The Art of Performance Evaluation

- Given same data, two analyst may draw different conclusions
- Example:
 - Throughput of two systems in transactions per second is as follows:

System	Workload 1	Workload 2
А	20	10
В	10	20

- Three possible ways to compare
 - Compare the average throughput
 - Compute throughputs wrt system B
 - Compute throughputs wrt system A

Example (Cont'd)

Comparison of Averages

System	Workload 1	Workload 2	Average
А	20	10	15
В	10	20	15

- Conclusion: two systems are equally good
- Compare the ratio of throughputs with system B as reference

System	Workload 1	Workload 2	Average
А	2	0.5	1.25
В	1	1	1

- Conclusion: system A is better than B
- Compare the ratio of throughput with system A as reference

System	Workload 1	Workload 2	Average
А	1	1	1
В	0.5	2	1.25

• Conclusion: system B is better than A

The Art of Perf. Evaluation (Cont'd)

- Similar games can be played in:
 - Selecting the workload
 - Measuring the systems
 - Presenting the results
- Some of these games are played intentionally to create a market "hype" by certain vendors
- What can help?
 - Thorough understanding of systems under test
 - Thorough understanding of workload and its impact on system performance
 - Ability to use various tools to run multiple measurement based experiments and analyze their results
 - Mastering the "science" before practicing the "art" of performance evaluation

Resources for Further Information

- Professional organizations
 - ACM Sigmetrics
 - ACM Sigsim
 - CMG: The Computer Measurement Group, Inc.
 - IFIP: International Federation for Information Processing
 - SIAM: Society for Industrial and Applied Mathematics
- Conferences
 - Sigmetrics
 - CMG
 - PERFORMANCE
 - MASCOTS
- Journals
 - Performance Evaluation Review: quarterly by ACM Sigmetrics
 - CMG Transactions: quarterly by CMG
 - Performance Evaluation: twice a year by Elsevier Science Publishers
 - IEEE Transactions on Software
 - IEEE Transactions on Computers
 - ACM Transactions on Computers

Related Courses

- Later, you may consider taking some of these courses to enhance your background:
 - Stochastic processes
 - Time-series analysis
 - Statistical inference operations research
 - Queuing theory
 - Clustering and pattern recognition
 - Decision theory
 - Simulation

Performance Projects

- Select a system/subsystem
 - Network
 - Hardware: ATM, Ethernet, GigabitEthernet, routers, switches, etc.
 - Software: TCP/IP stacks, tools, and applications
 - QoS: DiffServ, IntServ, IP based multicast, and content netowrking
 - Processor
 - Memory/cache
 - I/O
 - Operating system
 - Server: database, LDAP, web, proxy, streaming, etc.
- Do:
 - Perform measurements
 - Analyze the collected data
 - Simulate
 - Analytically model the subsystem
- Group: up to 2 students per group

Project Suggestions

- Memory subsystem
 - On-chip counter based measurements
 - OS level tools/instrumentation
 - Profiling
- Server performance measurement
 - Web server performance
 - Proxy server performance
 - Streaming media server performance
 - L4 switch performance
- Network QoS measurement
 - Real-time network applications
 - L4 switch performance
 - VoIP server (gateway) performance
- Workload characterization
 - Proxy logs
 - Network traffic logs
 - Accounting logs

Raj Jain's Project Suggestions

- Measure and compare the performance of two microprocessors
- Simulate and compare the performance of two multicomputer interconnection networks
- Characterize the workload on a typical networked workstation in a department
- Characterize the workload of a campus web proxy server
- Measure and analyze the performance of a distributed information system
- Measure and identify the factors that result in memory/cache overhead for a sizeable application
- Develop a software monitor to measure the performance of a distributed system
- Compare several network congestion control algorithms

Chapter 2

Common Mistakes and How To Avoid Them

Common Mistakes

- No goals
 - No general purpose model
 - Goals => techniques, metrics, workload
 - Biased goals
 - "OUR system is better than THEIRS"
 - Analysis without understanding the problem
- Inappropriate experiment design
 - Unsystematic approach
 - Incorrect performance metrics
 - Unrepresentative workload
 - Overlook important parameters and significant factors
 - No sensitivity analysis

Common Mistakes (Cont.)

- Inappropriate level of detail
- No analysis
 - Erroneous analysis
 - No sensitivity analysis
 - Improper treatment of outliers
 - Ignoring errors in input
 - Ignoring variability
 - Too complex analysis
- Improper presentation of results
 - No analysis that can help the decision maker
 - Ignoring social aspects
 - Omitting assumptions and limitations

Checklist for Avoiding Common Mistakes

- Is the system correctly defined and the goals clearly stated?
- Are the goals stated in an unbiased manner?
- Have all the step of analysis followed systematically?
- Is the problem clearly understood before analyzing it?
- Are the performance metrics relevant for this problem?
- Is the workload correct for this problem?
- Is the evaluation technique appropriate?
- Is the list of parameters that affect performance complete?
- Have all parameters that affect performance are chosen as factors to be varied?
- Is the experimental design efficient in terms of time and results?
- Is the level of detail proper?
- Is the measured data presented with analysis and interpretation?
- Is the analysis statistically correct?

Checklist (Cont'd)

- Has the sensitivity analysis been done?
- Have the outliers in the input or output been treated properly?
- Has the variance of input been taken into account?
- Has the variance of the results been analyzed?
- Is the analysis easy to explain?
- Is the presentation style suitable for its audience?
- Have the results been presented graphically as much as possible?
- Are the assumptions and limitations of the analysis clearly documented?

A Systematic Approach to Perf Evaluation

- State goals and define the system
- List services and outcomes
- Select metrics
- List parameters
- Select factors to study
- Select evaluation technique
- Select workload
- Design experiments
- Analyze and interpret data
- Present results
- Repeat

Case Study: Remote Pipes vs. RPC

• System definition:

- Services:
 - Small data transfer or large data transfer
- Metrics:
 - No errors and failures; correct operation only
 - Rate, time, resource per service
 - Resource = client, server, network

This leads to:

- 1. Elapsed time per call
- 2. Maximum call rate per unit of time, or equivalently, the time required to complete a block of n successive calls
- 3. Local CPU time per call
- 4. Remote CPU time per call
- 5. Number of bytes sent on the link per call

- Parameters:
 - System parameters
 - Speed of the local CPU
 - Speed of the remote CPU
 - Speed of the network
 - OS overhead for interfacing with the channels
 - OS overhead for interfacing with the networks
 - Reliability of the network affecting the number of retransmissions
 - Workload parameters
 - Time between successive calls
 - Number and sizes of the call parameters
 - Number and sizes of the results
 - Type of channel
 - Other loads on local and remote CPUs
 - Other loads on the network

- Factors:
 - Type of channel: remote pipes and remote procedure calls
 - Size of the network: short distance and long distance
 - Sizes of the call parameters: small and large
 - Number n of consecutive calls: 1,2,4,8,16,32,...,512, and 1024
 - Notes:
 - Fixed: type of CPUs and OS
 - Ignore retransmissions due to network errors
 - Measure under no other load on the hosts and the network

- Evaluation technique:
 - Prototypes implemented => measurements
 - Use analytical modeling for validation
- Workload:
 - Synthetic program generating the specified types of channel requests
 - Null channel requests => resources used in monitoring and logging
- Experimental design:
 - A full factorial experimental design with $2^3x11 = 88$ experiments
- Data analysis:
 - Analysis of variance for the first three factors
 - Regression for number n of successive calls
- Data presentation:
 - The final results will be plotted as a function of the block size n

Chapter 3

Selection of Techniques and Metrics

Selecting an Evaluation Technique

Criterion	Analytical modeling	Simulation	Measurement
Stage	Any	Any	Post-prototype
Time required	Small	Medium	Varies
Tools	Analysts	Computer languages	Instrumentation
Accuracy	Low	Moderate	Varies
Trade-off evaluation	Easy	Moderate	Difficult
Cost	Small	Medium	High
Salability	Low	Medium	High

Three Rules of Validation

- Do not trust the results of a simulation mode until they have been validated by analytical modeling or measurements
- Do not trust the results of an analytical model until they have been validated by a simulation model or measurements
- Do not trust the results of a measurement until they have been validated by simulation or analytical modeling

Two or more techniques can be used sequentially

Selecting Metrics

- Include:
 - Performance: time, rate, and resource
 - Error rate/probability
 - Time to failure (MTBF) and duratio
- Consider including:
 - Mean and variance
 - Individual and global
- Selection criteria:
 - Low-variability
 - Non-redundancy
 - Example: Avg. waiting time = queue length x arrival rate
 - Using both waiting time and queue length will be redundant
 - Completeness

Case Study: Two Congestion Control Algs

- Service: send packets from specified source to specified destination in order
- Possible outcomes
 - 1. Some packets are delivered in order to the correct destination
 - 2. Some packets are delivered out of order to the destination
 - 3. Some packets are delivered more than once (duplicates)
 - 4. Some packets are dropped on the way (lost packets)
- Performance: for packets delivered in order
 - 1. Response time: the delay inside the network
 - 2. Throughput: the number of packets per unit of time
 - 3. Processor time per packet on the source end system
 - 4. Processor time per packet on the destination end systems
 - 5. Processor time per packet on the intermediate systems
- Variability of response time => retransmissions
- Out-of-order packets consume buffers => probability of out-of-order arrivals

- Duplicate packets consume the network resource
- Lost packets packets require retransmission => probability of lost packets
- Too much loss cause disconnection =>prob. of disconnect
- Shared resource => fairness
 - Fairness index is given by:

$$f(x_1, x_2, ..., x_n) = \frac{\left(\sum_{i=1}^n x_i\right)^2}{n \sum_{i=1}^n x_i^2}$$

- Fairness properties:
 - Represents variability of user throughputs
 - Always lies between 0 and 1
 - Equal throughput => fariness = 1
 - If k on n receive x and n-k users receive zero throughput: the fairness index is k/n
- Throughput and delay were found redundant => use power
 Power = Throughput / response time
- Variance in response time redundant with the probability of duplication and the probability of disconnection
- Total 9 metrics

Commonly Used Performance Metrics

Response time and reaction time

Commonly Used Perf Metrics (Cont'd)

- Turnaround time = time between the submission of a batch job and the completion of its output
- Stretch factor: the ratio of the response time with multiprogramming to that without multiprogramming
- Throughput: rate (requests per unit of time)
 - Examples:
 - Jobs per second
 - Requests per second
 - Millions of instructions per second (MIPS)
 - Millions of floating point operations per second (MFLFOPS)
 - Packets per second (PPS)
 - Bits per second (bps)
 - Transactions per seconds (TPS)

Commonly Used Perf Metrics (Cont'd)

- Capacity:
 - Nominal capacity: Maximum achievable throughput under ideal workload conditions
 - Example: bandwidth in bits per second. The response time at maximum throughput is too high
 - Usable capacity: Maximum throughput achievable without exceeding a prespecified response time limit
 - Knee capacity: Knee = Low response time and high throughput

Commonly Used Perf Metrics (Cont'd)

- Efficiency: Ratio of usable capacity to nominal capacity. Or, the ratio of the performance of an n-processor system to that of a one-processor system is its efficiency
- Utilization: The fraction of time the resource is busy servicing requests. Average fraction used for memory
- Reliability:
 - Probability of errors
 - Mean time between errors (error-free seconds)
- Availability:
 - Mean Time to Failure (MTTF)
 - Mean Time to Repair (MTTR)
 - MTTF/(MTTF+MTTR)

Utility Classification of Performance Metrics

- Higher is Better or HB
 - Example: throughput
- Lower is Better or LB
 - Example: response time
- Nominal is best or NB
 - Example: utilization

Setting Performance Requirements

- Examples:
 - The system should be both processing and memory efficient. It should not create excessive overhead
 - There should be an extremely low probability that the network will duplicate a packet, deliver a packet to the wrong destination, or change the data in a packet
- Problems:
 - Non-specific
 - Non-measurable
 - Non-acceptable
 - Non-realizable
 - Non-thorough
- Solution: SMART (specific, measurable, acceptable, realizable, and thorough)

Case Study: Local Area Networks

- Service: send frame to D
- Outcomes:
 - Frame is correctly delivered to D
 - Incorrectly delivered
 - Not delivered at all
- Requirements:
 - Speed
 - The access delay at any station should be less than one second
 - Sustained throughput must be at least 80 Mbits/sec
 - Reliability
 - Five different error modes
 - Different amount of damage
 - Different level of acceptability
 - Availability

- Reliability criterion
 - The probability of any bit being in error must be less than 1x10⁻⁷
 - The probability of any frame being in error (with error indication set) must be less than 1%
 - The probability of a frame in error being delivered without error indication must be less than 1x10⁻¹⁵
 - The probability of a frame being misdelivered due to an undetected error in the destination address must be less than 1x10⁻¹⁸
 - The probability of a frame being delivered more than once (duplicate) must be less than 1x10⁻⁵
 - The probability of losing a frame on the LAN (due to all sorts of errors) must be less than 1%

- Availability: Two modes of failure
 - Network reinitialization
 - Permanent failures
- Availability criterion:
 - The mean time to initialize the LAN must be less than 15 msec
 - The time between LAN initializations must be at least one minute
 - The mean time to repair a LAN must be less than one hour (LAN partitions may be operational during this period)
 - The mean time between LAN partitioning must be at least one-half an week