Chapter 7: LAN/MAN Systems

∝ Ethernet

- ✓ Token Ring
- ✓ Fiber channel
- *∝* Wireless LANs
- ∠ ATM LANS

ALOHA Protocols

1

2

- ∠ Pure ALOHA
 - » Developed for Packet Radio networks, 1970
- ✓ When station has frame, it sends
- Station listens (for max round trip time)plus small increment
- ≤ If ACK, fine. If not, retransmit
- ✓ Frame check sequence (as in HDLC)
- If frame OK and address matches receiver, send ACK

Carrier Sensing Multiple Access

 \measuredangle Observations:

- » For LANs, the propagation delay between stations is usually very small compared to frame transmission time
 - » Example: 10-Mpbs Ethernet
- » All stations know that a transmission has started almost immediately

P-Persistent CSMA

✓ First listen for clear medium (carrier sense)

- » If medium idle,
 - transmit with probability p
 - Defer until next slot with probability 1-p
 - If the slot is also idle, it either transmit or defers again
 - Process continues until either the frame transmitted or another station has begun
 - If another station had begun, defer for random time
- » If medium busy, wait until becomes idle

11

CSMA with Collision Detection (CMSA/CD)

⊯ Example:

Consider a 10-Mpbs Ethernet LAN. Propagation time is about 5 ?sec/Km for a coaxial cable. For a 500m cable: What is the contention period?

✓ Observations:

- » Any overlapping is considered as Collision.
- » Drawback of CSMA: when two frames collide, the medium remains unusable for the duration of transmission of both damaged frames.
- » Why don't stop transmission as soon as a collision is detected?

15

Ethernet

- « Access methodology: CSMA/CD
- ∠ Logical topology: broadcast
- A Physical topology: traditionally, BUS; currently, most often STAR
- ≤ Standard: IEEE 802.3

Ethernet and IEEE 802.3

✓ Ethernet uses 1-persistent CSMA/CD

- » when a station wants to transmit, it listens to the cable. If the cable is busy, the station waits until it goes idle; otherwise it transmits immediately.
- » when collision occurs, all colliding stations terminate their transmission, the first station detects a collision it sends a 48-bit noise burst to warn other stations, wait a random time, and repeat the whole process again
- » No acknowledgment is provides

-	The 8	02.3	Frai	ne Fo	rmat		
Bytes 7	1	2 or 6	2 or 6	2	0-1500		4
Preamble 10101010	SFD 10101011	DA	SA	Data field	Data	Pad	FCS
	IE	EE 802	2.3 frar	ne forma	t	0-46	
62 bits		6 bytes	6 bytes	2 bytes	46 – 15 bytes		4 bytes
Preamble 10101010	SYNC 11	DA	SA	Data field	Data		FCS
		Ethern	et fran	ne format			

The 802.3 Frame Format

✓ What is the minimum frame size?

- » 64 bytes not including the start of frame, why?
 - To distinguish valid frames
 - To prevent a station from transmitting short frames such that transmission ends before it reach the far end
- » Example:
 - A 10 Mbps LAN, with a maximum length of 2500 m and four repeaters, the minimum allowed frame must take 51.2 ?sec.

This corresponds to 64 bytes.

What about if we have 100 Mps LAN $% \left({{{\rm{AN}}}} \right) = {{\rm{AN}}} \left({{{\rm{AN}}}} \right) = {{{\rm{AN}}}} \left({{{\rm{AN}}}} \right) = {{{AN}}} \left$

Preamble patterns: 10101... to allow the receiver's clock to lock with the sender's

The 802.3 Frame Format DA & SA: LSB transmitted first If the first bit of DA is '1', it means that a group address To broadcast to all users, DA is set to all 1s. Who is responsible for location destination address? The first 3 octets to identify the manufacturer and are assigned by IEEE The last 3 octets to produce unique MAC layer addresses and the are assigned by the manufacturer

		Cablin	<u>g</u>	
	a rate in Mk	ops> <signalin h in hundred</signalin 	•	
Name	cable	Max.	Nodes/se	advantages
10Base5	Thick coax	500m	100	Good for backbone
10Base2	Thin coax	200m	30	Cheapest system
10Base-T	Twisted pair	100m	1024	Easy maintenance
10Base-F	Fiber optics	2000m	1024	Best between buildings

Ethernet Technologies							
Parameter	10-Mbps	100 Mbps	1Gbps				
SlotTime	512-bit time	512-bit time	4096-bit time				
interFrameGap	9.6 ?sec	0.96 ?sec	0.096 ?ses				
attemptLimit	16	16	16				
backoffLimit	10	10	10				
jamSize	32 bits	32 bits	32 bits				
MaxFrame Size	1518 bytes	1518 bytes	1518 bytes				
MinFrameSize	64 bytes	64 bytes	64 bytes				
Burstlimit	N/A	N/A	8192 bytes				