + \frac{1}{2\alpha}F_2$$

SE301_Topic 8

Fourth Order Runge Kutta

$$K_{1} = f(t, x)$$

$$K_{2} = f(t + \frac{1}{2}h, x + \frac{1}{2}K_{1}h)$$

$$K_{3} = f(t + \frac{1}{2}h, x + \frac{1}{2}K_{2}h)$$

$$K_{4} = f(t + h, x + K_{3}h)$$

$$x(t + h) = x(t) + \frac{1}{6}(K_{1} + 2K_{2} + 2K_{3} + K_{4})h$$

SE301_Topic 8

Second order Runge-Kutta Method Example

Solve the following system to find x(1.02) using RK2

$$\dot{x}(t) = 1 + x^2(t) + t^3$$
, $x(1) = -4, h = 0.01$

STEP1:

$$K_1 = h \ f(t, x) = 0.01(1 + x^2 + t^3) = 0.18$$

$$K_2 = h \ f(t + h, x + K_1) = 0.01(1 + (x + 0.18)^2 + (t + .01)^3) = 0.1692$$

$$x(1 + 0.01) = x(1) + \frac{1}{2}(K_1 + K_2) = -4 + \frac{1}{2}(0.18 + 0.1692) = -3.8254$$

SE301_Topic 8 (c)Al-Amer 2006 45

Second order Runge-Kutta Method Example

STEP 2

$$K_1 = h \ f(t,x) = 0.01(1+x^2+t^3) = 0.1666$$

$$K_2 = h \ f(t+h,x+K_1) = 0.01(1+(x+0.1666)^2+(t+.01)^3) = 0.1545$$

$$x(1.01+0.01) = x(1.01) + \frac{1}{2}(K_1+K_2)$$

$$= -3.8254 + \frac{1}{2}(0.1666+0.1545) = -3.6648$$

Fourth Order Runge Kutta

$$K_{1} = f(t, x)$$

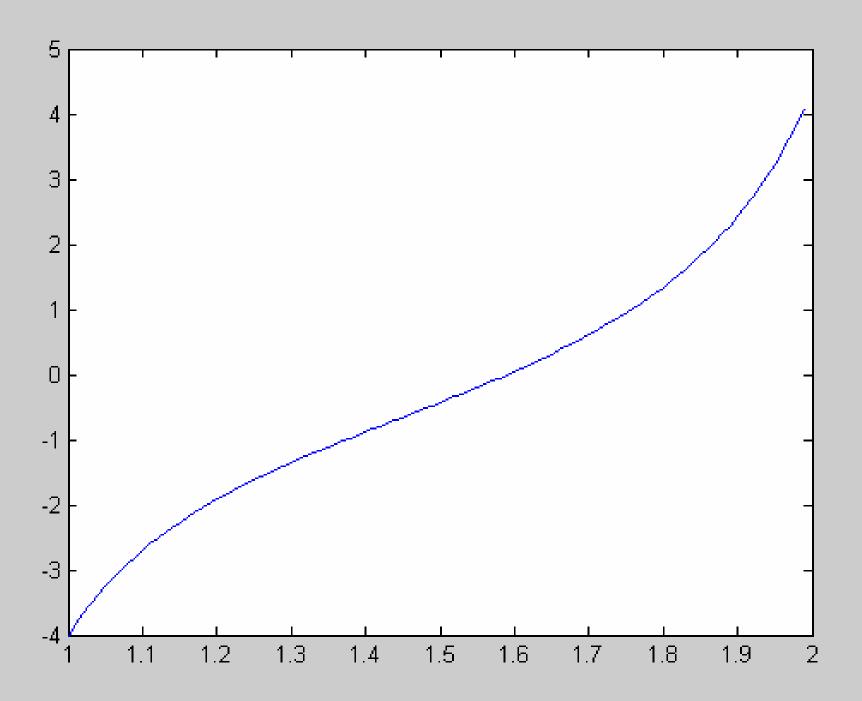
$$K_{2} = f(t + \frac{1}{2}h, x + \frac{1}{2}K_{1}h)$$

$$K_{3} = f(t + \frac{1}{2}h, x + \frac{1}{2}K_{2}h)$$

$$K_{4} = f(t + h, x + K_{3}h)$$

$$x(t + h) = x(t) + \frac{1}{6}(K_{1} + 2K_{2} + 2K_{3} + K_{4})h$$

SE301_Topic 8



Example

4-order Runge-Kutta Method

$$\frac{dy}{dx} = 1 + y - x^2$$

$$y(0) = 0.5$$

$$h = 0.2$$
Compute $y(0.2)$ and $y(0.4)$

Example

4-order Runge-Kutta Method

Iteration 1 of the RK4 (x = 0, y = 0.5)

$$K_1 = h f(x, y) = 0.3000$$

$$K_2 = h f(x + \frac{1}{2}h, y + \frac{1}{2}K_1) = 0.3280$$

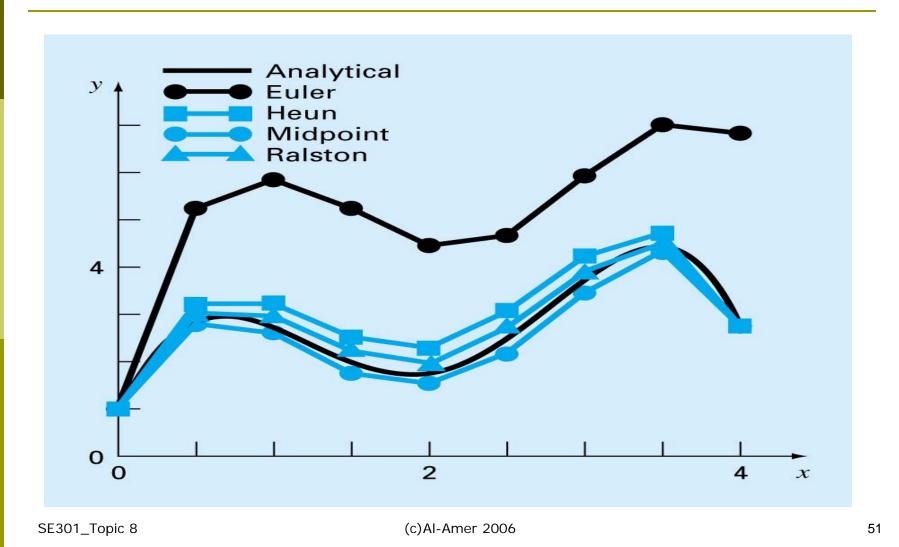
$$K_3 = h f(x + \frac{1}{2}h, y + \frac{1}{2}K_2) = 0.3308$$

$$K_4 = h f(x+h, y+K_3) = 0.3482$$

$$y(x+h) = y(x) + \frac{1}{6}(K_1 + 2K_2 + 2K_3 + K_4) = 0.8276$$

SE301_Topic 8

Figure 25.14



High Order ODE

- High order ODE
- ■Systems of High order ODE
- Procedure
- Examples

High Order ODE

- Methods discussed earlier such as Euler ,Runge-Kutta,...are used for first order ordinary differential equations
- How do solve second order, or higher ODE?

The approach: Convert the high order differential equation into a system of first order Differential equation

$$\dot{X}(t) = F(t, X)$$

Convert

$$\ddot{x} + 3\dot{x} + 6x = 1$$

$$\dot{x}(0) = 1; \quad x(0) = 4$$

to a system of first order ODE

1. Select a new set of variable

$$z_1 = x$$

$$z_2 = \dot{x}$$

One degree less than the highest order derivative

old	new	Initial	Equation
name	name	cond.	
X	z_1	4	$\dot{z}_1 = z_2$
\dot{x}	Z_2	1	$\dot{z}_2 = 1 - 3z_2 - 6z_1$

$$\begin{bmatrix} \dot{z}_1 \\ \dot{z}_2 \end{bmatrix} = \begin{bmatrix} z_2 \\ 1 - 3z_2 - 6z_1 \end{bmatrix}, Z(0) = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$$

Convert

$$\ddot{x} + 2\ddot{x} + 7\dot{x} + 8x = 0$$

$$\ddot{x}(0) = 9, \ \dot{x}(0) = 1; \ \ x(0) = 4$$

1. Select a new set of variable

$$z_1 = x$$

$$z_2 = \dot{x}$$

$$z_3 = \ddot{x}$$

One degree less than the highest order derivative

old	new	Initial	Equation
name	name	cond.	
X	\mathcal{Z}_1	4	$\dot{z}_1 = z_2$
\dot{x}	\mathcal{Z}_2	1	$\dot{z}_2 = z_3$
\ddot{x}	\mathcal{Z}_3	9	$\dot{z}_3 = -2z_3 - 7z_2 - 8z_1$

$$\begin{bmatrix} \dot{z}_1 \\ \dot{z}_2 \\ \dot{z}_3 \end{bmatrix} = \begin{bmatrix} z_2 \\ z_3 \\ -2z_3 - 7z_2 - 8z_1 \end{bmatrix}, Z(0) = \begin{bmatrix} 4 \\ 1 \\ 9 \end{bmatrix}$$

SE301_Topic 8

(c)Al-Amer 2006

Convert

$$\ddot{x} + 5\ddot{x} + 2\dot{x} + 8y = 0$$

$$\ddot{y} + 2xy + \dot{x} = 2$$

$$x(0) = 4; \dot{x}(0) = 2; \ddot{x}(0) = 9; y(0) = 1; \dot{y}(0) = -3$$

1. Select a new set of variable

$$z_1 = x$$

$$z_2 = \dot{x}$$

$$z_3 = \ddot{x}$$

$$z_4 = y$$

$$z_5 = \dot{y}$$

SE301_Topic 8

One degree less than the highest order derivative

old	new	Initial	Equation
name	name	cond.	
X	z_1	4	$\dot{z}_1 = z_2$
\dot{x}	z_2	2	$\dot{z}_2 = z_3$
\ddot{x}	z_3	9	$\dot{z}_3 = -5z_3 - 2z_2 - 8z_4$
y	z_4	1	$\dot{z}_4 = z_5$
ÿ	z_5	-3	$\dot{z}_5 = 2 - z_2 - 2z_1 z_4$

Solution of a second order ODE

■ Solve the equation using Euler method. Use h=0.1

$$\ddot{x} + 2\dot{x} + 8x = 2$$

$$x(0) = 1; \dot{x}(0) = -2$$

Select a new set of variable $z_1 = x, z_2 = \dot{x}$

The second order equation is expressed as

$$\dot{Z} = F(Z) = \begin{bmatrix} \dot{z}_1 \\ \dot{z}_2 \end{bmatrix} = \begin{bmatrix} z_2 \\ 2 - 2z_2 - 8z_1 \end{bmatrix}, Z(0) = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$

Solution of a second order ODE

$$F(Z) = \begin{bmatrix} z_2 \\ 2 - 2z_2 - 8z_1 \end{bmatrix}, Z(0) = \begin{bmatrix} 1 \\ -2 \end{bmatrix}, h = 0.1$$

$$Z(0+0.1) = Z(0) + hF(Z(0))$$

$$= \begin{bmatrix} 1 \\ -2 \end{bmatrix} + 0.1 \begin{bmatrix} -2 \\ 2 - 2(-2) - 8(1) \end{bmatrix} = \begin{bmatrix} 0.8 \\ -2.2 \end{bmatrix}$$

$$Z(0.2) = Z(0.1) + hF(Z(0.1))$$

$$= \begin{bmatrix} 0.8 \\ -2.2 \end{bmatrix} + 0.1 \begin{bmatrix} -2.2 \\ 2 - 2(-2.2) - 8(0.8) \end{bmatrix} = \begin{bmatrix} 0.58 \\ -2.2 \end{bmatrix}$$

SE301_Topic 8

Systems of Equations

■ Many practical problems in engineering and science require the solution of a system of simultaneous ordinary differential equations rather than a single equation:

$$\frac{dy_1}{dx} = f_1(x, y_1, y_2, ..., y_n)$$

$$\frac{dy_2}{dx} = f_2(x, y_1, y_2, ..., y_n)$$

$$\vdots$$

$$\frac{dy_n}{dx} = f_n(x, y_1, y_2, ..., y_n)$$

 \square Solution requires that *n* initial conditions be known at the starting value of *x*.

Chapter 25 63

SE301:Numerical Methods

29. Adam-Moulton Multi-step Predictor-Corrector Methods

Multi-step Method

- Single Step Methods
 - Euler, Runge-Kutta are single step methods
 - Information about x(t) is used to estimate x(t+h)
- Multistep Methods
 - Adam-Moulton method is a multi-step method
 - To estimate x(t+h) information about x(t),x(t-h), x(t-2h)... are used

Heun's Predictor Corrector method

Original Heun's predictor corrector method is not a multi-step method, but the non-self starting method is a multi-step method

Multistep Methods

The Non-Self-Starting Heun Method/

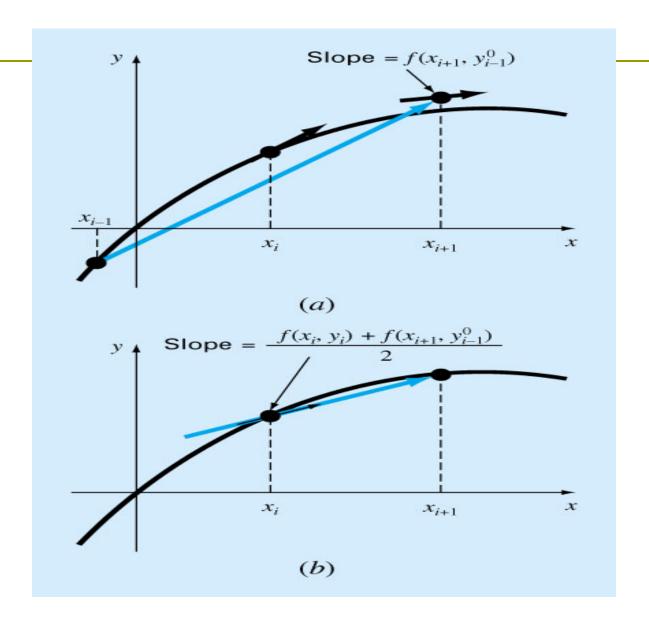
- Huen method uses *Euler's method* as a *predictor* and *trapezoidal rule* as a *corrector*.
- □ Predictor is the weak link in the method because it has the greatest error, $O(h^2)$.
- □ One way to improve Heun's method is to develop a predictor that has a local error of $O(h^3)$.

$$y_{i+1}^{0} = y_{i-1}^{m} + f(x_{i}, y_{i}^{m}) 2h$$

$$y_{i+1}^{j} = y_{i}^{m} + \frac{f(x_{i}, y_{i}^{m}) + f(x_{i+1}, y_{i+1}^{j+1})}{2}h$$
for $j = 1, 2, ..., m$

Figure 26.4

SE301_Topic 8



68

Error Analysis

- Both the predictor and corrector local error are of order O(h³)
- Error estimate for the corrector:

 $E_c = -\frac{y_{i+1}^0 - y_{i+1}^m}{5}$

Modifiers:

$$y_{i+1}^m \leftarrow y_{i+1}^m - \frac{y_{i+1}^0 - y_{i+1}^m}{5}$$

$$y_{i+1}^0 \leftarrow y_{i+1}^0 + \frac{4}{5} (y_i^m - y_i^0)$$

Step-Size Control/

- □ Constant Step Size.
 - \blacksquare A value for h must be chosen prior to computation.
 - It must be small enough to yield a sufficiently small truncation error.
 - It should also be as large as possible to minimize run time cost and round-off error.
- □ Variable Step Size.
 - If the corrector error is greater than some specified error, the step size is decreased.
 - A step size is chosen so that the convergence criterion of the corrector is satisfied in two iterations.
 - A more efficient strategy is to increase and decrease by doubling and halving the step size.

Integration Formulas/

Newton-Cotes Formulas.

Open Formulas.

$$y_{i+1} = y_{i-n} + \int_{x_{i-n}}^{x_{i+1}} f_n(x) dx$$
 $f_n(x)$ is an n th order interpolating polynomial.

Closed Formulas.

$$y_{i+1} = y_{i-n+1} + \int_{x_{i-n+1}}^{x_{i+1}} f_n(x) dx$$

Adams Formulas (Adams-Bashforth). Open Formulas.

□ The Adams formulas can be derived in a variety of ways. One way is to write a forward Taylor series expansion around x_i . A second order open Adams formula:

$$y_{i+1} = y_i + h \left(\frac{3}{2}f_i - \frac{1}{2}f_{i-1}\right) + \frac{5}{12}h^3f_i'' + O(h^4)$$
 written:

$$y_{i+1} = y_i + h \sum_{k=0}^{n-1} \mathcal{B}_k f_{i+1-k} + O(h^{n+1})$$

Listed in Table 26.2

Figures 26.7



Higher-Order multistep Methods/

Milne's Method.

■ Uses the three point Newton-Cotes open formula as a predictor and three point Newton-Cotes closed formula as a corrector.

Fourth-Order Adams Method.

■ Based on the Adams integration formulas. Uses the fourth-order Adams-Bashforth formula as the predictor and fourth-order Adams-Moulton formula as the corrector.

Predictor-Corrector

Two - step

Predictor :
$$y_{i+1} = y_i + h \left(\frac{3}{2} f(y_i) - \frac{1}{2} f(y_{i-1}) \right)$$

Corrector:
$$y_{i+1} = y_i + h \left(\frac{1}{2} f(y_{i+1}) + \frac{1}{2} f(y_i) \right)$$

Three - Step

Predictor:
$$y_{i+1} = y_i + h \left(\frac{23}{12} f(y_i) + \frac{-16}{12} f(y_{i-1}) + \frac{5}{12} f(y_{i-2}) \right)$$

Corrector:
$$y_{i+1} = y_i + h \left(\frac{5}{12} f(y_{i+1}) + \frac{8}{12} f(y_i) + \frac{-1}{12} f(y_{i-1}) \right)$$

See pages 744 (predictor), 746 (corrector) formulas

SE301_Topic 8

4-Step Adams-Moulton Predictor-Corrector

Predictor: (Adams - Bashforth Predictor)

$$y_{i+1} = y_i + \frac{h}{24} (55f(y_i) - 59f(y_{i-1}) + 37f(y_{i-2}) - 9f(y_{i-3}))$$

Corrector: (Adams - Moulton Corrector)

$$y_{i+1} = y_i + \frac{h}{24} (9f(y_{i+1}) + 19f(y_i) + -5f(y_{i-1}) + f(y_{i-2}))$$

See pages 744(predictor), 746(corrector) formulas

4-Step Adams-Moulton Predictor-Corrector

Predictor: (Adams - Bashforth Predictor)

$$y_{i+1} = y_i + \frac{h}{24} (55f(y_i) - 59f(y_{i-1}) + 37f(y_{i-2}) - 9f(y_{i-3}))$$

Corrector: (Adams - Moulton Corrector)

$$y_{i+1} = y_i + \frac{h}{24} (9f(y_{i+1}) + 19f(y_i) + -5f(y_{i-1}) + f(y_{i-2}))$$

See pages 744(predictor), 746(corrector) formulas

Example

Solve

$$\frac{dy}{dx} = 2x + y^2x \qquad y(0) = 2$$

h = 0.1, Use 2-step Predictor corrector Method compute y(0.4)

We need two initial conditions to use the

2-step Predictor corrector Method

We will first use use RK2 to estimate y(0.1)

Example

We need two initial conditions

Use RK2 to compute y(0.1) then we can use

the Predictor corrector Method

$$\frac{dy}{dx} = 2x + y^2x$$
 $y(0) = 2$, $h = 0.1$,

$$K1 = 0.1(0) = 0$$

$$K2 = 0.1(0.2 + 0.4) = 0.06$$

$$y(0.1) = 2 + 0.5(0.06) = 2.03$$

Example

$$\frac{dy}{dx} = 2x + y^2x$$
 $y_{i-1} = y(0) = 2, y_i = y(0.1) = 2.03, h = 0.1$

Predictor:
$$y_{i+1} = y_i + h \left(\frac{3}{2} f(y_i) - \frac{1}{2} f(y_{i-1}) \right)$$

= $2.03 + 0.1 \left(\frac{3}{2} \left(2(0.1) + 2.03^2(0.1) \right) - \frac{1}{2} (0+0) \right) =$

Corrector:
$$y_{i+1} = y_i + h \left(\frac{1}{2} f(y_{i+1}) + \frac{1}{2} f(y_i) \right)$$

= 2.03 + 0.1
$$\left(\frac{1}{2}f(y_{i+1}) + \frac{1}{2}(2(0.1) + 2.03^2(0.1))\right)$$

of steps

- at each iteration one prediction step is done and as many correction steps as needed.
- Usually few corrections steps are done (1 to 3)
- It is usually better (in terms of accuracy) to use smaller steps size than corrections beyond few steps.

SE301:Numerical Methods

31. Finite Difference methods for solving Boundary Value problems

Outlines

- Boundary Value Problem
- Shooting Method
- Finite Difference Method

Boundary-Value and Initial value Problems

Boundary-Value Problems

- The auxiliary conditions are not at one point of time
- More difficult to solve than initial value problem

$$\ddot{x} + 2\dot{x} + x = e^{-2t}$$

$$x(0) = 1$$
, $x(2) = 1.5$

Initial-Value Problems

The auxiliary conditions are at one point of time

$$\ddot{x} + 2\dot{x} + x = e^{-2t}$$

$$x(0) = 1$$
, $\dot{x}(0) = 2.5$

Solution of Boundary-Value Problems

Shooting method

Methods for Boundary-Value Problems

- Shooting method:
 - Guess a values for The auxiliary conditions at one point of time
 - Solve the initial value problem using Euler, Runge-Kutta, ...
 - Check if the boundary conditions is satisfied otherwise modify the guess and resolve the problem.
- Use interpolation in updating the guess
- It is an iterative procedure and can be efficient in solving the BVP

Shooting method

Example

$$\ddot{x} + 2\dot{x} + x = e^{-2t}$$
 $x(0) = 1, \quad x(2) = 0.5$

to be determined

0.500

SE301_Topic 8 (c)Al-Amer 2006 86

Shooting method

Example

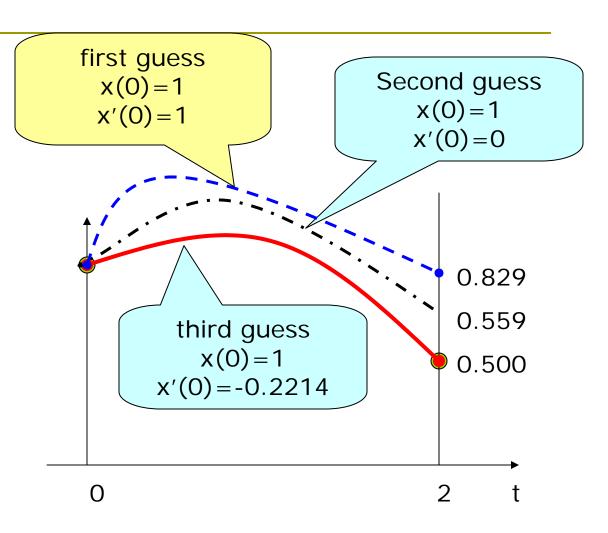
Example

$$\ddot{x} + 2\dot{x} + x = e^{-2t}$$

 $x(0) = 1, \ x(2) = 0.5$

Using linear interpolation of first and second guesses

$$x'(0) = -0.2214$$



Solution of Boundary-Value Problems

Finite Difference Method

Methods for Boundary-Value Problems

2. Finite Difference Method:

- Divide the interval into n intervals
- The solution of the BVP is converted to the problem of determining the value of function at the base points.
- Use finite approximations to replace the derivatives
- This approximation results in a set of algebraic equations.
- Solve the equations to obtain the solution of the BVP

Finite Difference Method

Example

$$\ddot{y} + 2\dot{y} + y = x^2$$

 $y(0) = 0.2, \ y(1) = 0.8$

Divide the interval [0,1] into n = 4 intervals

Base points are

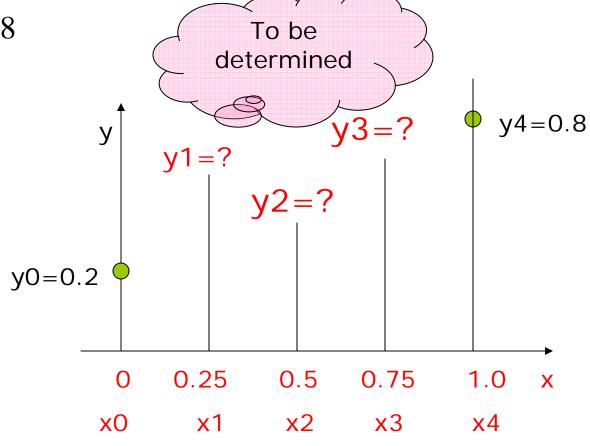
$$x0=0$$

$$x1 = 0.25$$

$$x2 = .5$$

$$x3 = 0.75$$

$$x4 = 1.0$$



Finite Difference Method

Example

$$\ddot{y} + 2\dot{y} + y = x^2$$

$$y(0) = 0.2, y(1) = 0.8$$

Divide the interval [0,1] into n=4 intervals

Base points are

$$x0 = 0$$

$$x1 = 0.25$$

$$x2 = .5$$

$$x3 = 0.75$$

$$x4 = 1.0$$

Replace

$$\ddot{y} = \frac{y_{i+1} - 2y_i + y_{i-1}}{h^2}$$

central difference formula

$$\dot{y} = \frac{y_{i+1} - y_{i-1}}{2h}$$

central difference formula

$$\ddot{y} + 2\dot{y} + y = x^2$$

Becomes

$$\frac{y_{i+1} - 2y_i + y_{i-1}}{h^2} + 2\frac{y_{i+1} - y_{i-1}}{2h} + y_i = x_i^2$$

$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = x^2 \quad with \ y(0) = 0.2, \qquad y(1) = 0.8$$

Let
$$h = 0.25$$

Base Points

$$x_0 = 0, x_1 = 0.25, x_2 = 0.5, x_3 = 0.75, x_4 = 1$$

$$\frac{dy}{dx} \approx \frac{y(x+h) - y(x)}{y_{i+1} - y_i}$$

$$\frac{dy}{dx} \approx \frac{y(x+h) - y(x)}{h} = \frac{y_{i+1} - y_i}{h}$$

$$\frac{d^2y}{dx^2} \approx \frac{y(x+h) - 2y(x) + y(x-h)}{h^2} = \frac{y_{i+1} - 2y_i + y_{i-1}}{h^2}$$

$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = x^2$$

$$\frac{y_{i+1} - 2y_i + y_{i-1}}{h^2} + 2\frac{y_{i+1} - y_i}{h} + y_i = x_i^2 \quad i = 1,2,3$$

$$x_0 = 0, \ x_1 = 0.25, x_2 = 0.5, x_3 = 0.75, x_4 = 1$$

$$y_0 = 0.2, \ y_1 = ?, y_2 = ?, y_3 = ?, \ y_4 = 0.8$$

$$16(y_{i+1} - 2y_i + y_{i-1}) + 8(y_{i+1} - y_i) + y_i = x_i^2$$

$$24y_{i+1} - 39y_i + 16y_{i-1} = x_i^2$$

$$24y_{i+1} - 39y_i + 16y_{i-1} = x_i^2$$

$$i = 1 \quad 24y_2 - 39y_1 + 16y_0 = x_1^2$$

$$i = 2 \quad 24y_3 - 39y_2 + 16y_1 = x_2^2$$

$$i = 3 \quad 24y_4 - 39y_3 + 16y_2 = x_3^2$$

$$\begin{bmatrix} -39 \quad 24 \\ 16 \quad -39 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 0.25^2 - 16(0.2) \\ 0.5^2 \\ 0.75^2 - 24(0.8) \end{bmatrix}$$

Solution $y_1 = 0.4791, y_2 = 0.6477, y_3 = 0.7436$

$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = x^2$$

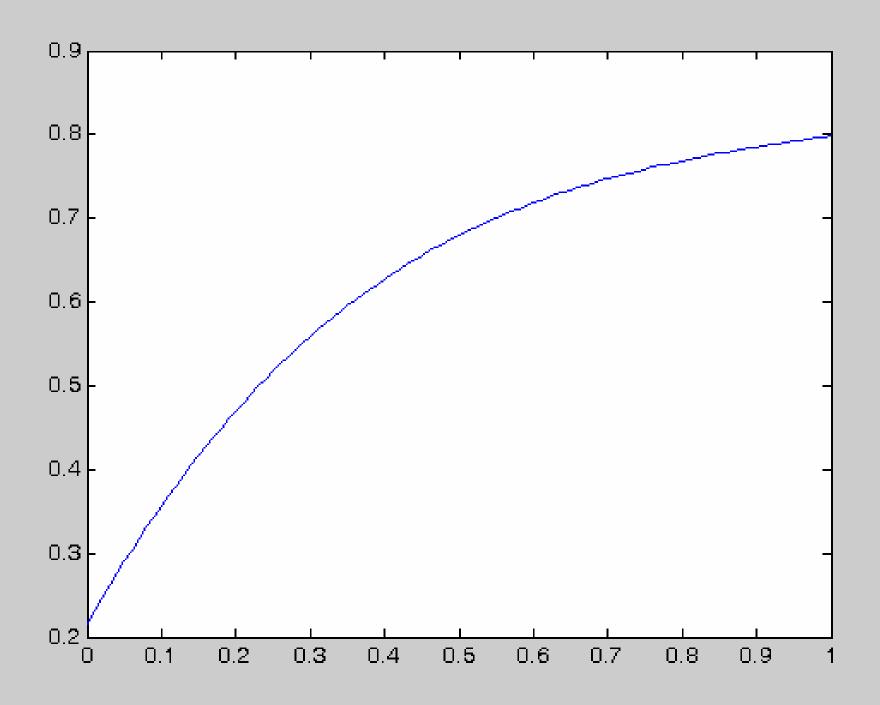
$$\frac{y_{i+1} - 2y_i + y_{i-1}}{h^2} + 2\frac{y_{i+1} - y_i}{h} + y_i = x_i^2 \quad i = 1, 2, ..., 100$$

$$x_0 = 0, \ x_1 = 0.01, x_2 = 0.02, x_{99} = 0.99, x_{100} = 1$$

$$y_0 = 0.2, \ y_1 = ?, \ y_2 = ?, \ y_3 = ?, \quad y_{100} = 0.8$$

$$10000(y_{i+1} - 2y_i + y_{i-1}) + 200(y_{i+1} - y_i) + y_i = x_i^2$$

$$10200y_{i+1} - 20199y_i + 10000y_{i-1} = x_i^2$$



Solution of Boundary-Value Problems

Finite Difference Method

Finite Difference Method:

- Other formulas can be used for approximating the derivatives
- For some linear cases this reduces to tri-diagonal system.