
2-1-1 -Abdul Waheed

Measurement Techniques and Tools

Types of workload and workload selection
Workload characterization technique
Monitors and accounting logs
Benchmarking
Case study



2-1-2 -Abdul Waheed

Types of Workloads and Workload Selection



2-1-3 -Abdul Waheed

Workloads

Many workloads are traditionally used to compare systems
Terminology and workloads mostly date back to time-sharing 
systems

Test workload
Used for performance studies

Real or synthetic

Real workload
One that is observed on a system as it is being used in normal 
operation
It cannot be repeated; no suitable for testing

Synthetic workload
It is developed for performance studies with characteristics similar to 
real workload
It is repeatable
No sensitive data involved in testing



2-1-4 -Abdul Waheed

Workloads Examples
Example: latency evaluation for web based transactions

Real workload
Transaction request from a browser
Latency includes 

Network latency: communication time and delays due to queuing 
Server latency: processing time, which is a function of load

Hard to repeat latency results as network congestion and server load may vary
Synthetic workload

Simulated transaction with same characteristics as real
Simulated network conditions using e.g., DummyNet tool
Results are easy to repeat as both server load and network latencies can be 
controlled

Example: memory system performance evaluation
Real workload

Real application program
Order of memory accesses may not be the same over multiple experiments

Synthetic workload
Memory reference trace
Same order of memory references for all experiments



2-1-5 -Abdul Waheed

Motivation

Performance bottlenecks
Was CPU
Now, it is memory

Comparison of various systems

0

100000

200000

300000

400000

500000

600000

700000

Copy Scale Add

NEC SX5
Cray T3E
SGI Origin3800
Fujitsu VPP5000
HP SuperDome750



2-1-6 -Abdul Waheed

Types of Workload

Single instruction (e.g., addition)
Instruction mixes
Kernels
Synthetic programs
Application benchmarks



2-1-7 -Abdul Waheed

Addition Instruction

Historically, processor performance was most important part of 
computer system performance

Faster processor meant faster computer system

Number of instructions that computers executed were few
Addition was most frequent one
Thus, computer with faster addition instruction was more powerful
Workload: addition instruction
Metric: addition time

Why performance evaluation based on addition instruction is 
insufficient for today’s computers?

CPU is no longer a bottleneck resource in computer systems
Pipelining and superscalar techniques enhance CPU performance
Bottleneck resource is memory subsystem



2-1-8 -Abdul Waheed

Instruction Mixes
Number of instructions grew with processor complexity

Addition instruction was not enough
Instead, use relative frequencies of several instructions on real systems as 
weighting factors to get an average instruction time

An instruction mix is a specification of various instructions coupled with 
their usage frequency

Compute single number metric: CPI or average instruction time 
Inverse of average instruction time is also used: MIPS or MFLOPS
Use these measure to compare various CPUs
Several instruction mixes are used in computer industry

Gibson mix
Developed by Jack Gibson in 1959 for use with IBM 704 systems
Processor speed was determined by measuring memory cycle time, addition 
time, or an average of addition and multiplication times
Gibson mix extended averaging to 13 different classes of instructions
Weights are based on frequency of operations on IBM 704 and IBM 650 
systems



2-1-9 -Abdul Waheed

Gibson Instruction Mix

100.0

18.0Indexing13.

5.3Instructions not using registers12.

1.6Logical, And, Or11.

4.4Shifting10.

0.2Fixed-point divide9.

0.6Fixed-point multiply8.

1.5Floating divide7.

3.8Floating multiply6.

6.9Floating add and subtract5.

16.6Branches4.

3.8Compares3.

6.1Fixed-point add and subtract2.

31.2Load and store1.



2-1-10 -Abdul Waheed

Drawbacks of Using Instruction Mixes

Computer architecture has become too complex
Classes of instructions that are not reflected in a mix

Supersclar, pipelining, cache pre-fetching, address translation (TLB), speculative 
execution, etc.

Execution time is highly variable due to addressing modes, cache hit rates, 
pipeline efficiency, and interference from other applications

An instruction mix is not a real program
A mix will have a fixed contribution from each type of operation
Real program/data may use sparse data structures

Most of multiplies with 0 will be much faster
Some conditional branches are based on data

Measure only the speed of a processor as a single number
May not reflect the system performance, which is limited by bottleneck 
resource
Useful when processor is the bottleneck resource



2-1-11 -Abdul Waheed

Kernels

Limitations of instruction mixes due to architectural complexity lead to 
the use of kernels

A kernel is a generalization of instruction mix
Kernel literally means nucleus

A set of instructions that constitutes a higher level function
Most frequent of such functions can be used as workload
Aka a kernel
A processing kernels solely exercises processor without using I/O devices

It is possible to identify a kernel in several applications
A set of common operations e.g., sorting, matrix inversion, differential 
equation solution, etc.
Different processors can be compared using kernels
Kernels are not selected based on any measurements

They simply become popular due to use by many researchers



2-1-12 -Abdul Waheed

Examples of Kernels

Scalar product of two vectors (BLAS1)
Matrix vector multiply (BLAS2)
Matrix inversion
Sorting
CFD kernels in NAS benchmarks

Numerical solution of partial differential equations
Examples

FT
LU

Disadvantage: kernels typically do not exercise I/O subsystem



2-1-13 -Abdul Waheed

Synthetic Programs

Synthetic programs were developed to overcome limitations of kernels
Exerciser loops for I/O devices

Specified number of I/O requests to determine device performance
Often written in high-level languages for portability

First exerciser loop written by Buchholz (in 1969) was called a synthetic 
program

Other exercise loops are used to measure OS services
Examples: process creating, memory allocation, etc.

Example: a synthetic program to evaluate I/O performance
Make a number of disk read and write requests
Determine latency of read or write
Control parameters

Number of iterations
Size of blocks moved to and from disk
Buffered vs. unbuffered

Metrics 
Throughput: ops/sec
Latency: seek time, read latency, and write latency



2-1-14 -Abdul Waheed

Example: Synthetic Workload Generator



2-1-15 -Abdul Waheed

Pros and Cons of Synthetic Programs

Advantages
Overcomes limitation of kernels
Exercises I/O and OS services
Can be developed quickly and given to vendors
Not necessary to use real data files that may contain sensitive 
information
Programs can easily be modified and ported
Once developed, measurement process is automated on 

Disadvantages
Too small
Do not make representative memory or disk references
Page faults and disk cache may not be properly exercised
CPU and I/O operations overlap may not be representative
May not represent multi-user environments



2-1-16 -Abdul Waheed

Application Benchmarks
Benchmark programs are suitable for a particular application

Scientific applications
Linear algebra
Computational Fluid Dynamics (CFD)

Banking and air line reservations 
Databases
Transaction processing systems

WWW
Exercise almost all sorts of system resources

CPU
Operating system
Cache and memory subsystem
I/O devices
Network

Benchmarking = measurement based comparison among systems
Workload in such studies is referred to as benchmarks



2-1-17 -Abdul Waheed

Popular Benchmarks

Sieve
An algorithm to find all prime numbers below a given number n

Consider all number from 1, …, n
Strike out all multiples of k = 2, 3, …, n1/2

Remaining number are prime numbers
A high-level language program can be written and run on multiple 
systems to compare their performance
Performance depends on

Cache/memory overhead and data structure used to lay out the dataset

Ackermann’s function
It is a recursive function
Assesses the efficiency of procedure-calling mechanisms in high-
level languages
Determines execution time per call, # of instructions executed per 
call, and amount of stack space required per call



2-1-18 -Abdul Waheed

Popular Benchmarks (Cont’d)
Whetstone

Used at British Central Computer Agency
The kernel consists of 11 modules to match the frequency of operations of 
949 ALGOL programs
Represents small engineering/scientific applications

FP workload
Exercises processor 

Array addressing, fixed and FP arithmetic, subroutine calls
Results are measures as KWIPS (Kilo Whetstone Inst/Sec)

Dhrystone
Developed in 1984 at Siemens
Lots of procedure calls
Kernel represents system programming environments

Integer workload
Does not exercise FP unit or I/O devices

Results presented as DRIPS (Dhrystone Inst/Sec)



2-1-19 -Abdul Waheed

Popular Benchmarks (Cont’d)

Linpack
Developed by Jack Dongarra at Argonne National Lab in 1983
Programs to solve dense systems of linear equations

High percentage of FP add and multiply instructions
Most of the time is consumed in as set of subroutines called Basic 
Linear Algebra Subprograms (BLAS)

Compares systems based on execution rates (MFLOPS)
Popular for comparing FP performance

Livermore loops
Workload consists of a set of 24 separate tests 
Tests dominated by large vectorizable scientific computations 
Abstracted from real scientific (supercomputing) applications 
Applications represent FP workloads
Measure performance in MFLOPS



2-1-20 -Abdul Waheed

Popular Benchmarks (Cont’d)

NAS parallel benchmarks
Benchmark is based on CFD kernels that solve PDEs
It is the first paper-and-pencil benchmark

It simply specifies the problem
Anyone is allowed to use specifications to write their own code
Lots of room to optimize code for specific architectural features
Flexibility to use advanced compiler techniques for vectorization or 
parallelization

It is often used to compare the performance of parallel and vector 
supercomputing systems

Scientific FP code
Almost all kernels are memory-intesive

Performance is measured in terms of MFLOPs as well as execution 
time on one or more processors

Several implementations are also available now



2-1-21 -Abdul Waheed

Popular Benchmarks (Cont’d)
Debit-Credit Benchmark

Application benchmark for comparing transaction processing systems
Benchmark represents a distributed banking network

Consists of several branch offices, each with tellers
Customers wait in queues for next teller

Select suitable parameters for a study: number of branches, tellers, and 
account holders
Systems compared with price-performance ratios
TPC (Transaction Processing Performance Council) benchmark is a variant 
of debit-credit benchmark



2-1-22 -Abdul Waheed

Popular Benchmarks (Cont’d)
SPEC benchmark suite

Standardized set of benchmarks developed by System Performance 
Evaluation Cooperative (SPEC)
SPEC benchmark suites: 1992, 1995, 1998, etc.
Based on programs contributed by scientists and engineers

GCC Gnu C compiler
Espresso Electronic design automation
Spice Electronic design automation
Doduc Monte Carlo simulation on nuclear reactor
NASA7 FP kernels using matrix ops submitted by NASA
LI Time to solve 8-queens problem by LISP interpreter
Eqntott Translates boolean equation to a truth table
Matrix300 Linpack operations on 300x300 matrices
Fpppp Quantum chemistry benchmark
TomcatvVectorized mesh generation program

These benchmarks exercise CPU, FPU, and memory subsystems
Metric: SPECmark is determined as geometric mean of relative throughput 
(SPECthruput) as measured wrt a VAX-11/780



2-1-23 -Abdul Waheed

SPEC2000 CPU Performance Comparisons

0

100

200

300

400

500

600

700

800

900

gzip vpr gcc mcf vortex

AMD 1.2 GHz

Dell 1 GHz PIII

SGI 0.5 GHz R14K

SUN 0.9 GHz
UltraIII


