Wireless Network Models

Chapter 3

Outline

- Wireless Networks
- Performance measures
- The RRM problem
- QoS in multiservice systems
- Conclusions

Wireless Networks what are the technical issues ?

- Wireless system
 - Infrastructure
 - Base stations (RAPs)
 - Fixed network
 - Terminals
- Coverage requirements
- Service requirements

Performance criteria

- Capacity
 - Number of subscribers served
 - Bitrate/Bandwidth provided
- Quality
 - BER
 - Delay
- Service probability
 - Coverage
 - Outage probability
 - Blocking/Service denial

Resource Management problem formulations

- Commercial Operator:
 - Maximize profit (Revenue Cost)
 - User performance as constraint
- Alternative (?)
 - Maximize user performance
 - Constraint: No of users, Cost

Radio Resource Allocation problem

- For given infrastructure:
- To each active terminal assign
 - Base station
 - Waveform ("Channel")
 - Transmitter power
- Such that Link Quality & power constraints are satisfied for as many terminals as possible

Wireless Networks Analysis

- Multiple transmitters Multiple receivers
- Complex propagation pattern
- Two step Analysis:
 - What is the current interference situation ?
 - What is the received quality for a given interference situation?

Network Analysis strategy

- Compute C/I in individual links
- Map C/I ->
 Quality

Interference models

- Arbitrary collection of wireless links
- Propagation conditions on link (i,j) characterized by G_{ij}; the instantaneous link gain

$$P_{rx,j} = P_{tx,i}G_{ij}$$

Link gain matrix (NxN)

$$G = \{G_{ij}\}$$

Interference & Quality model

- Performance measure:
 - Effective Signal-to-Interference (+Noise) Ratio SIR ("C/I")
- θ_{ij} Normalized crosscorrelation
- Outage probability :

 $P_{out} = Pr[\Gamma_{\iota} < \gamma_{o}]$

$$\Gamma_i = \frac{G_{ij}P_j}{\sum_{k \neq j} G_{ki}P_k\theta_{ki} + N_i}$$

Special case: Cellular system - Orthogonal signals

- "Channel"-by "Channel analysis
- At most one mobile & base station per cell active
- Simplify indices number mobiles & base stations by cell number
- Separate Up/Down-link calculation

Propagation modeling

Gain Matrix

$$G = \begin{pmatrix} G_{11}G_{12}\cdots G_{1M} \\ G_{21}G_{22}\cdots G_{2M} \\ \vdots & \vdots & \ddots & \vdots \\ G_{B1}G_{B2}\cdots G_{BM} \end{pmatrix}$$

- B Base stations/access ports
- M Mobile terminals

Traffic modeling

- M terminals uniformly distributed
- ω terminals per area unit
- given one terminal at (x,y) in area A

$$\mathcal{D}_{X,Y}(x, y) = \Pr\{[X \in x + dx], [Y \in y + dy]\}$$
$$= \frac{1}{A} dx dy$$

Capacity definition

Gain Matrix

- M terminals active
- Y terminals served
- Z=M-Y assignment failures
- Assignment failure rate

$$\upsilon = \frac{E[Z]}{E[M]} = \frac{E[Z]}{\omega A}$$

Capacity max $\omega : \upsilon = \frac{E[Z]}{\omega A} \le \upsilon_o$

Resource Management Strategies

- Preplanning strategies
 - Fixed channel allocation based on statistical information (average traffic, propagation prediction)
- Real-time measurement
 - Decisions based on actual measurements

Channel (Waveform) Assignment

- Static assignment
- Dynamic Channel assignment
 - Traffic adaptive assignment
 - Signal Strength adaptation (Reuse Partitioning)
 - Interference adaptive assignment
- Random assignment
 - SFH
 - DS-CDMA

Static channel assignment ("Cell planning")

- Input data
 - Propagation predictions
 - GIS / Statistical
 - Average/Peak traffic predictions
- Use orthogonal channels/time slots
- Create "cell plan" assigning channels to base stations

Wireless Internet - the main 3G driver ?

- What is "Internet" ?
 - To "the man in the street" = Web-browsing multimedia service platform
- "Multimedia"
 - Interactive information services
 - Streaming audio/video
 - etc

New Service requirements - consequences:

- High bandwidth
- Multiple QoS requirements
- Packet oriented systems always connected
- Asymmetric traffic patterns
- Unlicensed operation

Multiple-QoS Radio Resource Management - characteristics

- "Multimedia traffic" = different QoS requirements: i.e.
 - Error performance
 - Delay
 - Date rate (throughput)
- Non-real time traffic vs. **RT/Voice-traffic**
 - Guarantee minimum throughput (average data rate)
 - Utilize all available throughput at any time (best effort
 - Guaranteed constant data rate & delay

Service provision in modern information-communication system

3G & QoS Profiles

- Maximum data rate
- Guaranteed data rate
- Maximum *packet/message* size
- Residual bit error rate: undetected error rate after delivery over the service interface
- Transfer delay
- Priority

3G Service classes

Service Class Typical applications Service Function Characteristics

Conversational Real time (RT)	Voice	 Preserve time relations between entities Stringent preservation of conversational patterns (low delay)
Streaming RT	Video/Audio streams	Preserve time relations between entities
Interactive Best effort (BE)	Web-browsing	Request-response patternPreserve payload (low error rate)
Background BE	File transfer, e-mail	Not time criticalPreserve payload (low error rate)

3G Service class parameters

Traffic class	Conversational	Streaming	Interactive	Background
Max bit rate	< 2000	< 2000	< 2000- overhead	< 2000- overhead
Max PDU (bytes)	< 1500	< 1500	< 1500	< 1500
Guaranteed	< 2000	< 2000		
bit rate				
Transfer delay	80- max value			
(ms)				
Priority	1,2,3	1,2,3	1,2,3	1,2,3
Residual BER	$5 * 10^{-2}, 10^{-2},$ 10 ⁻³ ,, 10 ⁻⁶	$5*10^{-2},10^{-2},$ $10^{-3},10^{-4},10^{-5},10^{-6}$	4*10 ⁻³ ,10 ⁻⁵ ,10 ⁻⁸	4*10 ⁻³ ,10 ⁻⁵ ,10 ⁻⁸

Multiple QoS Radio Resource Management – challenges

- Objective function hard to formulate
 - Multi-dimensional performance measures
- No direct correspondence between resource consumption and perceived performance:
 - Speech user in poor location may consume more than High speed data user within LOS

New Performance Measures

- Service denial probability.
 - Prob. of denying a user to <u>begin</u> a certain session due to resource shortage
- Service interruption probability:
 - Prob. of forcing a user to <u>terminate</u> a certain session due to resource shortage

Novel Resource management techniques

- Waveform selection
 - Rate adaptation
 - Interference avoidance
- Packet oriented techniques & scheduling
- Dynamic vs Random Channel Allocation
- Multi-QoS RRM
 - Scheduling & Queuing strategies
 - QoS Contracts & Guarantees
- Adaptive Antennas
- Integrated Resource Management

Resource management problem

- Resources to be managed/conserved
 - Radio frequency spectrum
 - Power consumption
 - Infrastructure cost
 - Terminal cost