COE 402 Computer Systems Performance Evaluation

Dr. Uthman Baroudi
Computer Engineering Department
KFUPM
Spring 2005

Administrative

- Office hours
 - SSMT, 12:00-1:00 PM, 22/144
 - By appointment: ubaroudi@kfupm.edu.sa or (03) 860-4283
- For updated information, frequently visit the class URL:
 - webcourses.kfupm.edu.sa

المفاتيح العشرة للنجاح الدراسي

http://www.khayma.com/happy-family/0001/000004.html

- الطموح كنز لا يُفنى: لا يسعى للنجاح من لا يملك طموحاً
- العطاءِ يساوي الأخذ: النجاح عمل وجد وتضحية وصبر منح
- غير رأيك في نفسك: الإنسان يملك طاقات كبيرة وقوى خفية يحتاج أن يزيل عنها غبار التقصير والكسل ..
- ا النجاح هو ما تصنعه (فكر بالنجاح أحب النجاح ...).. الناجحون لا ينجحون وهم جالسون لاهون ينتظرون النجاح
 - الفشل مجرد حدث ...
- املأ نفسك بالإيمان والأمل: الإيمان بالله أساس كل نجاح .. وهو النور الذي يضيء لصاحبه الطريق ..
 - اكتشف مواهبك واستفد منها
 - الدراسة متعة .. طريق للنجاح : المرحلة الدراسية من أمتع لحظات الحياة .. ولا يعرف متعتها إلا من مرّبها والتحق بغيرها .. متعة التعلم لا تضاهيها متعة في الحياة ..
 - الناجحون يثقون دائماً في قدرتهم على النجاح
 - النجاح والتفوق = 1% إلهام وخيال + 99% جهد واجتهاد

أأبيت سهران الدجى وتبيته نوماً وتَبْغِي بعد ذاك لحاقي

Course Objectives

- This course covers following broad topics
 - Computer system performance evaluation methodologies
 - Measurement-based performance evaluation
 - Experimental design
 - Analytic (queuing) and simulation models and their analyses
- What is expected from the students
 - Understand the "science" before practicing the "art"
 - Analyze real computer system workloads (case studies)
 - Learn to use tools (e.g., matlab, opnet, etc.) and at least one language to analyze data (e.g., awk, perl, or even C/C++)
 - Learn to conduct all aspects of a performance study and write a report about it (term paper)

Grading policy:

- Homework and programming assignments (15%);
- Quizzes 10% (EVERY other Tuesday)
- Project 20%
- Exam—I (March 25th , 2005) 15%
- Exam-II (May 6th , 2005) 15%
- Comprehensive Final Exam 25%

General Policy

- Check your exam schedule carefully. NO MAKE-UP EXAM will be given.
- NO LATE HOMEWORK will be accepted.
- Minimum penalty for cheating is 0 for the homework/project/exam where it occurs.
- Exceeding <u>6 absences</u> without official excuse means DN grade automatically
- No WP grade will be given for poorly performing students
- You are responsible for all the materials covered in the class.
 So, it is your responsibility to find out what has been covered in those unattended classes.

Course Syllabus

- Overview of performance evaluation
- Measurement techniques and tools
 - Workload selection, monitoring, characterization, and analysis
 - Measurement-based analysis techniques and tools
 - Case study
- Experiment design and analysis
 - Selection of experimental factors and their variations; and confidence intervals
 - Case study
- Computer system modeling and analysis
 - Simulation modeling
 - Random number generation and analysis, simulation techniques/tools, and analysis of results
 - Analytical modeling
 - Basic queuing theory, queuing networks and their application to computer systems, operational laws, mean value analysis, and analysis of results
 - Case study

Resources

- Text
 - The Art of Computer System Performance Analysis by Raj Jain, John Wiely, 1991.
- Additional Material
 - Handouts
 - Posted on class WebCT

Why Evaluate Performance?

- Performance is central to computer systems
 - New hardware is typically faster than the existing one
 - New software is supposed to be "better" than the existing one
 - New protocol is proposed for better resource utilization
- Competition demands efficient products
 - Marketing a product that is slower than its competitors is hard
 - Highly efficient products can cut cost for customer
- Performance is central to any R&D effort
 - Need to compare similar architectures, algorithms, systems, etc.
 - Determine the efficacy of new designs
 - Understand the differences between different systems
- Let's look at three typical real life scenarios of performance evaluation...

Scenario # 1: Selecting a Desktop

- Various vendors provide a range of hardware
 - Range of CPUs: low-end to high-end
 - Range of RAM: 64M, 128M, 256M, 512M, etc.
 - IDE vs. SCSI disks
 - NIC: 10/100, GigabitEthernet card, etc.
 - Display: 8M, 16M, 32M, etc. video RAMS
 - CD/DVD/CD-R
- Selection criteria: "best" machine within your budget
- Things that help
 - Define or quantify "best"
 - Determine your application needs
 - Reading mail or using word processor does not require high-end h/w
 - Running simulations might require powerful CPU, large RAM, or both
 - Consider benchmark result (e.g., SPEC benchmark)
 - Make trade-offs within you budget
- A very simple performance analysis scenario
 - Common-sense can lead to right results

Scenario # 2: Designing a New Cache

- You need to compare your latest design of cache X with existing cache design Y
- Your approach
 - You are to use your company's simulator
 - You need to compare the two caches under identical conditions
 - You need a workload to simulate the real operating conditions
- Workload selection
 - What level of abstraction: memory access trace, assembly program, or high-level language program
 - What type of instruction mix: synthetic workload, benchmark programs, or real applications
 - What type of experiment design: cache parameter selection, number of experiments, and comparison of results
- Formal performance evaluation background is a valuable asset in such specialized application scenarios

Scenario # 3: More Common Case

- Determine specs for your company's latest web server product
 - Your manager needs to tell the press how great this product is
 - Also, he needs to know where his products stand wrt his competitor's products
 - You are asked to use only measurement-based tests
- Marketing Department's response
 - Select test conditions under which your company's product shines
 - Result: web server is at least 10 times faster than closest competitor's published performance!
- Engineering Department's response
 - Select one or more industry standard benchmarks
 - Select a range of operating conditions (be honest!)
 - Determine under what conditions your product is better/worse and why
 - Communicate with developers to fix performance bugs
- Knowing the whole truth will help your company as well as the customer
 - You should be familiar with relevant techniques and tools to contribute
 - You need diverse skills: architecture, OS, analysis tools, C/C++

Typical Performance Evaluation Cases

- Performance evaluation techniques and tools will by handy for following cases:
 - Select a computer
 - Select an operating system
 - Select a TCP/IP implementation for an OS
 - Select a hard drive for a set of clusters
 - Select a proxy server for an ISP
 - Select a local network architecture
 - Select experiments for your next research paper...
- All these cases may look unique
 - However, methodologies and tools may be common
 - It is an art to design and undertake a performance study