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Ordinary Differential Equations
Taylor Series Method

O Ordinary Differential Equations
O Taylor Series Method to solve ODE
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Ordinary Differential Equations

Differential Equations involves one or more derivatives of
unknown functions

dx(t)

T—x(t)ze
dzx(t)_ dx(t) B
e 5 o +2X(t) = cos(t)

A solution to a differential equations is a function that
satisfies the equations.
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Ordinary Differential Equations

X(t) = cos(2t)

IS a solution to the ODE s it unique?

d*x(t)
dt*

+4x(t)=0

Allfunctionsof the form x(t) = cos(2t

C)

(where ¢ Isarealconstant)are solutions
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Uniqueness of a solution

In order to uniquely specify a solution to an n th
order differential equation we need n Initial
conditions.

2
d d)tlg)() +4y(x)=0

y(0) =a
y(0) =b
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Taylor Series Method

Given dy (%)

=f(y,x), y(@) =y,

Taylor Series expansion of y(x)

y(a+h)=y(a)+ h%+ hot ~y(a)+hf(y(a),a)

Similarly
y(a+2h)=y(a+h)+hf(y(a+h),a+h)
We use similar formulasto compute y(a+3h), y(a+4h),....
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Example

Solve %:f(y,x), y(0)=y, use h=0.01
X

y(0)
/ o
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Example

Solve % :Q y()=—4 use h=0.01
X

y(a+h) = y(@)+h  (y(a), a)

y(l) =-4

y(1.01) = —4+0.01(L+ (1)%) = —3.98

y(1.02) = -3.98 + 0.01(1+ (1.01)2)= ~3.9508
y(1.03) = —3.9598 + 0.01(1+ (1.02)2)= ~3.9394
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Example

Solve

dx(t)
dt

—1+1t°

, X(1) =-4

use h=0.01
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Euler Method

‘The Euler Method == First order Taylor series method

Given

W) _ty,0, y(@)=y,
dx

Solution:

y(a+h)=y(@)+hf(y(a)a)
y(a+2h) = y(a+h)+h f(y(a+h),a+h)
v(a+3h) = y(a+2h)+h f(y(a+h),a+2h)
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Types ot Errors

Types of Errors:
m Local truncation error:

error due to the use of truncated Taylor
series to compute x(t+h).

m Round off error:

error due to finite number of bits used In
representation of numbers. This error could
be accumulated and magnified In
succeeding steps.
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Example 2

dx(t)
dt

Solve

+2x(t) =1, x(0) =1

use h=0.01

X(a+h)=x(a)+h f(a,x(a))

f(x)= ?
X(0.0) =7
X(0.01) =7
X(0.02) =7
X(0.03) =?
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Example 2

dx(t)
dt

Solve

+2Xx(t) =1,x(0)=1 wuse h=0.01

X(a+h)=x(a)+h f(a,x(a))

f(t,x)= 1-2x(t)

x(0.01) =1+.01(1-2(1)=1-.01=.99
X(0.02) =0.99+0.01(1-2(0.99)) = 0.9802
X(0.03) =0.9706

X(0.04) =0.9612
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Lecture 29
Modified Euler Methods

Review Euler Method
Heun’s Method
Midpoint method
Runge-Kutta method
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Figure 25.3

True solution

0
0
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Error Analysis for Euler’s Method/

Numerical solutions of ODEs involves two types of e
error:

Truncation error —
Local truncation error e

Ea _ f (Xi’yi) h2
2!
E =0(h?)

Propagated truncation error e
The sum of the two is the total or global truncation error —
Round-off errors —
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The Taylor series provides a means of
quantifying the error in Euler’s method.
However;

The Taylor series provides only an estimate of the —
local truncation error-that Is, the error created
during a single step of the method.

In actual problems, the functions are more —
complicated than simple polynomials.
Consequently, the derivatives needed to evaluate
the Taylor series expansion would not always be
easy to obtain.

In conclusion, e
the error can be reduced b%/ reducing the step size —
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Figure 25.4 i
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h=0.25

True solution

4 X

Estimated

-0.5

(b)
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Improvements of Euler’s method

A fundamental source of error in Euler’s
method Is that the derivative at the beginning
of the interval is assumed to apply across the

entire interval.

wo simple modifications are available to
circumvent this shortcoming:

Heun’s Method —
The Midpoint (or Improved Polygon) Method —

SE301 Topic 8 (c)Al-Amer 2006 19
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Outlines

O Euler Method

O Heun’s Predictor Corrector
O Midpoint method

0o Comparison
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Euler Method

Problem Euler Method

y(x) = f(x,y) Yo =Y(Xp)

y(Xo) = Yo Yia=VYi+h 1(x,Y;)
fori1=12,...

Local Truncation Error  O(h?)
Global Truncation Error O(h)
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Heun’s Predictor Corrector Method

Problem Heun's Method
y(x) = f(x,y) Yo=Y(X)
(%) = Yo Predictor: yp, =y, +h f(x,y,)

Corrector: y<i'=vy. +g (f (X, i)+ T (X, yik+1))

Local Truncation Error  O(h®)
Global Truncation Error O(h?)
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Figure 25.9

Slope = f(x;, 1, ¥4 1)

—*—V

(a)

A Sl{]pE _ f{.l’,—, _'Il';-:l +_f|:1‘!- + 11 J':‘D+ 1]I

2

/ X Xis1 X

(b)
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Midpoint Method

Problem
y(x) = T(x,Y)
y(Xo) = Yo

Y 17

i+
2

y|+1

Midpoint Method

Yo = Y(Xg)

ARICRD

y,+hf(x ,

4t |+—
2 2

Yy 1)

Local Truncation Error

Global Truncation Error
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v Slope = f(x;, 11 ¥4 112) Figure 2512

/’ X; Xiy1/2

(a)

i ¥
Y Slope = flx;, 12 Yi+ 1;2}

Y

(b)
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Lecture 28.
Runge-Kutta Methods

28. Runge-Kutta Methods
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Runge-Kutta Methods

O These techniques were developed around
1900 by the German mathematicians
and
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Runge-Kutta Methods (RK)

O Runge-Kutta methods achieve the accuracy of a Taylor
series approach without requiring the calculation of higher
derivatives.

Yia =Yi 40X, y;, h)h

¢=ak +ak,+---+ak,

a's = constants

K, = (X, Y:)

K, = 10X + pih, y; +0yikih)

Ky = T + psh, y; + 0K h +0y,k,h)

kn = f (Xi + pn—lh’ Yi + qn—1k1h + C|n-1,2k2h Tt qn—l,n—lkn—lh)

28



O k’s are recurrence functions. Because each k is a functional evaluation, this

recurrence makes RK methods efficient for computer calculations.

O Various types of RK methods can be devised by employing different
number of terms in the increment function as specified by n.

O First order RK method with n=1 is in fact Euler’s method.

O Once n is chosen, values of a’s, p’s, and g’s are evaluated by setting
general equation equal to terms in a Taylor series expansion.

Yian =Yt (alkl T azkz)h
k1 = f (Xi’ Yi)
kz = f (Xi + plh’ Yi t q11k1h)

SE301_Topic 8 (c)Al-Amer 2006

29



o Values of a;, a,, p;, and q,, are evaluated by setting the
second order equation to Taylor series expansion to the
second order term. Three equations to evaluate four
unknowns constants are derived.

a+a,=1

azpl:E
2

3-2(2111:E
2

SE301_Topic 8 (c)Al-Amer 2006
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O Because we can choose an infinite number of values for a,,
there are an infinite number of second-order RK methods.

O Every version would yield exactly the same results if the
solution to ODE were quadratic, linear, or a constant.

O However, they yield different results if the solution is more
complicated (typically the case).

O Three of the most commonly used methods are:

SE301_Topic 8 (c)Al-Amer 2006

31



Lecture
Taylor Series in Two

Variables

I I
The Taylor Series discussed in Chapter 4
IS extended to the 2-independent
variable case.

This Is used to prove RK formula

SE301_Topic 8 (c)Al-Amer 2006 32



Taylor Series in One Variable

The Taylor Series expansion of f(x)

n—1

f(x+h)=>

1=0

hi

£ (X)

Approximation

_|_

n

— f (X)
n!

Error

where X 1S between x and X+h
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Taylor Series in One Variable
another look

Define
( dj fg=h 9 Tty b
dx dx

The Taylor Series expansion of f(x)

f(x+h) = il(hijf(xh (hdij f (X)

=11\ dx
X 1S between xand X+h
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Definitions

Define

( a) (x,y) = h,a'f
(h—+k—j f(x,y)="1(X,Yy)
(h£+ki\ f(X,Y) = hc’?f(x,y)+kaf(x,y)

L. X 0y OX oy

2

( A 2 2 2
0 C ik 2 oy —nz ETOW) oy ) e 08 F(XY)
. OX 0y OX OX0Y
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Taylor Series in Two Variables

The Taylor Series expansion of f(x, y)

11 8 0 1(,0 oY
f(x+h,y+k)=) -|h—+k— | f(x,y)+—| h—+k— | f(X,V
(x+h,y );I!L@( ayj(y) n![@X ay] (X, )

approximation error
(X,y) ison theline joining between (X, y)and (x+h, y +k)

A
y+ k L
1 2
1 |
1 . 1
1 . 1

1 R4 1
1 4 1
1 K4 1
[ 1

X X+h
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Taylor Series Expansion

f(x,y)= (X+D(x+ Yy +2)°
Taylor Series Expansion  Center of expansion (0,0)

o . 8
(h&-Fk@j f(x,y) =4

(0.0)

Y1(0,0)

1
0 0
h—+k—| f(x =hf +kf
(8x ayj (X,Y)

(0.0)

SE301_Topic 8 (c)Al-Amer 2006
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Runge-Kutta Method

Second Order Runge Kutta

K,=h f(t,x)

K,=h f(t+ah,x+ 4K,
X(t+h)=x(t)+wK, +w,K,

Problem:

Find «, B, w,, W,

such that x(t + h) Is as accurate as possible.

SE301_Topic 8 (c)Al-Amer 2006
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Runge-Kutta Method

Problem : Find «, S, w,, W,
to match as many terms as possible.

2 3

X(t+h)=x(t)+ hx'(t)+h7x"(t)+%x"'(t)+...

X(t+h)=x(t)+wh f{t,x)+w,f(t+ah,x+£h f(t,x))

2
ft+ah,x+ph f)=Ff+ahf +ph fx+£(ahg+ﬂhij f(t,X)
2 ot OX

X(t+h) = x(t) + (W, +w, h f(t,x)+aw,h®f +Bw,h’f f +0(h?)
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Runge-Kutta Method

X(t+h) =

x(t+h) =

SE301_Topic 8

X(t) | +

()| +

hx'(t) | + h—zzx"(t)

3
+ —Xx""(t)+...
; (t)

(w, +w, )h f(t,x)| +

aw,h’f +pw,h?f f,

=W +wW,=1 aw,=05 pw,=05

One pos
w, = 0.5,

sible solution
w, =05, a=1,

(c)Al-Amer 2006
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Runge-Kutta Method

Second Order Runge Kutta
K, = f(t,X)
K, = f(t+h,x+K;h)

1

X(t +h) = x(t) +§(K1 + K, )h



Runge-Kutta Method

Alternative Formula

Second Order Runge Kutta
F = f(t,x)
F,=f(t+h,x+hF)

h

X(t+h) = x(t)+E(F1 +F,)
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Runge-Kutta Method

Alternative Formula

=>wW+wW,=1 aw,=05 pw,=05
another solution
Pick « any non - zero number

1 1
= W1:1—2— W2 :2—
04 04

Second Order Runge Kutta Formulas (selecta # 0)
Ki=hf(tx)
Ky=h f(t+ah,x+a Ky)

X(t+h)=x(t)+ 1—i F1+i F,
2 20
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Runge-Kutta Method

Fourth Order Runge Kutta
K, = f(t,x)

1 1
K,=f({t+=hx+—K,h
= F(t+hx+2Kih)

1 1
K,=f({t+—h,x+=K,h
=t hxe oK)

K,=T({t+hx+K;h)
X(t+h) = x(t)+%(K1+2K2 + 2K, + K, )h

SE301_Topic 8 (c)Al-Amer 2006
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Second order Runge-Kutta Method
Example

Solve the following system to find x(1.02) using RK2
X(t) =1+ x2(t)+t>,  x(@1)=-4,h=0.01

STEP1:
K;=h f(t,x)=0.011+x*+t)=0.18
K, =h f(t+h,x+K;)=0.011+ (x+0.18)° + (t +.01)%) = 0.1692

x(1+0.01) = x(1) +%(K1 +K,)= —4+%(O.18+ 0.1692) = —3.8254
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Second order Runge-Kutta Method
Example

STEP 2

K,=h f(t,x)=0.01(L+x? +t%) = 0.1666
K,=h f(t+h,x+K,)=0.01(1+ (x+0.1666)" + (t +.01)°) = 0.1545

x(1.01+0.01) = x(1.01) +%(K1 +K,)

=—-3.8254 + % (0.1666+0.1545) = —3.6648
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Runge-Kutta Method

Fourth Order Runge Kutta
K, = f(t,x)

1 1
K,=f({t+=hx+—K,h
= F(t+hx+2Kih)

1 1
K,=f({t+—h,x+=K,h
=t hxe oK)

K,=T({t+hx+K;h)
X(t+h) = x(t)+%(K1+2K2 + 2K, + K, )h

SE301_Topic 8 (c)Al-Amer 2006
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Example
4-order Runge-Kutta Method

gx:l+y—x

dx

y(0) =0.5

h=0.2

Compute y(0.2) and y(0.4)

2

AAAAAAAAAAAAAA



Example
4-order Runge-Kutta Method

Iteration1of the RK4 (x =0,y =0.5)
Ki=h f(x,y)=0.3000

K2 — h f(X+%h,y+%Kl) 203280

Ky =h f(x+%h, y+%K2) =0.3308

Ky=h f(x+h,y+Kj3)=0.3482
y(x+h) = y(x)+%(K1+2K2 + 2K, +K,)=0.8276

SE301_Topic 8 (c)Al-Amer 2006
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Analytical
@@ Euler
el Heun
O—=_a» Midpoint
Me—f Ralston

SE301_Topic 8
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High Order ODE

oHigh order ODE

oSystems of High order ODE
OProcedure

OoExamples
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High Order ODE

0 Methods discussed earlier such as Euler
,Runge-Kutta,...are used for first order
ordinary differential equations

0 How do solve second order, or higher
ODE?

SE301_Topic 8 (c)Al-Amer 2006
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O The approach: Convert the high order
differential equation into a system of first order
Differential equation

X(t) = F(t, X)

SE301_Topic 8 (c)Al-Amer 2006
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Example of converting High order

ODE to first order ODEs
~Convert

X+3X+06x=1
X(0)=1, x(0)=4
to a system of first order ODE

1.Select a new set of variable
Z, = X
Z, =X
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Example of converting High order
ODE to first order ODEs

SE301_Topic 8

old |new |[Initial | Equation

name | name | cond.

X Z, 4 Z, =1,

X Z, 1 Z,=1-3z,-06Z,
I E N PTe

'z, | |1-3z,-62, 1

(c)Al-Amer 2006
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Example of converting High order

ODE to first order ODEs

Convert
X+2X+7X+8x=0
X(0)=9, x(0)=1, x(0)=4

1.Select a new set of variable
Z, = X

Z, =X
Z, =X

SE301_Topic 8 (c)Al-Amer 2006 57



Example of converting High order
ODE to first order ODEs

old | new | Initial | Equation
name| name| cond.
X Z, 4 Z, =1,
X Z, 1 Z,=1,
X Z, 9 l,=—22,—12,—-8Z,
2] | Z, ] 4
Z, |= Z, ,Z(0)=|1
1, | |—2Z;—1Z,-8Z 9

SE301_Topic 8
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Example of converting High order
ODE to first order ODEs

convert

X +5X+2x+8y =0

V+2Xy+X=2

X(0) = 4;x(0) = 2;X(0) =9; y(0) =1, y(0) = -3
1.Select a new set of variable

Z, = X

Z, =X
Z, =X
Z,=Y

L =Y

SE301_Topic 8 (c)Al-Amer 2006
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Example of converting High order
ODE to first order ODEs

old |new |Initial | Equation

name [name | cond.

X Z4 4 11 =1,

X Zy 2 1o =15

X Z3 9 l3=—D7;—21, -8,
y Z 1 24=15

y Zc -3 le=2—-12,—2217,

SE301_Topic 8
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Solution of a second order ODE

O Solve the equation using Euler method. Use h=0.1
X+2X+8x=2
X(0) =1; x(0) =-2
Select a new set of variable z, = x,z, =X
The second order equation Is expressed as

. 7, Z, 1
Z=F(@2)=||= Z(0) =
Z,| |2—-22,-8z,

SE301_Topic 8 (c)Al-Amer 2006 61



Solution of a second order ODE

FZ—_ % zo—1 h=0.1
( )__2—222—821_’ ()___2_’ e
Z(0+0.1) = Z(0)+hF(Z(0))
1] i ~2 1 [ 08"
= +0.1 =
-2 2-2(-2)-8(1) | |-2.2.
Z(0.2)=Z(0.1) +hF (Z(0.2))
0.8 | i —2.2 1 [0.58
= +0.1 =
—2.2 12-2(-2.2)-8(0.8) | |-2.2
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Systems of Equations

O Many practical problems in engineering and science require the solution of a
system of simultaneous ordinary differential equations rather than a single
equation;

dy,

&: (% Y1 Yaieo0 Ya)
d
%: fZ(X, y1’y2""’yn)

d
>;‘: f (XY Yoreeas V)

O Solution requires that n initial conditions be known at the starting value of x.

Chapter 25 63
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29. Adam-Moulton Multi-step
Predictor-Corrector Methods
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Multi-step Method

0 Single Step Methods

= Euler, Runge-Kutta are single step methods
= Information about x(t) is used to estimate
xX(t+h)
O Multistep Methods
= Adam-Moulton method is a multi-step method

= To estimate x(t+h) information about x(t),x(t-
h), x(t-2h)... are used

SE301_Topic 8 (c)Al-Amer 2006
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Heun’s Predictor Corrector method

Original Heun’s predictor corrector

method iIs not a multi-step method,

but the non-self starting method is a
multi-step method
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O Huen method uses as a and
as a

O Predictor is the weak link in the method because It has the
greatest error, O(h?).

O One way to improve Heun’s method is to develop a predictor
that has a local error of O(h3).

yi0+1 =Yy + F(X,y")2h
fOx,yi)+ F (X, Yij++11 h
2

Yij+1 — yim +

SE301_Topic 8 fOr J — 1,2,..., m
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Slope = fi(x;, . ¥2 )

Slope =

()
FExe W) + Fix s }’?—1)

2

(&)
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Error Analysis

0 Both the predictor and corrector local
error are of order O(h3)

O Error estimate for the corrector:

E —— yi0+1 - yir—ni-l
0o Modifiers: 0
yi0+1 o yiT—l

5

Vi < Yin —
4/
Yio+1 < Yio+1 +g(yi o Yio)

SE301_Topic 8 (c)Al-Amer 2006
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O Constant Step Size.
= A value for h must be chosen prior to computation.
= It must be small enough to yield a sufficiently small truncation error.

= It should also be as large as possible to minimize run time cost and
round-off error.

O Variable Step Size.
= If the corrector error is greater than some specified error, the step size is
decreased.
= A step size is chosen so that the convergence criterion of the corrector
Is satisfied in two iterations.
= A more efficient strategy Is to Increase and decrease by doubling and
halving the step size.
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Xi+1

yi+1 — yi—n + I 1:n (X)dX

Xin

Xi+1

yi+1 — yi—n+1 + _[ 1:n (X)dX

Xi—n+1

f (X) is an n™ order interpolating
polynomial.

SE301_Topic 8 (c)Al-Amer 2006
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O The Adams formulas can be derived in a variety of ways. One
way Is to write a forward Taylor series expansion around x;. A
second order open Adams formula:

3 5
=V +h f——f +-—h*f"+O(h"
y|+vlvvy|v (2 2 |1j 12 ( )

A D e

O . _ Written:

n-1
Yia=Yi T hz fii +O(h™)
k=0 Listed in Table 26.2




o
=

L)



O Uses the three point Newton-Cotes open formula as a
predictor and three point Newton-Cotes closed
formula as a corrector.

O Based on the Adams integration formulas. Uses the
fourth-order Adams-Bashforth formula as the
predictor and fourth-order Adams-Moulton formula
as the corrector.
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Predictor-Corrector

Two -step

: 1
Predictor :y; q = y.+h( f(Yi)__f(yi—l)j

1
Corrector :yi.1 =VY;+ h(z f(y,+1)+ f(y; )j

Three - Step
23 —16 5

Predictor : y;,; = V; +h(1 FQyi)+———T(yja)+ f(y| z)j

12

5 8

Corrector : yi,, =Y + h(lz f(y,+1)+ f(y )+ f()’. 1))

See pages 744 ( predictor ), 746 (corrector )formulas

SE301_Topic 8 (c)Al-Amer 2006
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4-Step Adams-Moulton Predictor-Corrector

Predictor : (Adams- Bashforth Predictor)

Vios =Y+ (G519 =591 (3,) +37 F(y,0) -9 (v,.)

Corrector : (Adams - Moulton Corrector)

Yia =Yi "'%(9 f(Yi) +19f(y) +-5f(y, )+ f (Yi—z))

See pages 744( predictor), 746(corrector) formulas
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4-Step Adams-Moulton Predictor-Corrector

Predictor : (Adams- Bashforth Predictor)

Vios =Y+ (G519 =591 (3,) +37 F(y,0) -9 (v,.)

Corrector : (Adams - Moulton Corrector)

Yia =Yi "'%(9 f(Yi) +19f(y) +-5f(y, )+ f (Yi—z))

See pages 744( predictor), 746(corrector) formulas

SE301_Topic 8 (c)Al-Amer 2006

77



Example

Solve

ﬂ:2x+ yex  y(0)=2
dx

h=0.1 Use 2-step Predictor corrector Method
compute y(0.4)

We need two initial conditions to use the
2 — step Predictor corrector Method
We will first use use RK2 to estimate y(0.1)
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Example

We need two initial conditions
Use RK?2 tocompute y(0.1) thenwe can use
the Predictor corrector Method

ﬂ:2x+ yzx y(0)=2, h=0.],
dx

K1=0.1(0)=0
K2 =0.1(0.2+0.4) = 0.06
y(0.1) = 2 +0.5(0.06) = 2.03
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Example

%zzﬂyzx Vii=y(0)=2,y; =y(0.1)=203, h=0.1
X

. 3 1
Predictor:y; . =Yy, + h(— f(y;) - f (yi_l)j

=2.03+0. 1/3(

2(0.1) +2.03%(0. 1))—%(0 + o)j

‘4
Corrector: y;,; = y; +h| = f (Yig)+=f (yl)j

= 2.03+o.1( f(yiq)+= (2(0 1) +2.03%(0. 1)))
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# of steps

O at each iteration one prediction step Is
done and as many correction steps as
needed.

O Usually few corrections steps are done (1
to 3)

O It is usually better ( In terms of accuracy)
to use smaller steps size than corrections
beyond few steps.
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SE301:Numerical Methods

31. Finite Difference methods for
solving Boundary Value problems
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Outlines

0 Boundary Value Problem
o Shooting Method
O Finite Difference Method
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Boundary-Value and

Initial value Problems

Boundary-Value Problems

O The auxiliary conditions
are not at one point of
time

O More difficult to solve
than initial value
problem

X+2X+X=e""
X(0) =1, x(2)=1.5

Initial-Value Problems

O The auxiliary conditions
are at one point of time

X+2X+Xx=e"
X(0) =1, X(0)=2.5
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Solution of Boundary-Value Problems
Shooting method

Methods for Boundary-Value Problems

1. Shooting method:

= Guess a values for The auxiliary conditions at one point
of time

= Solve the initial value problem using Euler,Runge-Kutta,

= Check if the boundary conditions is satisfied otherwise
modify the guess and resolve the problem.

O Use interpolation in updating the guess

O It is an iterative procedure and can be efficient in solving
the BVP
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Shooting method
Example

K+ 2X+X=e 2t

to be

determined

N
N
N\
N\
N\
N\
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Shooting method o Example

Example
W ¢ _ a2t first guess
X+2x+x=¢ x(0)=1 Second guess
= =0. x’(0)=1 x(0)=1
X(0)=1, x(2)=0.5 oo
// - ‘ : 5— .1\ N
/ /" ~., < o
- . I/ ~
_Usmg Ilne_ar b 0 829
interpolation of
first and second third guess 0.559
guesses x(0)=1 0.500
x’(0)=-0.2214
x’(0)=-0.2214

0 2 t
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Solution of Boundary-Value Problems
Finite Difference Method

Methods for Boundary-Value Problems

2. Finite Difference Method :
m Divide the interval into n intervals

= The solution of the BVP is converted to the problem of
determining the value of function at the base points.

= Use finite approximations to replace the derivatives

= This approximation results in a set of algebraic
equations.

= Solve the equations to obtain the solution of the BVP
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Finite Difference Method
Example

y+2y+y=x2

y(0)=0.2, y(1)=0.8 To be

determined

Divide the interval A
[0, 1]inton=4 y
intervals

® y4=0.8

Base points are
x0=0

x1=0.25
x2=.5
x3=0.75 O 0.25 0.5 0.75 1.0 x
x4=1.0 X0 X1 X2 X3 x4

y0=0.2 @
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Finite Difference Method

Example

s : L2

V+2y+Yy=X

y(0)=0.2, y(1)=0.8

Divide the interval | Replace

0,1]inton=4 R AVARTIRY _

i[nter\]/als y =il Zh);l * Jidg central difference formula
Base points are V.

P y = Yisd — Vi central difference formula

x0=0 2h
x1=0.25 J+2y+y=x°
X2=.5 Becomes
x3=0.75 Vit — 232 Vi1, Yi+12_th—1 y = X2
x4=1.0 h
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Second Order BVP

2

d—g/Jr 2ﬂ+ y = x> with y(0) =0.2, y(1)=0.8
dx dx

Let h=0.25

Base Points
Xg =0, X{ =0.25,X, =0.5,X3 =0.75,X4 =1

dy _ yOx+h)—y(x) _ ¥isa—Vi
dx h h

d?y _ y(x+h)=2y(x) + y(X=h) _ Vi1 —2¥i +Vig

dx? h? h?
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Second Order BVP

d?y . dy 2

—+2—+Yy=X

dx2 dx Y

Vir =2¥i t¥ia o Yin =Yy 42 123
h2 I I ] ]

Xg =0, X =0.25,X, =0.5,X3 =0.75,%x, =1
Vo=0.2, yy=2¥,=?,y3=", y,=0.8

16(yi 1 —2Y; + Yia)+8(Viss — Vi )+ Vi =X
2

2

24Y;,1 —39y; +16Y; 1 =X
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Second Order BVP

24yi1 —39y; +16Y;4 = X

1=1 24y, -39y, +16y, = xl2

i=2  24y,-39y, +16Y; = X,°

i=3 24y, -39y, +16Y, = X3°

-39 24 v, ] 0.252-16(0.2)
16 -39 24 |y, |= 0.5°
I 16 -39 ys| |0.75°-24(0.8)

Solution y; =0.4791,y, =0.6477,y; =0.7436
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Second Order BVP

dzy dy 2
2—+Yy=X
dx? " dxer

yi+l _zhgl ™ yi—l 42 yi+1h_ yi + yi — Xi2 | :1,2,,100

X, =0, X, =0.01,x, =0.02, Xy =0.99, X, =1
Yo =02, ¥, =2Y,=2¥;=?, VY00 =0.8
10000(Y;; —2Y; + ¥, 4)+200(y,,y = ¥ )+ Y, =%
10200y, — 20199y, +10000y. , = x;’
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Solution of Boundary-Value Problems
Finite Difference Method

Finite Difference Method :

= Other formulas can be used for approximating the
derivatives

= For some linear cases this reduces to tri-diagonal
system.
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