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Abstract—We determine the capacity region of an ad hoc
wireless network with an arbitrary number of nodes. This
region defines the set of achievable rate vectors between all
source-destination pairs in the network under variable rate
transmission and both single hop and multihop routing. We
also determine the effect of sophisticated transceiver capa-
bilities such as power control, spatial reuse, and successive
interference cancellation on the capacity region. The capac-
ity region boundary is obtained using complex linear pro-
gramming methods. Numerical results indicate that under
variable rate transmission, multihop routing and spatial fre-
quency reuse greatly increase the capacity region. Consider-
able capacity gains are also achieved by successive interfer-
ence cancellation. On the other hand, gains by power con-
trol in addition to variable rate transmission are marginal.
Similar trends are observed for the special case of multihop
cellular networks.

I. Introduction

Wireless ad hoc networks consist of a number of nodes
communicating with each other over wireless channels.
Two nodes wishing to communicate can do so directly or
can use intermediate nodes to forward packets between
them. Ad hoc networks lack a backbone intrastructure,
so all control functions (e.g. routing, access, adaptivity)
must be coordinated between network nodes. The lack of
a backbone infrastructure differentiates ad hoc networks
from cellular networks, where all nodes communicate di-
rectly with a base station and the base station controls all
transmission and routing functions.
Ad hoc networks pose many design challenges due to

their lack of backbone infrastructure, decentralized con-
trol, dynamic topology, and wireless channel characteris-
tics [1]. A recent landmark paper determined the uniformly
achievable rate for nodes in an asymptotically large ad hoc
network [2]. In this work we investigate the capacity re-
gion for ad hoc networks with any number of nodes. This
multidimensional region dictates the set of rates that all
nodes can achieve to all other nodes in the network. We
determine the capacity region under time division routing
and variable rate transmission. The Shannon capacity re-
gion of ad hoc networks remains an open problem, so our
capacity regions only define the maximum achievable rates
under our transmission assumptions, which may be sub-
optimal. Our problem formulation allows us to investigate
the impact of different techniques on capacity, including
power control, multihop routing, spatial reuse, and succes-
sive interference cancellation. We will see that with the
exception of power control, all of these techniques signifi-
cantly increase the ad hoc network capacity region.
The remainder of the paper is organized as follows. In

Section II we describe the system model. Section III de-
scribes the achievable rate matrices for a given network,
and defines the capacity region in terms of these matri-
ces. Capacity region slices for a five node ad hoc network
are given in Section IV under various assumptions on the
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transceiver capabilities, including single hop and multihop
routing, spatial reuse, power control, and successive inter-
ference cancellation. The capacity of a multihop cellular
network is also studied in this section. Our conclusions are
given in Section V. Throughout the paper, terms being de-
fined are set in boldface.

II. System Model

Consider an ad hoc network with n nodes
A1, A2, . . . , An. Each node has a transmitter, re-
ceiver, and an infinite buffer, and wishes to communicate
with some or all of the other nodes, possibly by multihop
routing. We assume that nodes cannot transmit and
receive at the same time. We also assume that nodes do
not broadcast information, so every transmitted packet is
intended for a single node.
Node Ai transmits at some maximum power Pi and all

transmissions occupy the full bandwidth W of the sys-
tem. We define the power vector to be the vector
P = [P1 P2 . . . Pn]. When node Ai transmits, node
Aj receives the signal with power GijPi, where Gij de-
notes the channel gain between nodes i and j. The chan-
nel gain assumes path loss and shadowing, and is modeled
as Gij = Kd

α
ijS, where K is a propagation constant, dij

is the distance between nodes i and j, α is the path loss
exponent, and S is random shadowing with standard de-
viation σ. We define the channel gain matrix to be the
n × n matrix G = {Gij}. The receiver of each node is
subject to thermal noise and interference from other users,
where the interference between nodes i and j is also de-
termined by the link gain Gij . We assume the noise to
be additive, white and Gaussian, with noise power spec-
tral density ηi for node Ai. We define the noise vector
H = [η1 η2 . . . ηn].
Let {At : t ∈ T } be the set of transmitting nodes at a

given time, each node At transmitting with power Pt. Let
us assume that node Aj �∈ T is receiving information from
node Ai, i ∈ T . Then the signal to interference and
noise ratio (SINR) at node Aj will be

γij =
GijPi

ηj +
∑
k∈T ,k �=iGkjPj

. (1)

We assume that the transmit-receive node pairs vary
their transmission rate based on γij to meet a given per-
formance metric. Specifically, nodes Ai and Aj agree on
a transmission rate Rij that satisfies Rij ≤ f(γij) where
f(.) is a function that depends on the transmission and de-
coding strategy and the performance metric. For example,
based on Shannon capacity we can set

f(γij) =W log2(1 + γij). (2)

Under the Shannon assumption bits transmitted over a
link are received with asymptotically small error as long



as the rate Rij ≤ f(γij) for f defined in Eq. (2). Alterna-
tively, f(γij) can correspond to the maximum data rate to
meet a given BER requirement under a specific modulation
scheme such as MQAM [3]. We assume that all transmit-
receive node pairs use their maximum achievable rate rate
Rij = f(γij) for the given function f and link SINR γij .
Note that f(γij) for γij defined in (1) assumes all interfer-
ence signals are treated as noise: this assumption will be
relaxed when we consider successive interference cancella-
tion.
We assume omniscient nodes with perfect knowledge of

the channel gain matrix (G) and the noise (H ) and power
(P) vectors. The transmission strategy for all nodes for a
given channel gain matrix G is agreed to in advance. Thus,
no overhead is needed for nodes to determine G, H, P, or
the transmission strategy.

III. Achievable Rate Matrices and Capacity

In this section we determine the capacity region of a
network based on its achievable rate matrices, which we
now define.

A. Transmission Schemes and Rate Matrices

Rate matrices provide a mathematical framework for
describing the network transmission scheme at any given
time. A transmission scheme describes the information
flow between different nodes in the network at a given
time, and must capture the characteristics of transmit-
receive node pairs as well as packet forwarding. There-
fore, the transmission scheme at a given time consists of
all transmit-receive node pairs in operation at that time
and, for each of these pairs, the transmission rate and the
original source node of the transmitted information. We
assume that nodes cannot transmit and receive simultane-
ously, and that the rates defined by a given transmission
scheme are achievable, i.e. the rate between nodes i and j
does not exceed f(γij), where f defines the link rate con-
straint and γij is the link SINR between nodes i and j for
the given transmission scheme.
To illustrate transmission schemes, consider

a four node network where the node pairs
(A1, A2), (A2, A3), (A3, A4), (A4, A1) can all com-
municate directly but the node pairs (A1, A3) and
(A2, A4) cannot, perhaps due to excessive shadowing of
their links. Therefore, if A1 wants to communicate with
A3, it must do so by forwarding packets via intermediate
nodes, and similarly for traffic between nodes A2 and A4.
Let us consider a transmission scheme that allows multi-
hop routing and spatial reuse. Under these assumptions a
possible strategy to transmit information between nodes
A1 and A3 using nodes A2 and A4 as intermediate nodes
would be time sharing between transmission schemes S1
and S2 shown in Fig. 1. The figure shows the transmit-
receive node pairs in operation for each scheme using an
arrow connecting them. The originating node of the infor-
mation being transmitted and the link transmission rate
is shown next to the link arrows. Specifically, in scheme
S1, node A1 sends information to node A2 and node A3
sends information to node A4. The nodes originating the
traffic in this scheme are nodes A1 and A3 respectively.
The transmission rate for each of these transmissions,
given as 10 in the figure, is dictated by the SINR on
each link under S1. The second scheme S2 forwards the

information from the intermediate links to their final
destination. Specifically, node A2 sends the information
that originated at node A1 to its final destination A3 at
rate 10, and node A4 sends the information that originated
at node A3 to its final destination A1 at rate 10. If we
time share equally between S1 and S2 we see that node
A1 can send information at rate 5 (10 × .5) to node A3
and node A3 can send information at rate 5 to node A1.
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Fig. 1. Transmission schemes S1 (a) and S2 (b).

Although transmission schemes are useful for describing
the state of the network at a given time, they are not con-
venient for mathematical manipulation. We will therefore
formally define transmission schemes using rate matrices.
For a network of size n we define the rate matrix R(S)
of a transmission scheme S as an n×n square matrix with
elements Rij such that:

Rij =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

R

If node Aj receives information at rate
R with node Ai as the original infor-
mation source.

−R
If node Aj transmits information at
rate R that originated at node Ai.

0 otherwise.

Positive entries in the rate matrix correspond to informa-
tion being received, while negative entries correspond to
information being sent or forwarded. For example, the
rate matrices of schemes S1 and S2 are, respectively,

R1 =

⎡
⎢⎣
−10 10 0 0
0 0 0 0
0 0 −10 10
0 0 0 0

⎤
⎥⎦ , R2 =

⎡
⎢⎣
0 −10 10 0
0 0 0 0
10 0 0 −10
0 0 0 0

⎤
⎥⎦

A rate matrix mathematically captures all the informa-
tion of a transmission scheme: the transmit-receive node
pairs in operation and, for each pair, the original source
node of the transmitted information and the transmission
rate. We note that since information must be preserved,
i.e. the total amount of information that is transmitted
from a node must be received by other nodes, the elements
along any row of a rate matrix must sum to zero.

B. Time Division Routing

Transmission schemes and their corresponding rate ma-
trices completely describe the behavior of a network at



any time. Under time division routing the network may
divide its time between multiple transmission schemes or
equivalently, between multiple rate matrices. Due to the
one-to-one correspondence between transmission schemes
and their corresponding rate matrices, a weighted com-
bination of transmission schemes has a rate matrix equal
to the weighted sum of the corresponding rate matrices.
Therefore, if R1, . . . , RN are a set of achievable rate ma-

trices, the matrix R =
∑N
i=1 aiRi is also an achievable rate

matrix for any coefficients ai ≥ 0 such that
∑N
i=1 ai ≤ 1.

Fig. 2 shows the transmission strategy corresponding to
using transmission scheme S1 75% of the time and trans-
mission scheme S2 25% of the time. The corresponding
rate matrix is

0.75R1 + 0.25R2 =

⎡
⎢⎣
−7.5 5 2.5 0
0 0 0 0
2.5 0 −7.5 5
0 0 0 0

⎤
⎥⎦ (3)

which is equivalent to the transmission scheme shown in
the right side of Fig. 2.

C. Ad Hoc Network Capacity Region

Since an achievable rate matrix describes the set of
achievable rate vectors in a given network at any time,
it would be reasonable to define the capacity of the net-
work under time division as the set of all weighted sums
of achievable rate matrices. However, some weighted sums
of rate matrices will have off-diagonal components that are
negative. Such rate matrices correspond to scenarios where
some nodes forward more information from a source than
they receive from that source (possibly indirectly, through
routing). Clearly, this is not a stable condition, and we
therefore exclude these sums from the capacity region. All
other weighted sums of achievable rate matrices are con-
sidered part of the network capacity region. Some of these
sums correspond to noncausal routing, as a node forwards
traffic from another node before that traffic actually ar-
rives. This situation does not pose a problem under the
assumption of infinite backlog, since forwarding nodes will
always have an infinite number of packets to forward. We
neglect causality in our routing model since it significantly
complicates the problem and obscures our main results.
Based on this motivation we define the ad hoc network
capacity region under time division routing as the convex
hull of the achievable rate matrices with the restriction
that the weighted sums must have nonnegative off diagonal
elements. Specifically, if {R1, . . . , RN} denotes the set of
achievable rate matrices for a given network, the network
capacity is

C = C({Ri})

= {
N∑
i=1

aiRi : ai ≥ 0,
N∑
i=1

ai = 1} ∩ Pn

= Co({Ri}) ∩ Pn

where Pn is the subset of all n× n matrices with all their
off-diagonal components non-negative and Co{Ri} denotes
the convex hull of the set {Ri} of matrices.
The meaning of the capacity region is the following: Let

R be a matrix in the capacity region. Then there is a time

division of achievable rate matrices such that when the
network operates under this time division and i �= j, Rij is
the rate with which node Ai sends its own information to
node Aj , possibly through multiple hops and time division,
and −Rii is the total rate with which node Ai is passing
information to all other nodes.
Since the elements in each row of all matrices in the ca-

pacity region must sum to 0, the capacity region is a subset
of the n× (n− 1) Euclidean space. This dimensionality is
expected, since there are n nodes, each with (n− 1) other
nodes with which it may want to communicate. To capture
the capacity of an ad hoc network with a single parameter,
we define the uniform capacity Cu of a network as the
maximum aggregate communication rate, if all nodes wish
communicate with all other nodes, using a common rate.
The uniform capacity is equal to R× n(n− 1), where R is
the largest R for which the matrix with all its off-diagonal
elements equal to R belongs to the capacity region, and
n(n−1) is the total number of source-destination pairs for
a network of n nodes.

D. Computational Issues

Our goal is to determine the capacity region for an ad-
hoc network, defined as the intersection of the convex hull
of the network’s achievable rate matrices with the set Pn.
Therefore, checking if a point is in the network’s capacity
region is equivalent to checking if the point belongs to Pn,
which is trivial, and checking if it belongs to the convex
hull of the network’s achievable rate matrices. Since the
set of achievable rate matrices is isomorphic to a set of vec-
tors of length n(n− 1), this problem represents a standard
problem in computational geometry, and can be solved by
a variety of different techniques . However, the complexity
of this problem is quite large, since even for a small five
node network the capacity region is twenty dimensional.
For graphing purposes we will only be interested in two
dimensional slices of the capacity region. We can deter-
mine the boundary of such slices in a simplified manner
by following a line starting at the origin that is perpen-
dicular to any tangent of the boundary and finding where
this line crosses the region boundary, then repeating this
process for all such tangents. The crossing point is found
by checking when points R along the line cease to be in the
capacity region. Checking if a point R is in the capacity
region can be cast as the following linear program, which
is much faster to solve than finding the entire region:

minimize: g(x) =

N∑
i=1

xi

subject to:
1 ≥ xi ≥ 0

R =
∑N
i=1 xiRi,

where {R1, . . . , RN} is the set of all achievable rate ma-
trices for the network. If, after solving this problem,
g(x)min ≤ 1, then R can be obtained via a time-division
strategy of achievable rate matrices, so R ∈ C({Ri}). If
g(x)min > 1 then R �∈ C({Ri}).
Note that in order to determine the capacity region, the

set of all achievable rate matrices must first be determined.
As the number of nodes increases, the number of achievable
rate matrices increases factorially. Moreover, the more ca-
pabilities we assign to the transceivers such as multihop
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Fig. 2. The time division transmission scheme T = 0.75S1 + 0.25S2.

routing, simultaneous transmissions, power control, and
successive interference cancellation, the larger the set of
achievable rate matrices that must be considered. There-
fore the complexity of the capacity calculation becomes
intractable for large networks. Multihop cellular networks,
where all nodes send to a centralized base station possibly
via multiple hops, have a restricted structure which reduces
the computational complexity of their capacity regions, as
described in more detail in [4], [5].

IV. Numerical Results

In this section we determine the capacity region for a
given ad hoc network under increasingly more sophisti-
cated transmission strategies. This will illustrate the ca-
pacity gains that can be obtained from these strategies.
The network under consideration is a five node network
with the topology shown in Fig. 3. This network topology
was obtained by uniformly and independently distributing
five nodes in the box [−1, 1]× [−1, 1]. The power gains be-
tween nodes Ai and Aj are given by Gij = Kd

−α
ij S where

dij is the distance between the nodes, the propagation con-
stant K = 10−6, the path loss exponent α = 4, and the
random shadowing S is generated from a log normal dis-
tributionwith unit mean and variance σ = 1. Note that
all node pairs in this network have Gij > 0, so the net-
work is fully connected and all nodes can talk directly to
all other nodes. However, since the link gains of different
node pairs may be very different, multihop routing over
channels with better gains may improve performance over
single hop routing. The transmitter powers are Pi = 10
W, the white noise power spectral density is n = 10−12

W/Hz, and the bandwidth is W = 106 Hz. The achiev-
able link data rates are set to the Shannon limit defined by
Eq. (2). Although we present numerical results for a single
realization of the random network topology and shadowing
parameters, we have studied many such realizations and
found that the same general trends hold for all realizations
[5].

A. Single Hop Routing, No Spatial Reuse

We first determine the network capacity region when
only single hop routing is allowed (no forwarding) and only
one node is active at any time. By only allowing one ac-
tive node at a time, link data rates are higher since there is
no interference, but the network does not take advantage
of spatial reuse. Since there are n nodes in the system,
and each of them has n − 1 possible receivers, the net-
work has Na = n(n − 1) possible transmission schemes.
Their corresponding achievable rate matrices are denoted
by Rai , i = 1, . . . , Nα. Determining these rate matrices is
straightforward using Eq. (2), G, P , and H . The capacity
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Fig. 3. Network topology for the five node network.

region will therefore be:

Ca = Co{Rαi , i = 1, . . . , Na} ∩ Pn (4)

We plot the capacity region Ca corresponding to single
hop routing with no spatial reuse for a two dimensional
slice along the plane Rij = 0, {ij} �= {13}, {45} in line (a)
of Fig. 4. This slice captures a background rate of zero
for node pairs other than (1, 3) and (4, 5). Therefore only
nodes 1 and 4 send data: the other nodes never transmit
since their individual rates are zero and under single hop
routing they cannot help in forwarding packets. Note that
the slice is a straight line, as expected, since without spatial
reuse only one data stream can be serviced at any time.
The uniform capacity of the network is Cau = 0.072.

B. Multihop Routing, No Spatial Reuse

Next we consider the case where multihop routing is al-
lowed, but no spatial reuse, so only one node is transmit-
ting at a given time. Since there are n nodes in the sys-
tems, and each has n− 1 different possible receivers and n
possible nodes to forward data for (including itself), there
are now Nb = n

2(n−1) possible transmission schemes and
their corresponding achievable rate matrices. We define
this set of achievable rate matrices as Rbi , i = 1, . . . , Nb.
Determining these achievable rate matrices is straightfor-
ward using Eq. (2), G, P , and H . The capacity region
under these assumptions will therefore be:

Cb = Co{Rbi , i = 1, . . . , Nb} ∩ Pn. (5)

In Fig. 4 we have drawn a slice (line (b)) of the ca-
pacity region Cb along the zero background rate plane
Rij = 0, {ij} �= {13}, {45}. We note that this slice is again
a straight line, as expected, since without spatial reuse only
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one data stream can be serviced at any time. a weighted
sum of achievable link rates. We also note a significant in-
crease in the size of the capacity region as compared with
the previous case (Ca corresponding to line (a)). This
is due to the fact that under multihop routing the nodes
can avoid transmitting directly to their destination over
paths with small gains, and instead use multiple hops over
channels with much more favorable gains. This increase
is also seen in the uniform capacity of the network, which
increases by 94% to Cbu = 0.140.

C. Multihop Routing with Spatial Reuse

We now consider a network with both multihop routing
and spatial reuse. In this case a network of size n has

N c =

�N2 �∑
i=1

n(n− 1) . . . (n− 2i+ 1)
i!

(n− 1)i (6)

achievable rate matrices Rci , i = 1, . . . , Nc and its capacity
region will be

Cc = Co{Rci , i = 1, . . . , Nc} ∩ Pn. (7)

In Fig. 4 we have drawn a slice of the capacity region (Cc

corresponding to line (c)) along the zero background rate
plane Rij = 0, {ij} �= {13}, {45}. We note that the slice is
no longer a straight line, as the network can now use spa-
tial separation to maintain multiple active transmissions,
and at any time instant it is possible that more than one
streams are serviced. The introduction of spatial reuse in-
creases uniform capacity by 21% to Ccu = 0.169, even for
this small network of five nodes.

D. Power Control

We have so far assumed that nodes either transmit at
their maximum power or remain silent. If we relax this con-
dition and allow each node to transmit at different power
levels below the maximum power, then we increase the set
of achievable rate matrices and thereby the capacity re-
gion. Since there are uncountably many possible power
levels, we restrict our attention to power control strategies

where node i transmits at one of p possible power levels:
{ 1
p
P imax,

2
p
P imax, . . . , P

max
i }. The network will then have

a set of

Nd =

�N2 �∑
i=1

n(n− 1) . . . (n− 2i+ 1)
i!

(n− 1)ipi (8)

achievable rate matrices, resulting in the capacity region

Cd = Co{Rdi , i = 1, . . . , Nd} ∩ Pn. (9)

As in the previous cases, the achievable rate matrices are
straightforward to compute.
In line (d) of Fig. 4 we have drawn a slice of the ca-

pacity region Cd along the zero background rate plane
Rij = 0, {ij} �= {13}, {45} for two-level power control
(p = 2). We observe that this simple power control does
not significantly change the capacity region. Moreover, the
uniform capacity with this power control changes less than
1%, to Ccu = 0.170. Although more levels of power control
might increase capacity somewhat, it appears that such
gains would be negligible. This result is consistent with
other results on variable-rate transmission with power con-
trol, which indicate that if the variable rate transmission is
used to adjust to the link SINR, additional power control
does not significantly improve performance [3].

E. Successive Interference Cancellation

The rate restriction Rij ≤ f(γij) assumes that under
transmission schemes with many simultaneous transmis-
sions, each node decodes only its intended signal, and treat
all other signals as noise. However, under successive inter-
ference cancellation (SIC) nodes may decode some signals
intended for other nodes first, subtract out this interfer-
ence, and then decode their own signals. This strategy
may cause a node to restrict the transmission rate of an
interfering nodes, since the given node must be able to
decode the interfering signal. However, this restriction is
balanced by the fact that the given node’s rate will in-
crease due to the removal of interference. For example,
consider a four node network where node A1 sends to A2
and node A4 sends to A3. Then node A1’s signal will in-
terfere with node A3’s reception, and node A4’s signal will
interfere with node A2’s reception. In this scenario node
A2 could decode node A1’s signal and treat node A4’s sig-
nal as noise, or node A2 could first decode and remove the
signal from node A4 and then decode the desired signal
from node A1. This second decoding strategy will impose
an additional constraint on the transmission rate of node
A4, since this rate must be commensurate with the link
SINR and decoding strategy between nodes A4 and A3 as
well as the link SINR and decoding strategy between nodes
A4 and A2 (since node A2 as well as node A3 must be able
to decode A4’s signal). Node A3 can decode in a similar
manner, either treating node A1’s transmission as noise or
first subtracting it off before decoding the desired signal
from node A4. We see therefore that SIC significantly in-
creases the set of achievable rate matrices. It can be shown
that if a node’s decoding strategy includes SIC and power
control with p possible power levels, there are

Ne =

�N2 �∑
i=1

n(n− 1) . . . (n− 2i+ 1)
i!

(n− 1)ipiG(i) (10)



different achievable rate matrices, where G(i) = 1∗2∗ . . .∗
(i− 1)+ 2 ∗ . . .∗ (i− 1)+ . . .+(i− 1). The capacity region
is then

Ce = Co{Rei , i = 1, . . . , Ne} ∩ Pn. (11)

Line (e) of Fig. 4 shows a slice of the capacity region
Ce along the zero background rate plane Rij = 0, {ij} �=
{13}, {45}. This slice indicates that SIC significantly in-
creases the capacity region even without power control.
Moreover, the uniform capacity increased by 23% from the
previous case, to Ceu = 0.21.
We summarize the uniform capacity of the various

transceiver capabilities we have considered in the follow-
ing table. We see that by far the largest capacity gain is
obtained by allowing intermediate nodes to forward pack-
ets using multihop routing. Spatial reuse and successive
interference cancellation also contribute significant gains.
However, adding power control on top of the underlying
variable rate transmission leads to negligible gain.

Single hop routing, no spatial reuse 0.072
Multihop routing, no spatial reuse 0.140
Multihop routing and spatial reuse 0.169
Adding power control 0.170
Adding SIC 0.21

TABLE I

Uniform capacity of the five node ad-hoc network.

F. Nonzero Background Rates

In Fig. 4 we show capacity region slices under differ-
ent transceiver capabilities assuming the background rates
for all node pairs other than (1, 3) and (4, 5) are zero. In
this section we show the impact on the capacity region
slice of nonzero background rates for these other node
pairs. Specifically, in Fig. 5 we plot two slices of the
capacity regions Ce and Cd, one along the zero back-
ground rate plane Rij = 0, {ij} �= {13}, {45} (lines (e)
and (d)), and one along the nonzero background rate plane
Rij = 0.1, {ij} �= {13}, {45} (lines (e’) and (d’)). The (e’)
and (d’) slices correspond to cases where node pairs other
than (1, 3) and (4, 5) have a background rate of 0.1. We
note that the shape of the slices changes as the background
rate increases above zero. More importantly, we note that
adding a background rate of 0.1 for all 18 other node pairs
does not decrease the capacity region as much as the sum
of the total additional background rate (1.8 = 18× 0.1).

G. Multihop Cellular

We have also determined the uniform capacity for a mul-
tihop cellular system with nine nodes transmitting to a
centrally located base station. Details can be found in
[5]. Table II gives the uniform capacity for this multihop
cellular system under various transceiver capabilities. We
see that the same trends given above for ad hoc networks
also apply to multihop cellular systems. In particular, the
uniform capacity increases by more than an order of mag-
nitude under multihop routing.
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Fig. 5. Comparison of capacity regions Cd and Ce under a back-
ground rate of zero (lines e and d) and a background rate of 0.1 (lines
e’ and d’). Axis units are in bps/Hz.

Single hop routing, no spatial reuse 0.023
Multihop routing, no spatial reuse 0.68
Multihop routing and spatial reuse 0.75
Adding power control 0.77

TABLE II

Uniform capacity of a nine node cellular system.

V. Conclusions and Future Work

We have developed a mathematical framework for find-
ing the capacity region of ad hoc networks and multihop
cellular systems under time division routing and variable
rate transmission. We then applied this framework to de-
termine the capacity gain that can be obtained using vari-
ous sophisticated transceiver capabilities. We show that
multihop routing greatly increases capacity. Significant
gains are also realized with spatial reuse and successive
interference cancellation, but gains from power control are
marginal. We have verified these finding for a wide range
of network topologies and fading scenarios [5]. We are cur-
rently investigating the impact of time-varying multipath
fading on capacity, as well as the optimal routing strategies
that achieve the boundary points on the network capacity
region.
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