

#### Uthman Baroudi, Ph.D.

ubaroudi @ccse.kfupm.edu.sa Department of Computer Engineering King Fahd University of Petroleum and Minerals Dhahran, Saudi Arabia

### Introduction

### **Evaluation / Assessment**

- Midterm Exam (November 12, 2002) 25%
- ≤ Homeworks 10%
- ∠ Quizzes 15%
- ∠ Project 15%
- ≤ Final Exam 35%

## Course Objective

- ⊯ To Learn
  - » Short-term memory
  - » Long-term memory - reinforcement
- ✓ Surface Learning

3

5

???S ? ??t S ? ?? ß 狎

א ממימיתי מימי מימי יוייר מימי אייר אייני אי רי מערימי אייר אייר אייר אייר אייני אייר איינ רי מיר אייני אייר אייני אייר אייני איינ

### <u>Historical glimpses</u>

- The past several decades have witnessed a phenomenal growth in the computer industry:
  - » Dramatic drop in the cost/performance
  - » Advanced and complex computer applications, e.g. I mage processing, speech recognition,..

- As computer proliferated, so did the need for data communication
  - » People became more and more interested in connecting several computers together.

### Historical glimpses

#### <u>Somputer Network:</u>

Interconnected collection of autonomous computers and computer resources

#### *Expected return*!

- » Resource Sharing (information, software, printers, ...)
- » High reliability
- » Saving monev
- » Powerful communication medium

### Historical glimpses (contd.)

- In early years of networking, each computer manufacturer developed its own communication solution
  - Structured Network Architecture (SNA) of IBM
  - DEC Network Architecture (DNA) of DEC
     ARPANET of ARPA
  - ARPANET of A
     etc.

### Historical glimpses (contd.)

- I977 -- I SO established a subcommittee to develop an architecture/structure that defines communication tasks and which would:
  - » Serve as a reference model for international standards
  - » would facilitate efficient internetworking among systems from different technologies, manufacturers, administrations, nationalities, and enterprises.

### <u>Historical glimpses (contd.)</u>

- I978 -- Meeting of 40 experts in Washington, D. C. started work that yielded 6 years later the OSI Reference Model. Paper by Louis Payzia and Hubert Zimmermann, Proc. Of
  - » Paper by Louis Pouzin and Hubert Zimmermann, Proc. Of the IEEE November 1978, pp. 1346 - 1370.
     1975 -- ARPANET transitioned to Defense
- ∠ 1975 -- ARPANET transitioned to Defense commercial agency.
- I978-80 -- ARPANET protocol were upgraded with TCP/IP.
   » Paper by Cerf and Khann, IEEE Trans. Comm., May 1974.

#### 10

12

### Historical glimpses (contd.)

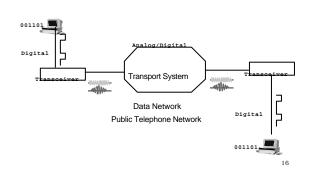
- ✓ February 1980 -- The IEEE started Project 802 to develop standards for the LAN market.
- ≈ 1981 -- A new host added to ARPANET every 20 days.
- - » TCP/IP adopted as standard by DOD
  - » ARPANET had over 300 hosts.
     » Over 1200 nodes by 1985.
  - » Over 1200 node
    » ARPANET split
  - ARPANET: Academic (Educational, Research)
  - MILNET: Military

### <u>Historical glimpses (contd.)</u>

- ≤ 1984 -- The OSI -RM came out.
  - » Defines a strategic outline/vision
  - » Reduces degrees of freedom of standards
  - developers » Centered around the hierarchical decomposition
  - of communication functions
- - » 1987 -- over 25000 nodes
  - » 1989 -- 3000 networks for over 200000 users

### Historical glimpses (contd.)

- $\varkappa$  1991-- WWW invented & Gopher introduced
- *∞* 1995
  - » Internet backbone privatized
  - » Over 7 million networks around the world
  - $\mathbin{\ensuremath{\text{\circ}}}$  150000 users join the network every month
- ≤ July, 1998 -- over 36 million networks
- ∠ Jan, 1999 -- 157 million users
- ✓ Projected to be 327 million by year 2000


13

15

### Historical glimpses (contd.)

- - » Dedicated communication links (copper, fiber, satellite) functioning as the concrete/asphalt
  - » Usually T/E leased lines serve as the on-ramp
  - connecting to regional networks - Capacity of T1 highways is 1.544 Mbps
  - that of T3 is 45 Mbps
- The Internet is becoming a platform for most computer needs.

Simple Data Communication Model



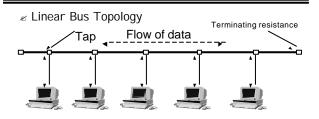
#### Terminology

Networks are classified on the basis of geographic span.

Basic Networking concepts

- » Local Area Networks (LANs)
- » Metropolitan Area Networks (MANs)
- » Wide Area Networks (WANs)
- The difference in geographical extent between WANs and LANs account for significant differences in their respective design issues.

#### LAN Characteristics


- ✓ LANs are designed to:
  - » Operate within a limited geographic area
  - » Allow multiaccess to high-bandwidth media
  - » Control the network privately under local administration
  - » Provide full-time connectivity to local services
  - » Connect physically adjacent devices

### LAN Characteristics

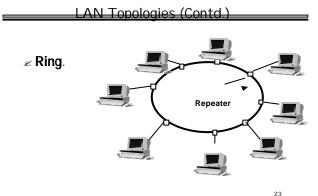
- » All nodes are connected by a single high speed shared channel.
- » Data is packetized and packets are carried past all nodes in the network.
- » Addressing is required but routing is not needed.
- » Congestion control and network architecture are among design issues.
- » Several topologies can be used but the choice of topology is not a major issue.

19

### LAN Topologies



### Bus Topology


Characteristics:

✓ Broadcasting (all station are listening)
 ✓ Full-duplex link between Tap and station

• Problems:

- $\swarrow$  A mechanism is needed to regulating the flow of traffic  $\bullet~$  Solution:
  - ∠ Addressing each station
  - ∠ Multiple access technique

21



Star Topology

### LAN Components

- A LAN has the following basic components:

• Functions of central Hub

• Store-and-Forward

» Cable or Cable-less. It connects the various stations. E.g. twisted pair, coaxial cable, CATV cable, fiber optics, radio waves.

» Intelligent workstations which attach to the medium. E.g. PC or workstation.

20

- » Non-intelligent which attach to a station. E.g. Printers, Modems, Hard disks, etc.
- ∠ File server
  - » The main unit in the network that offers various services to the network users.
  - » It refers to a computer, its hard disk, its network operating system, and the file server software that manages the network resources.

25

### LAN Components (Cont.)

- ✓ Network Interface Card (NIC)
  - » Network adapter to send and receive messages. It is a circuit board with the components necessary for handling communication tasks
  - » The NIC is plugged onto one of the available slots on the PC expansion bus.
  - » Installed in each workstation and file server such as Ethernet NIC.

### LAN Components (Cont.)

- ✓ Network Operating System (NOS)
  - » Installed on the hard disk of the file sever station. Its function is to control the access to the common shared resources, such as printers, hard disks, database applications, etc.
- ✓ Workstation Operating System
  - » Consists of a network shell installed on any one of the popular operating systems such as DOS, Unix, Linux, MAC-OS, etc.

27

### LAN Characteristics

- What distinguishes one LAN from another:
  - » Transmission Medium
    - Twisted pair, Coax, CATV, Fiber Optic, or Wireless.
  - » Topology: Star, Bus, Ring
  - » Transmission method: Base/Broadband
  - » Medium Access Technique
    - Random Access (CSMA/CD)
    - Controlled Access (Token Passing)

28

26

### Server-Based LANs

Server-based: A server-based network consists of a group of useroriented PCs called *clients* that request and receive network services from specialized computers called *servers*.

### Client Server Model

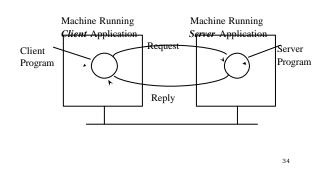
- Client-Server paradigm is the primary pattern of interactions among cooperating applications.
- This model constitutes the foundation on which distributed algorithms are built.

### What is the Client-Server Paradigm?

- The paradigm divides communicating applications into 2 broad categories, depending on whether the application waits for communication or initiates it.
  - » An application that initiates a communication is called a *client*.
  - » End users usually invoke a client software when they use a network service.

31

#### Client Server Model (cont.)


- Server: Any program that offers a service reachable over the network
  - » If a machine's primary purpose is to support a particular server program, the term server is usually applied to both, the machine and the server program
- Client: An executing program becomes a client when it sends a request to a server and waits for a response

#### Client Server Model (cont.)

- A server is any program that waits for incoming communication requests from a client.
  - » Each time a client application needs to contact a server, it sends a request and awaits a response.
     » The server receives a client's request, performs
  - the necessary computation, and returns the result to the client.
  - » When the response arrives at the client, the client continues processing.

33

#### Client Server Model (cont.)



#### Client Server Model (cont.)

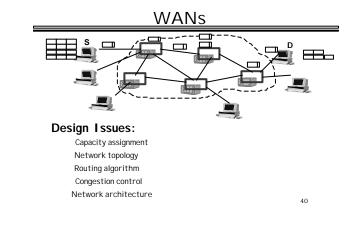
#### <u>A Misconception</u>:

- » Technically, a *server* is a program and not a piece of hardware.
- » However, computer users frequently (mis)apply the term to the computer responsible for running a particular server program.
  - For example, Web Server, is usually a computer running the http server program.

#### MANs

- A bigger version of a LAN (e.g. group of buildings, city, ..)
- ✓ No switching is used
- MAN supports both data and voice
- ≤ IEEE 802.6 standard

### WANs


To make optimum use of expensive communication links, WANs are structured with irregular placement of the nodes. Store-and-Forward packet switching is used to deliver packets to their destination.

### WAN Characteristics

- » Span a large geographical area
- » Data is packetized and packets are carried past all nodes in the network.
- » Addressing routing are required

# Wide-Area Networks and Devices

- & WANs are designed to:
  - » Allow access over serial interfaces operating at lower speeds
  - » Control the network subject to regulated public services
  - » Connect devices separated over wide, even global areas



### Enterprise Developments

- The enterprise is a corporation, agency, service, or other organization that will tie together its data, communication, computing, and storage resources.
- Developments on the enterprise network include:
   » LANs interconnected to provide client/server applications
  - \* LANS interconnected to provide chent/server applications integrated with the traditional legacy applications from mainframe data centers
  - » End-user needs for higher bandwidth on the LAN, which can be consolidated at a switch and delivered on dedicated media
  - » Integration of formerly separate networks so that the nonbursty traffic from voice and video applications coexist on a single network
  - Relaying technologies for WAN service, with very rapid growth in Frame Relay and cell relay (ATM)

37

39

### Network Architecture

### **Communications Protocol**

- ✓ A set of rules and conventions
  - » To provide error-free and maximally convenient information transfers
  - » Protocol define connectors, cables, signals, data formats, error control
  - » techniques and algorithms for message preparation, analysis and transfer

#### Communication Protocols (Contd.)

- ✓ Network Protocol:
  - » A set of rules defining the syntax (form) and semantics (meaning) in order to regulate communication between network nodes.
  - » Protocols can be implemented in either hardware or software
  - » The EIA-232-D is a physical layer protocol implemented in hardware.
  - » TCP/IP are implemented in software.

### Protocol Data Units (PDU)

- Each PDU must contain two major parts:
  - » Header:
    - I dentifies how the following parts are to be handled and routed.
  - » Message:
    - This is the message body itself.
    - This is where the protocol is determined to be character oriented or bit oriented.

| Header | Message | Trailer |
|--------|---------|---------|
|        |         | 45      |

#### Communication Standards

The goal of the ISO subcommittee developing the OSI model was to provide a framework for network standards acceptable to all manufacturers

### ISO OSI Reference Architecture

- The architecture is layered to reduce complexity.
  - » Each layer offers certain services to the layer immediately above it.
  - » Each layer shields the higher layer from the details of implementation of how the services are offered.
  - » Layer "n" on one station carries on a conversation with layer "n" on another network station.

### OSI Reference Model

- ✓ The ISO OSI Layered Model
  - » Application: File transfer, mail, rlogin, etc.
  - » Presentation: Data formatting.
  - » Session: Negotiation and connection.
  - » Transport: End-to-end delivery.
  - » Network: Routing of packets.
  - » Data link: Transfer of frames.
  - » Physical: Cabling system.

43

44

### Why a Layered Model

| 7 | Application  |
|---|--------------|
| 6 | Presentation |
| 5 | Session      |
| 4 | Transport    |
| 3 | Network      |
| 2 | Datalink     |
| 1 | Physical     |

Reduces complexity
 Standardizes interfaces
 Facilitates modular engineering
 Ensures interoperable technology
 Accelerates evolution
 Simplifies teaching and learning

49

51

### Layer Functions

| 7 | Application  | Networl   |
|---|--------------|-----------|
| 6 | Presentation | Data rep  |
| 5 | Session      | Inter -ho |
| 4 | Transport    | End-to-   |
| 3 | Network      | Address   |
| 2 | Datalink     | Access    |
| 1 | Physical     | Binary tr |

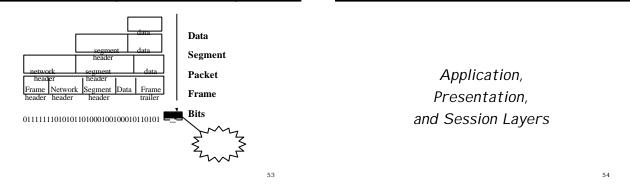
k processes to applications presentation ost communication

end connections

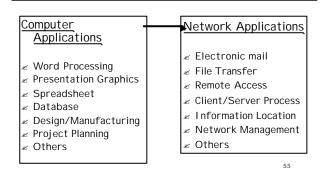
ses and best path

to media

transmission Binary


50




## Data Encapsulation

| Application  | Application  |
|--------------|--------------|
| Presentation | Presentation |
| Session      | Session      |
| Transport    | Transport    |
| Network      | Network      |
| Datalink     | Datalink     |
| Physical     | Physical     |





### **Application Layer**



### Application Layer (cont.)

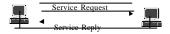
| Network Applications                                                                                                                                                                                               | Internetwork Applications<br>(Extend beyond the enterprise)                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>communication)</li> <li>Electronic mail</li> <li>File Transfer</li> <li>Remote Access</li> <li>Client/Server Process</li> <li>Information Location</li> <li>Network Management</li> <li>Others</li> </ul> | <ul> <li>Electronic Data Interchange</li> <li>World Wide Web</li> <li>E-mail Gateways</li> <li>Special-Interest Bulletin<br/>Boards</li> <li>Financial Transaction<br/>Services</li> <li>Internet Navigation Utilities</li> <li>Conferencing (Video, Voice,<br/>Data)</li> </ul> |
|                                                                                                                                                                                                                    | 56                                                                                                                                                                                                                                                                               |

### **Presentation Layer**

- ∠ Text
- ∠ Data
  - » ASCII, EBCDIC
  - » Encrypted
- ∠ Sound
- - » MIDI (Musical Instrument Digital Interface)
  - » MPEG (Motion Picture Experts Group)
  - » QuickTime

57

59


### **Presentation Layer**

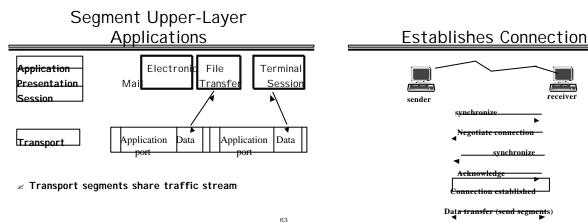
- ✓ Visual I mages
  - » PICT(format to transfer QuickDraw graphics between Macintosh or PowerPC programs)
  - » TIFF (Tagged Image File Format)
  - » JPEG (Joint Photographic Experts Group)
  - » GIF
- Provides code formatting and conversion for applications

58

#### Session Layer

different hosts



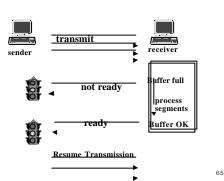

### Session Layer (contd.)

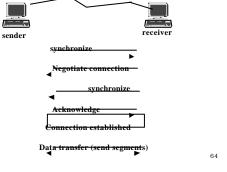
- ✓ Network File System (NFS)
- Allows trasnparent access to remote network resources ✓ Structured Query Language (SQL)
- $\operatorname{RPC}$  procedures are built on clients and executed on servers
- Allows intelligent terminals to communicate with remote UNIX machines
- ✓ AppleTalk Session Protocol (ASP)
- Establishes and maintains sessions between an AppleTalk client and server
- ∠ DNA Session Control Protocol (SCP)

### Transport Layer Overview

- ✓ Segments upper-layer applications
- ✓ Establishes an end-to-end connection
- Sends segments from one end host to another
- ✓ Ensures end-to-end data reliability

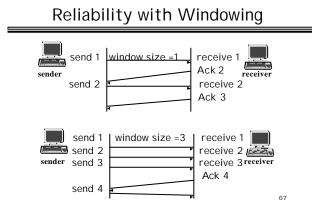






61

Transport

Layer

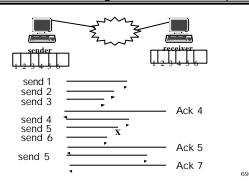

### Establishes Connection



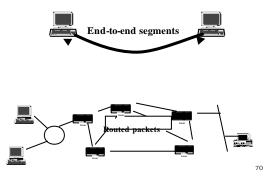


### Reliability with Windowing

- ✓ In the most basic form of reliable connection-oriented transfer, data segments must be delivered to the recipient in the same sequence that they were transmitted.
- K Windowing is a method to control the amount of information transferred end-to-end. Some protocols measure information in terms of number of packets




### An Acknowledgement Technique


- Reliable delivery guarantees that a stream of data sent from one machine will be delivered through a functioning data link to another machine without duplication or data loss. Positive acknowledgement with retransmission is one technique that guarantees reliable delivery of data streams.
- ∠ The sender keeps the record of each segment it sends and waits for an acknowledgement.
- The sender also starts a timer when it sends a segment, and it retransmits a segment it the timer expires before an acknowledgement arrives.

68

### An Acknowledgement Technique



<u>Transport to Network Layer</u>



#### Summary

- Presentation layer formats and converts network application data to represent text, graphics, images, video, and audio.
- Session-layer functions coordinate communication interactions between applications.
- - » Multiplexing
  - » Connection synchronization
  - » Flow control
  - » Error recovery
  - » Reliability through windowing

71

### Important Concepts

#### ∠ Circuit Switching

- » A dedicated communication path between two stations

  a path is a sequence links between nodes
- » Circuit switching connection phases:
  - Circuit Establishment (TDM or FDM)
    Data transfer
  - Circuit disconnect
- » Channel capacity is dedicated for the duration of a connection
- » Fixed data (digital or analog) transfer rate (streaming)
- » No delay other than Call establishment delay and propagation delay
- » Main Application: Telephone networks
- 72

#### **Important Concepts**

#### ✓ Circuit Switching Drawbacks:

- » Low channel utilization
- » The interconnecting devices must receive and transmit at the same rate

#### ✓ Packet Switching

- » Data is transmitted in blocks, called packets
- » Each packet has two main components:
- data (payload)
  - header (control information)

73

#### **Important Concepts**

- - » Datagram Approach
  - » Virtual Circuit Approach

#### 🖉 Datagram Approach

- » Each packet is treated independently
- » Packets may not follow the same route and therefore arrive out of sequence

#### & Virtual Circuit Approach

- » A logical connection is established before any packets are sent
- » A fixed route is preplanned
- » Each packet contains a virtual circuit identifier and data <sup>74</sup>

#### **TCP/IP Key Differences From OSI**

- & Connectionless Service: TCP/IP is pro-connectionless

- & Internetworking: Not in original OSI

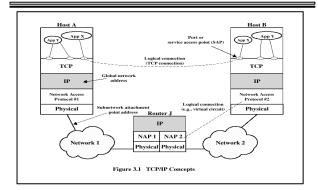
75

#### Layering

- & Choice at each layer is independent of other layers.
- « Null components
- $\ll$  Nth layer control info is passed as N-1th layer data.

#### Hierarchy

- Can directly use the services of a lower entity even if it is not in an adjacent layer


- ∠ Lower layer control information can be used for higher layer control, e.g., lower layer close may close all higher layers

#### 77

#### Internetworking Terms

- Subnetwork: Each component of an internet
- Z Port: Application processes in the host

### **Operation of TCP/IP**



### **Operation of TCP/IP**

- - » Each host on a subnet must have a unique global internet address
  - » Each process with a host must have a unique address within the host (port)
- « Host address on a network
- IP deals only with host addresses = Subnet + Host #

# **Operation of TCP/IP (Cont. )**

#### 

- » Source port (16 bits)
- » Destination port (16 bits)
- » Uses segment sequence number (32 bits) for ordering and lost segment detection
- » Uses checksum for error detection
- Passes the segment to IP with instructions to deliver it to the

destination host

#### **IP** Operation

- ∠ IP Protocol
  - » Deals only with host addresses
- ✓ Services:
  - » Send: user to IP
  - » Deliver: IP to user
  - » Error (optional): IP to user

### <u>IP Operation</u>

#### ∠ IP Header

- » Source host address (32 bits)
- » Destination host address (32 bits)
- » Type of service ( reliability, precedence, priority)
- » Time-to-live (TTL)
- » Uses checksum for error detection

**IP Address** ∠ Class A: 16,774,214 0 Network Local 24 10 ∠ Class B: 65,534 Network Local bits ∠ Class C: 254 Network Local 110 21 8 Host group (multicasting) 1110 4 28 bits 

82

### **Operation of TCP/IP**

- - » Each host on a subnet must have a unique global internet address
  - » Each process with a host must have a unique address within the host (port)
- IP deals only with host addresses = Subnet + Host #
- « Application messages are broken into TCP segments

85

### **Operation of TCP/IP (Cont.)**

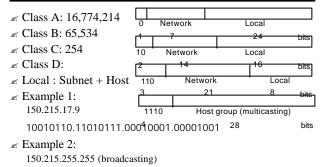
#### ✓ TCP Header

- » Source port (16 bits)
- » Destination port (16 bits)
- » Uses segment sequence number (32 bits) for ordering and lost segment detection
- » Uses checksum for error detection
- » Passes the segment to IP with instructions to deliver it to the destination host
- » Delivers the data to appropriate port in the destination host

#### **IP Operation**

∠ IP Protocol

» Deals only with host addresses


- *∞* Services:
  - » Send: user to IP
  - » Deliver: IP to user
  - » Error (optional): IP to user

#### **IP** Operation

#### *∝* IP Header

- » Source host address (32 bits)
- » Destination host address (16 bits)
- » Type of service (reliability, precedence, priority)
- » Time-to-live (TTL)
- » Uses checksum for error detection

#### IP Address



#### **IP Address**

- Class B supports 65,000 hosts on each of 16,000 networks

87