
TinyOS Scheduler, Boot sequence
 And concurrency model

I. TinyOS Boot sequence

When the system first starts the system goes thru some initialization steps that can be
summarized as follows

1. Scheduler initialization

This first step is to initialize TinyOS scheduler. It is used to manage tasks
(Discussed later) although not all components need tasks this will insure that
everything is working correctly. The basic TinyOS scheduler uses a FIFO
algorithm, which can be replaced with other algorithms.

2. Component initialization

The second step is to initialize the platformC component this component has
different implementation for different platforms. Duties performed in this stage
are to initialize different components (hardware and software) and putting the
platform in a known state.

3. Signal that the boot process has completed

At this stage the event booted from the interface Boot is signaled. This allows the
programmer to know that all components are initialized and working. All of your
code should start from here.

4. Run the scheduler

After knowing that all components are initialized the system enters its core
scheduling loop. As long as there are tasks in the queue the scheduler keeps
working other wise the system goes to low power mode.

KFUPM. Computer Engineering Department, COE 499
Prepared by: Ayman Al Bassam

II. TinyOS concurrency model

We have four types of calls in TinyOS.
1. Commands (already discussed).
2. Events or Back calls (already discussed).
3. Tasks.
4. C procedures.

Most calls in TinyOS are non-preemptive meaning that they do not interrupt each
other. However there are those cases were code is asynchronous (Preemptive) which
can interrupt each others.
As rule of thump most hardware interrupt handlers are preemptive.

Tasks

Tasks are a type of deferred procedure calls (DPC) which means that they will not be
executed immediately but will be posted to a queue which will execute them in FIFO
order. Tasks are always void and take no parameters since they execute within the
scope of a single component. Tasks also are non-preemptive with respect to each
other. In other words if a task is started it will continue executing until it finishes
without any interruptions from other tasks.
So one might ask what they are good for. Tasks are generally used to execute a
procedure that can wait. In other words it must not execute immediately. Consider the
following scenario.

Event message_t* Receive.receive (message_t* buff, void* payload, uint8_t
len)
{

// do something
// do lengthy calculations

return buff;
}

In the above code the execution of the lengthy calculation code means that other
received packets could be dropped since the receive event is still busy. Now consider
the following scenario.

KFUPM. Computer Engineering Department, COE 499
Prepared by: Ayman Al Bassam

task void lengthy_calc_task();
Event message_t* Receive.receive (message_t* buff, void* payload, uint8_t
len)
{

// do something
post lengthy_calc_task();
return buff;
}
task void lengthy_calc_task(){
//do the lengthy calculations
 }

In the above example the calculation is deferred for a later time allowing the receive
event to return and receive more packets.

How to use tasks?

Using tasks is simple. First you have to declare the task as follows

task void someTask(){
//do something }

Tasks headers can also be declared as in C functions

 task void someTask();

What’s lift is to post the task. This can be done anywhere using

post someTask();

KFUPM. Computer Engineering Department, COE 499
Prepared by: Ayman Al Bassam

C Procedures

Those are procedures that are exactly like the ones in C. they can return
types and takes parameters. They also can preempt each other.

KFUPM. Computer Engineering Department, COE 499
Prepared by: Ayman Al Bassam

The printf library for TinyOS

TinyOS starting from version 2.0.2 offers a printf library that prints to the serial port
and can be read thru the PC using the Java printf client.
To use the printf library you have to include the printf.h header file in your code as
follows

#include “printf.h”

Later on you can simply use the printf anywhere in your code with the same syntax as
in C for example

uint16_t a = 8;
printf(“I’m writing from TOS my variable is %d”, a);
printfflush();

when you use printf the bytes you print are placed in a buffer. The data is only sent
when you issue a printfflush() call. The default buffer size is 12 bytes and can be
changed.

There is one more modification that has to be done for the makefile file to tell the
compiler where to find the printf.h file. You should add the following line to the
makefile file.

CFLAGS += -I$(TOSDIR)/lib/printf

For example assume the Blink application. Then the makefile would be like this

COMPONENT=BlinkAppC
CFLAGS += -I$(TOSDIR)/lib/printf
include $(MAKERULES)

Now to see the output of your program, go to cygwin window and type

java net.tinyos.tools.PrintfClient -comm serial@comX:telosb

Where X is the com port the mote is connected to.

KFUPM. Computer Engineering Department, COE 499
Prepared by: Ayman Al Bassam

Exercise 1

Modify the application in exercise 1 from the previous lab to do the sending in a
task.

Exercise 2

Modify the second exercise of the previous lab to print the received data thru the
printf library.

Exercise 3

Modify the second exercise of the previous lab to send the received message thru
the serial port.
Hint look at tutorial 4 http://docs.tinyos.net/index.php/Mote-
PC_serial_communication_and_SerialForwarder

For more information see the following links

TEP 106: http://www.tinyos.net/tinyos-2.x/doc/html/tep106.html
TEP 107: http://www.tinyos.net/tinyos-2.x/doc/html/tep107.html
Tutorial 6: http://docs.tinyos.net/index.php/Boot_Sequence
Tutorial 15: http://docs.tinyos.net/index.php/The_TinyOS_printf_Library
TinyOS Programming Sections 4.4 and 4.5

KFUPM. Computer Engineering Department, COE 499
Prepared by: Ayman Al Bassam

http://docs.tinyos.net/index.php/The_TinyOS_printf_Library
http://docs.tinyos.net/index.php/Boot_Sequence
http://www.tinyos.net/tinyos-2.x/doc/html/tep107.html
http://www.tinyos.net/tinyos-2.x/doc/html/tep106.html
http://docs.tinyos.net/index.php/Mote-PC_serial_communication_and_SerialForwarder
http://docs.tinyos.net/index.php/Mote-PC_serial_communication_and_SerialForwarder

