

Computing Curricula

Computer Engineering

The Joint Task Force on Computing Curricula 2005
IEEE Computer Society

Association for Computing Machinery

Report

Ironman Draft

2004 June 8

Computing Curriculum – Computer Engineering Curriculum Report
Ironman Draft 2004June8

CCCE Task Force Members

David Soldan (Chair)
James Aylor

Alan Clements
Gerald Engel

Ron Hoelzeman
Esther A. Hughes

Joseph L.A. Hughes
John Impagliazzo

Robert Klenke
Douglas A. Lyon

Andrew McGettrick
Victor P. Nelson
Daniel J. Neebel

Ivor Page
Gregory D. Peterson

Robert Sloan
Pradip Srimani

Mitch Theys
Murali Varanasi

Kansas State University
University of Virginia
University of Teesside – England
University of Connecticut
University of Pittsburgh
Virginia Commonwealth University
Georgia Institute of Technology
Hofstra University
Virginia Commonwealth University
Fairfield University
University of Strathclyde – Scotland
Auburn University
Loras College
University of Texas – Dallas
University of Tennessee – Knoxville
University of Illinois – Chicago
Clemson University
University of Illinois – Chicago
University of South Florida

Page 1

Computing Curriculum – Computer Engineering Curriculum Report
Ironman Draft 2004June8

Contents

Chapter 1 Introduction

1.1 Overall Structure of the Computing Curricula Project
1.2 Overview of the CCCE Process
1.3 Structure of the CCCE Report

Chapter 2 Computer Engineering as a Discipline

2.1 Background
2.2 Evolution of the Field
2.3 Characteristics of Computer Engineering Graduates

2.3.1 Distinctions
2.3.2 Professionalism
2.3.3 Ability to Design
2.3.4 Breadth of Knowledge

2.4 Organizational Considerations
2.5 Preparation for Professional Practice
2.6 Program Evaluation and Accreditation

Chapter 3 Principles

Chapter 4 Overview of the Computer Engineering Body of Knowledge

4.1 The Body of Knowledge
4.2 Structure of the Body of Knowledge
4.3 Learning Outcomes
4.4 Core and Elective Knowledge Units
4.5 Knowledge Units and Time Required for Coverage
4.6 Core Hours and a Complete Program

Chapter 5 Integration of Engineering Practice into the Computer Engineering Curriculum

5.1 The Nature of Computer Engineering
5.2 Design in the Curriculum

5.2.1 Design Throughout the Curriculum
5.2.2 The Culminating Design Experience

5.3 The Laboratory Experience
5.3.1 Laboratory Experiments
5.3.2 Practical Activity

5.4 The Role of Engineering Tools
5.5 Applications of Computer Engineering Principles
5.6 Complementary Skills
5.7 Communication Skills
5.8 Teamwork Skills
5.9 Lifelong Learning Skills
5.10 The Business Perspective
5.11 The Elements of an Engineering Education

Page 2

Computing Curriculum – Computer Engineering Curriculum Report
Ironman Draft 2004June8

Chapter 6 Professionalism and Computer Engineering
6.1 Introduction
6.2 Decisions in a Societal Context
6.3 Fostering Professionalism
6.4 Summary

Chapter 7 Curriculum Implementation Issues

7.1 General Considerations
7.2 Basic Computer Engineering Components

7.2.1 Introductory Courses and the Core
7.2.2 Intermediate Courses
7.2.3 Advanced Courses
7.2.4 Culminating Project
7.2.5 Engineering Professional, Ethical, and Legal Issues
7.2.6 Communication Skills
7.2.7 Assessment of Student Learning

7.3 Courses Often Taught Outside of Computer Engineering
7.3.1 Mathematical Requirements
7.3.2 Science Requirements
7.3.3 General Education

7.4 Degree Program Implementation: Strategies and Examples
7.4.1 Course Considerations
7.4.2 Elective Courses

7.5 Degree Titles and Organizational Structures
7.6 Sample Curricula

Chapter 8 Institutional Challenges

8.1 The Need for Local Adaptation
8.2 Principles for Curriculum Design
8.3 The Need for Adequate Laboratory Resources
8.4 Attracting and Retaining Faculty
8.5 Summary

Endnote References to this Report

All References

Appendix A The Computer Engineering Body of Knowledge
 A.1 Introduction
 A.2 Structure of the Body of Knowledge
 A.3 Core and Elective Units
 A.4 Time Required to Cover a Knowledge Unit
 A.5 Summary of the Computer Engineering Body of Knowledge
 A.6 Comments on Knowledge Areas

 A.6.1 Comments on Algorithms and Complexity
A.6.2 Comments on Computer Architecture and Organization
A.6.3 Comments on Computer Systems Engineering
A.6.4 Comments on Circuits and Signals
A.6.5 Comments on Database Systems
A.6.6 Comments on Digital Logic
A.6.7 Comments on Discrete Structures

Page 3

Computing Curriculum – Computer Engineering Curriculum Report
Ironman Draft 2004June8

A.6.8 Comments on Digital Signal Processing
A.6.9 Comments on Electronics
A.6.10 Comments on Embedded Systems
A.6.11 Comments on Human-Computer Interaction
A.6.12 Comments on Computer Networks
A.6.13 Comments on Operating Systems
A.6.14 Comments on Programming Fundamentals
A.6.15 Comments on Probability and Statistics
A.6.16 Comments on Social and Professional Issues
A.6.17 Comments on Software Engineering
A.6.18 Comments on VLSI Design and Fabrication

A.7 Details of the Body of Knowledge
CE-ALG Algorithms and Complexity
CE-CAO Computer Architecture and Organization
CE-CSE Computer Systems Engineering
CE-CSG Circuits and Signals
CE-DBS Database Systems
CE-DIG Digital Logic
CE-DSC Discrete Structures
CE-DSP Digital Signal Processing
CE-ELE Electronics
CE-ESY Embedded Systems
CE-HCI Human-Computer Interaction
CE-NWK Computer Networks
CE-OPS Operating Systems
CE-PRF Programming Fundamentals
CE-PRS Probability and Statistics
CE-SPR Social and Professional Issues
CE-SWE Software Engineering
CE-VLS VLSI Design and Fabrication

Appendix B Computer Engineering Sample Curricula
 B.1 Format and Conventions
 B.2 Preparation to Enter the Profession

B.3 Implementation A – Computer Engineering Program Administered by a Computer Science
Department

 B.3.1 Program Goals and Features
 B.3.2 Summary of Requirements
 B.3.3 Four-Year Curriculum Model
 B.3.4 Mapping of the Computer Engineering BOK to Curriculum A
 B.3.5 Curriculum A – Course Summaries
B.4 Implementation B – Computer Engineering Program Administered by an Electrical and Computer

Engineering Department
B.4.1 Program Goals and Features

 B.4.2 Summary of Requirements
 B.4.3 Four-Year Curriculum Model
 B.4.4 Mapping of the Computer Engineering BOK to Curriculum B
 B.4.5 Curriculum B – Course Summaries
B.5 Implementation C – Computer Engineering Program Administered by a Computer Science

Department in Conjunction with a Department or College of Engineering
B.5.1 Program Goals and Features

 B.5.2 Summary of Requirements
 B.5.3 Four-Year Curriculum Model
 B.5.4 Mapping of the Computer Engineering BOK to Curriculum C
 B.5.5 Curriculum C – Course Summaries

Page 4

Computing Curriculum – Computer Engineering Curriculum Report
Ironman Draft 2004June8

B.6 Implementation D – Computer Engineering Program Representative of a Program in the United
Kingdom and Other Nations
B.6.1 Program Goals and Features

 B.6.2 Summary of Requirements
 B.6.3 Four-Year Curriculum Model
 B.6.4 Mapping of the Computer Engineering BOK to Curriculum D
 B.6.5 Curriculum D – Course Summaries

Page 5

Computing Curriculum – Computer Engineering Curriculum Report
Ironman Draft 2004June8

Chapter 1

Introduction

I

n the fall of 1998, the Computer Society of the Institute for Electrical and Electronics Engineers (IEEE-CS) and
the Association for Computing Machinery (ACM) established the Joint Task Force on “model Curricula for
Computing” (or CC for short) to undertake a major review of curriculum guidelines for undergraduate programs

in computing. The charter of the task force is as follows:

To review the Joint ACM and IEEE/CS Computing Curricula 1991 and develop a revised and enhanced
version that addresses developments in computing technologies in the past decade and will sustain through
the next decade.

 As indicated in the charter, the goal of the CC effort is to revise Computing Curricula 1991 so that it
incorporates the developments of the past decade. Computing has changed dramatically over that time in ways that
have a profound effect on curriculum design and pedagogy. Moreover, the scope of what one calls computing has
broadened to the point that it is difficult to define it as a single discipline. Previous curricula reports have attempted
to merge such disciplines as computer science, computer engineering, and software engineering into a single report
about computing education. While such an approach may have seemed reasonable in the past, there is no question
that computing in the twenty-first century encompasses many vital disciplines with their own identities and
pedagogical traditions.

 Another part of the charter of this group includes supporting the community of professionals responsible for
developing and teaching a range of courses throughout the global community. Providing an international
perspective presents different challenges, but is an important ingredient given the global nature of computing related
developments.

1.1 Overall Structure of the Computing Curricula Project

Due to the broadening scope of computing—and the feedback received on the initial draft — the CC initiative
contains several reports. This report focuses specifically on computer engineering, referred to as “Computing
Curricula: Computer Engineering” or simply CCCE. To encompass the different disciplines that are part of the
overall scope of computing, professional organizations have created additional committees to undertake similar
efforts in other areas. These areas include computer science (“Computing Curricula: Computer Science” or the
CCCS report published in December 2001), information systems (“Computing Curricula: Information Systems” or
the CCIS report published in 2002), software engineering (“Computing Curricula: Software Engineering” or the
CCSE report currently under development), and information technology (“Computing Curricula: Information
Technology” or the CCIT report currently under development).

 As the individual reports unfold to completion, representatives from the five computing disciplines have
produced an overview report that links them together. That overview report contains descriptions of the various
computing disciplines along with an assessment of the commonalities and differences that exist among them. It also
suggests the possibility of future curricular areas in computing. The structure of the series appears in Figure 1-1 as
taken from the overview report. The area of information technology is the newest component of the computing
curricula project.

Page 6

Computing Curriculum – Computer Engineering Curriculum Report
Ironman Draft 2004June8

Overview
Report

Computer
Engineering
Curriculum

Report

Computer
Science

Curriculum
Report

Information
Systems

Curriculum
Report

Information
Technology
Curriculum

Report

Software
Engineering
Curriculum

Report

Future
Model

Curricula
Reports

 Figure 1.1: Computing curricula reports

1.2 Overview of the CCCE Process

In their charter, the main CC Steering Committee gave individual groups freedom to produce reports that best reflect
the needs and requirements of their particular disciplines. However, the committee did request that groups address a
certain minimal number of matters and, consequently, that they should include certain components in the individual
reports. The minimal set includes:

 The body of knowledge (BOK) for the field; that is, the topics the field should cover,
 A set of courses that cover the body of knowledge in one or more ways,
 The core requirements for the discipline; that is, the requirements that would apply to all undergraduates, and
 The characteristics of graduates of degree programs

The Steering Committee viewed the set of requirements as minimal, as one of its goals was to avoid prescription.
The experts must have the freedom to act as they see fit. Yet there must be some commonality across the different
series of reports. The anticipation is that each report will exceed this minimal set in various ways.

 In pursuing this charter, it is natural that the Computer Engineering Task Force be cognizant of what the
Computer Science Task Force had already accomplished. The thrust of the Computer Engineering Task Force was
to build on work already completed wherever possible.

 Despite the considerable growth of computer engineering as a discipline, the literature in computer engineering
curricular development is modest. There are a few contributions such as [Bennett 1986], [EAB 1986], and
[Langdon, et. al. 1986]. The focus on the first three of these was not curricular development; they addressed issues
such as resources and design processes. These issues are still important and appear elsewhere in this document.

 To respond to the challenges of their charter, the Computer Engineering Task Force emerged from computer
engineering interests from different countries. In addition, there was some overlap with the original Computer
Science Task Force to ensure continuity. In discharging its duty, the Computer Engineering Task Force felt that it
was vital to involve the wider community; indeed, several consultative activities occurred to confirm the view
expressed in this volume. In addition, the task force used the world wide web [Aub] to allow any interested party
the opportunity to provide comment and suggestion. The published report has benefited from this wide and
important involvement

 Developing the recommendations in this report is primarily the responsibility of the CCCE Task Force, the
members of which appear at the beginning of this report. Given the scale of the CCCE project and the scope over
which it extends, it was necessary to secure the involvement of many other people, representing a wide range of
constituencies and areas of expertise.

Page 7

Computing Curriculum – Computer Engineering Curriculum Report
Ironman Draft 2004June8

1.3 Structure of the CCCE Report

This CCCE report addresses computer engineering programs. The main body of the report consists of eight
chapters. Chapter 2 illustrates how computer engineering evolved as a discipline. It also highlights many of the
characteristics expected of a computer engineering graduate, especially their service to the public, their design
abilities, and their expected breadth of knowledge. It also suggests possible organizational structures, the
responsibility of professional practices, and program assessment. Chapter 3 articulates the principles that have
guided the work of the Computer Engineering Task Force and how these principles relate to CC2001. Chapters 4
and 5 present overviews of the computer engineering body of knowledge and curriculum recommendations. They
also articulate learning objectives, the differences between core and elective knowledge units, the number of core
hours in the program, the importance of design and laboratory experiences, and various skills needed to become an
effective computer engineer. Chapter 6 highlights the importance of professionalism in the practice of computer
engineering. Chapter 7 provides a discussion on the issues affecting the implementation of a computer engineering
curriculum. These include the arrangement of courses within and external to the program and other implementation
considerations. Chapter 8 suggests some challenges that need reviewing when creating or continuing computer
engineering programs. This report provides two sets of references: those made within this report and a full set of
references related to all computing curricula programs.

 The bulk of the material in the report appears in two appendices. Appendix A addresses the body of knowledge
in detail for undergraduate computer engineering programs. It includes all the computing knowledge areas, their
associated knowledge units and related topics, student outcomes, and two related mathematics areas. Appendix B
illustrates sample curricula and course descriptions, as they might appear at different academic institutions. The
Task Force is hopeful that providing the body of knowledge, course descriptions, and sample curricula will help
departments to create effective curricula or to improve the curricula they already have.

Page 8

Computing Curriculum – Computer Engineering Curriculum Report
Ironman Draft 2004June8

Chapter 2

Computer Engineering as a Discipline

T

his chapter presents some of the characteristics that distinguish computer engineering from other computing
disciplines. It provides some background of the field and shows how it evolved over time. It also highlights
some of the characteristics expected from its graduates, preparation for entering the curriculum, and student

outcomes and assessment. The chapter also highlights the importance of graduates to have a proper sense of
professionalism to ensure a proper perspective in the practice of computer engineering.

2.1 Background

Computer engineering embodies the science and technology of design, construction, implementation, and
maintenance of software and hardware components of modern computing systems and computer-controlled
equipment. Computer engineering has traditionally been viewed as a combination of both computer science (CS)
and electrical engineering (EE). It has evolved over the past three decades as a separate, although intimately related,
discipline. Computer engineering is solidly grounded in the theories and principles of computing, mathematics,
science, and engineering and it applies these theories and principles to solve technical problems through the design
of computing hardware, software, networks, and processes.

 Historically, the field of computer engineering has been widely viewed as “designing computers.” In reality,
the design of computers themselves has been the province of relatively few highly skilled engineers whose goal was
to push forward the limits of computer and microelectronics technology. The successful miniaturization of silicon
devices and their increased reliability as system building blocks has created an environment in which computers
have replaced the more conventional electronic devices. These applications manifest themselves in the proliferation
of mobile telephones, personal digital assistants, location-aware devices, digital cameras, and similar products. It
also reveals itself in the myriad of applications involving embedded systems, namely those computing systems that
appear in applications such as automobiles, large-scale electronic devices, and major appliances.

 Increasingly, computer engineers are involved in the design of computer-based systems to address highly
specialized and specific application needs. Computer engineers work in most industries, including the computer,
aerospace, telecommunications, power production, manufacturing, defense, and electronics industries. They design
high-tech devices ranging from tiny microelectronic integrated-circuit chips, to powerful systems that utilize those
chips and efficient telecommunication systems that interconnect those systems. Applications include consumer
electronics (CD and DVD players, televisions, stereos, microwaves, gaming devices) and advanced microprocessors,
peripheral equipment, systems for portable, desktop and client/server computing, and communications devices
(cellular phones, pagers, personal digital assistants). It also includes distributed computing environments (local and
wide area networks, wireless networks, internets, intranets), and embedded computer systems (such as aircraft,
spacecraft, and automobile control systems in which computers are embedded to perform various functions). A
wide array of complex technological systems, such as power generation and distribution systems and modern
processing and manufacturing plants, rely on computer systems developed and designed by computer engineers.

 Technological advances and innovation continue to drive computer engineering. There is now a convergence of
several established technologies (such as television, computer, and networking technologies) resulting in widespread
and ready access to information on an enormous scale. This has created many opportunities and challenges for
computer engineers. This convergence of technologies and the associated innovation lie at the heart of economic
development and the future of many organizations. The situation bodes well for a successful career in computer
engineering.

Page 9

Computing Curriculum – Computer Engineering Curriculum Report
Ironman Draft 2004June8

2.2 Evolution of the Field

As noted previously, computer engineering evolved from the disciplines of electrical engineering and computer
science. Initial curricular efforts in computer engineering commonly occurred as a specialization within EE
programs, extending digital logic design to the creation of small-scale digital systems and, eventually, the design of
microprocessors and computer systems.

 In the United States, the first computer engineering program accredited by ABET (formerly the Accreditation
Board for Engineering and Technology) was at Case Western Reserve University in 1971. As of 2003 December,
ABET has accredited over 150 computer engineering or similarly named programs. Table 2-1 summarizes the
growth in programs by title and year of initial ABET accreditation (or change of program name). As a point of
comparison, there are approximately 300 accredited electrical engineering programs.

Table 2-1
Summary of ABET-accredited computer engineering programs in the U.S. - as of 2003 December

Year of Initial Accreditation

Program Name
Before
1980

1980 to
1989

1990 to
1999

2000 to
2003 Totals

Computer Engineering 10 32 44 43 129
Computer Systems Engineering 2 2 0 1 5
Electrical and Computer Engineering
(includes programs previously named EE) 2 4 0 5 11

Computer Science and Engineering 2 6 1 1 10
Other titles 0 2 1 1 4

Totals 16 46 46 51 159

 One would expect that the growth trend in computer engineering will increase as computing and electronic
technologies become more complex. The evolution may take many forms, including (a) an expanded content from
computer science, (b) collaboration with the emerging software engineering discipline on application-focused
projects and embedded systems with a greater emphasis on design and analysis tools to manage complexity, or (c)
re-integration with electrical engineering, as computer-based systems become dominant in areas such as control
systems and telecommunications.

2.3 Characteristics of Computer Engineering Graduates

With the ubiquity of computers and computer-based systems in the world today, computer engineers must be
versatile in the knowledge drawn from standard topics in computer science and electrical engineering as well as the
foundations in mathematics and sciences. Because of the rapid pace of change in the computing field, computer
engineers must be life-long learners to maintain their knowledge and skills within their chosen discipline.

2.3.1 Distinctions

An important distinction should be made between computer engineers, electrical engineers, other computer
professionals, and engineering technologists. While such distinctions are sometimes ambiguous, computer
engineers generally should satisfy the following three characteristics.

1. Possess the ability to design computer systems that include both hardware and software to solve novel
engineering problems, subject to trade-offs involving a set of competing goals and constraints. In this
context, “design” refers to a level of ability beyond “assembling” or “configuring” systems.

2. Have a breadth of knowledge in mathematics and engineering sciences, associated with the broader scope
of engineering and beyond that narrowly required for the field.

3. Acquire and maintain a preparation for professional practice in engineering.

Page 10

Computing Curriculum – Computer Engineering Curriculum Report
Ironman Draft 2004June8

 In contrast, electrical engineers concern themselves mostly with the physical aspects of electronics including
circuits, signal analysis, and microelectronic devices. Computer scientists concern themselves primarily with the
theoretical and algorithmic aspects of computing with a focus on the theoretical underpinnings of computing.
Software engineers have a focus on the principles underlying the development and maintenance of correct (large-
scale) software throughout its lifecycle. Information systems specialists encompass the acquisition, deployment, and
management of information resources for use in organizational processes. Information technology specialists would
focus on meeting the needs of users within an organizational and societal context through the selection, creation,
application, integration, and administration of computing technologies. Computer engineering technologists
concern themselves with making computer-based products work properly and in the maintenance of those products.

2.3.2 Professionalism

The public has entrusted in engineers a level of responsibility because the systems they design (whether x-ray
machines, air traffic control systems, or nuclear power plants) affect the public directly and indirectly. Therefore, it
is incumbent upon computer engineers to exercise the utmost conscientiousness when designing and implementing
computing systems. As such, graduates should have an understanding of the responsibilities associated with
engineering practice, including the professional, societal, and ethical context in which they do their work. Such
responsibilities often involve complicated trade-offs involving fiscal and social contexts. This social context
encompasses a range of legal and economic issues such as intellectual property rights, security and privacy issues,
liability, technological access, and global implications and uses of technologies.

 Professionalism and ethics are critical elements, since the focus of engineering on design and development
makes social context paramount to studies in the field. Computer engineering students must learn to integrate
theory, professional practice, and social constructs in their engineering careers. It is incumbent upon all computer
engineers to uphold the tenets of their profession and to adhere to the codes of professional practice. The public
expects engineers to follow prescribed rules of professional practice and to not engage in activities that would
tarnish their image or that of their practicing colleagues. Because of the importance of this topic, Chapter 6 of this
report is devoted to an expanded discussion on professional practice and responsibilities.

2.3.3 Ability to Design

Engineering draws heavily on the ability to design. The International Technology Education Association (ITEA)
defines engineering design as “The systematic and creative application of scientific and mathematical principles to
practical ends such as the design, manufacture, and operation of efficient and economical structures, machines,
processes, and systems.” [ITEA] Other definitions are possible such as the creative ability required for the
development of better devices, systems, processes, and new products. Many reasons prompt new designs such as
seeking to exploit new developments in related technologies or to develop improvements on existing products (e.g.
making products less expensive, safer, more flexible, or lighter in weight). Identifying deficiencies or weaknesses in
existing products is another motivation for engineering design. Of course, novel ideas are especially important.

 Design is fundamental to all engineering. For the computer engineer, design relates to software and hardware
components of modern computing systems and computer-controlled equipment. Computer engineers apply the
theories and principles of science and mathematics to design hardware, software, networks, and processes and to
solve technical problems. Continuing advances in computers and digital systems have created opportunities for
professionals capable of applying these developments to a broad range of applications in engineering.
Fundamentally, it is about making well-considered choices or trade-offs, subject to given constraints. These relate
to such matters as structure and organization, techniques, technologies, methodologies, interfaces, as well as the
selection of components. The outcome needs to exhibit desirable properties and these tend to relate to simplicity
and elegance. Chapter 5 presents a more detailed discussion of design and related laboratory experiences.

2.3.4 Breadth of Knowledge

Because of the breadth of the computer-engineering field, curricular content may vary widely among programs, or
even among students in the same program. Computer-related coursework typically comes from computer
organization and architecture, algorithms, programming, databases, networks, software engineering, and

Page 11

Computing Curriculum – Computer Engineering Curriculum Report
Ironman Draft 2004June8

communications. Electrical engineering related coursework typically comes from circuits, digital logic,
microelectronics, signal processing, electromagnetics, and integrated circuit design. Foundational topics typically
include basic sciences, mathematics for both discrete and continuous domains, and applications of probability and
statistics.

 At one extreme, a degree program in computer engineering might provide opportunities for its students to study
a wide range of topics spanning the entire field. At another extreme, there may be programs that focus on one
specific aspect of computer engineering and cover it in great depth. The graduates from such programs will
typically tend to seek opportunities in the specialist area they studied, whether it is multimedia systems
development, computer design, network design, safety-critical systems, pervasive computing, or whatever other
specialties emerge and become important. One common measure for differentiating among computer engineering
programs is the relative amount of emphasis placed on topics that are commonly associated with either electrical
engineering or computer science programs.

 Despite differences in emphasis and content, there are certain common elements that one should expect of any
computer engineering program. The Body of Knowledge, described in Chapter 4, identifies topical areas that one
may reasonably expect in all programs, as opposed to those that are often included in some programs or those that
one might consider elective or specialized topics. From a higher-level perspective, however, one can reasonably
expect several characteristics of all computer engineering graduates. These include:

 System Level Perspective – Graduates must appreciate the concept of a computer system, the design of the
hardware and software for that system, and the processes involved in constructing or analyzing it. They must
have an understanding of its operation that goes to a greater depth than a mere external appreciation of what
the system does or the way(s) in which one uses it.

 Depth and Breadth – Graduates should have familiarity with topics across the breadth of the discipline, with
advanced knowledge in one or more areas.

 Design Experiences – Graduates should have completed a sequence of design experiences, encompassing
hardware and software elements, building on prior work, and including at least one major project.

 Use of Tools – Graduates should be capable of utilizing a variety of computer-based and laboratory tools for
the analysis and design of computer systems, including both hardware and software elements.

 Professional Practice – Graduates should understand the societal context in which engineering is practiced,
as well as the effects of engineering projects on society.

 Communication Skills – Graduates should be able to communicate their work in appropriate formats (written,
oral, graphical) and to critically evaluate materials presented by others in those formats.

2.4 Organizational Considerations

The administration of computer engineering programs falls within a variety of organizational structures. Currently,
computer engineering programs are rarely organized as separate academic departments. They often appear in
colleges or schools of engineering, either within an electrical engineering department, within a combined
engineering department, or within an electrical and computer engineering department. In such cases, the expectation
is a strong emphasis on circuits and electronic components. Computer engineering programs also appear in areas
such as computer science departments, colleges of arts and sciences, schools or divisions of information technology,
or co-sponsored by multiple entities. In these cases, the programs often relate more to the issues of theory,
abstraction, and organization rather than those of a more applied nature.

 As noted in Table 2-1, the most common degree title for these programs is “Computer Engineering.” Other
titles may reflect program specializations, organizational structures, historical constraints, or other factors. The
principles presented in this report apply to all computer engineering programs regardless of their organizational
structure or official degree title.

2.5 Preparation for Professional Practice

Page 12

Computing Curriculum – Computer Engineering Curriculum Report
Ironman Draft 2004June8

Unlike professions such as law and medicine, engineering generally does not require an advanced degree for
employment in the field. Thus, undergraduate programs in computer engineering must include not only basic
knowledge within the field, but the ability to apply it to the solution of realistic projects. This preparation
encompasses several areas.

Section 2.3.2 defined the professionalism and ethics that are fundamental characteristics of a computer
engineering graduate. Preparation for professional practice requires graduates to have an understanding of their
responsibilities associated with engineering practice, as well as an ability to apply these principles to specific
situations. Professionalism should be a constant theme that pervades the entire curriculum. In particular, the social
context of engineering should be integrated into the teaching of engineering design, including the use of best
practices and trade-offs among technical, fiscal, and social requirements.

In addition to professionalism, appropriate preparation encompasses both technical (design ability, laboratory
experiences, use of engineering tools) and non-technical (teamwork, communication) elements. Chapter 5 of this
report provides a detailed discussion on the integration of these issues into the curriculum.

2.6 Program Evaluation and Accreditation

Processes for program evaluation must accommodate the variations among computer engineering programs. Such
evaluation is critical to ensure that graduates have the proper preparation and that programs are evolving to meet the
emerging requirements of the field. Often, professional societies and governments look toward an external
assessment of programs to ensure that graduates achieve minimally what professional organizations expect of them.

 Within the United States, ABET accreditation is widely recognized and accepted. The current engineering
criteria [ABET, 2004] are intended to ensure that all accredited programs satisfy a minimum set of criteria common
to all engineering disciplines and criteria specific to each discipline. A key element of this process is a requirement
that each program engage in an ongoing process of self-assessment and continuous improvement. Programs should
demonstrate that all graduates achieve a set of program outcomes based on the program’s educational objectives.
The ABET criteria are broadly defined. They leave the interpretation of what constitutes the appropriate knowledge
for a given discipline to the professional societies affiliated with that discipline. We anticipate that this report will
provide guidance to accrediting agencies on the appropriate technical content of computer engineering programs.

 In the United Kingdom, benchmarking of degrees has developed in recent years and each institution is required
to demonstrate that their degrees meet the requisite benchmark standards for that discipline. One example of these
benchmark standards is [UKQAA2000]. This benchmarking defines both threshold (minimal) and modal (average)
expectations with respect to demonstrated student knowledge, skills, and judgment. An example of a
[threshold/modal] criterion is the following:

Graduates will be able to produce work involving problem identification, the analysis, the design and the
development of a system with appropriate documentation. The work will show [some / a range of] problem
solving and evaluation skills drawing on [some/] supporting evidence, and demonstrate a [requisite/good]
understanding of the need for quality.

 The Engineering Council UK has overall responsibility for the accreditation of engineering degrees within the
United Kingdom. Its basic responsibilities include setting standards (of competence and commitment) for the
accreditation of engineering degrees and approving nominating bodies that carry out detailed accreditation on its
behalf. In general, the British Computer Society (BCS) carries out accreditation of computing degree programs and
the Institute of Electrical Engineers (IEE) carries out the accreditation of electronic and electrical engineering degree
programs. Degree programs in computer engineering could be accredited by either society, though perhaps more
often by IEE. However, joint accreditation by both societies is common. Links with professional engineers in other
countries exist through the mechanisms of the Washington Accord, the Sydney Accord, the Dublin Accord, FEANI,
and the International Register for Engineers.

 The accreditation process in engineering in the UK dates back to around 1978. Over the years, there have been
various formulations of the rules and criteria for accredited degrees. But in broad terms, the expectation is to have
degrees that

Page 13

Computing Curriculum – Computer Engineering Curriculum Report
Ironman Draft 2004June8

 Encourage and foster an engineering ethos. This includes attention to such matters as design and a problem
solving approach. Invariably, such degrees must include (normally in their final year) an individual project in
which students have to demonstrate their ability to tackle and solve a substantial problem of a technical
nature.

 Present a challenge and address appropriate underpinnings and theoretical considerations.
 Address the environmental concerns as well as the professional, legal, and ethical concerns associated with
engineering including preparation for life-long learning.

 Have strong and effective input from industry into curriculum design and perspective including relevance to
industry; manifestations of industry involvement include the existence of industrial scholarships or prizes as
well as a willingness to host external activities such as internships.

Although there are some unique aspects to each accreditation agency, there also are many common elements:

1. The accreditation review process involves a visit to the institution by a panel of experts who meet staff and
students and produce a report with accompanying recommendations about accreditation status.

2. Typical periods of accreditation range from zero to six years; the length of period generally reflects the
confidence that the visiting panel has in the program.

3. A major goal of the process is one of support and development, with every attempt made to encourage and
foster good practice.

4. Graduation with an accredited degree plus an appropriate period (typically about two years) of relevant
industrial experience can lead to the award in the UK of the accolade of Chartered Engineer. Professionals
generally regard designation as a well-qualified engineer; other routes to Chartered Engineer also exist. In
the United States, graduation from an accredited engineering program is the initial step towards licensure as
a professional engineer.

 In general, institutions tend to use accreditation as a vehicle to provide evidence of quality that they can use in
marketing activities; most institutions offering engineering degrees will have some form of recognition in
accreditation terms. Currently, some jobs demand accredited degree status or professional licensure, although this
requirement is not as widespread in computing-related fields as in some other engineering fields.

 While accreditation and benchmarking standards typically refer to the minimum or average graduate, the
expectation is that computer engineering programs also will provide opportunities for the best students to achieve
their full potential. Such students will be creative and innovative in their application of the principles covered in the
curriculum; they will be able to contribute significantly to the analysis, design, and development of complex
systems; and they will be able to exercise critical evaluation and review of both their own work and the work of
others.

Page 14

Computing Curriculum – Computer Engineering Curriculum Report
Ironman Draft 2004June8

Chapter 3

Principles

C

omputing is a growing and important area of endeavor. The Computer Engineering Task Force established a
set of principles to guide its work that reflects in part those that appeared in the Computer Science Report.
They appear here with appropriate rewording and modification to reflect better the tenets expected from a

computer engineering program. The presentation here is not in order of priority.

1. Computer engineering is a broad and developing field. The original CC Steering Committee had taken the

view that a single report, covering primarily computer science, could not address the full range of issues that
colleges and universities have to consider as they seek to address their computing curricula, and that a different
task force should develop a separate report addressing computer engineering.

2. Computer engineering is a distinct discipline with its own body of knowledge, its own ethos, and its own
practices. That discipline embodies the science and the technology of specification, design, construction,
implementation, and maintenance of the hardware and software components of modern computer systems and
computer-controlled equipment.

3. Computer engineering draws its foundations from a wide variety of other disciplines. Computer engineering
education is solidly grounded in the theories and principles of computing, mathematics, and engineering, and it
applies these theoretical principles to design hardware, software, networks and computerized equipment and
instruments to solve technical problems in diverse application areas.

4. The rapid evolution of computer engineering requires an ongoing review of the corresponding curriculum.
Given the pace of change in the discipline, the professional associations in this discipline must establish an
ongoing review process that allows the timely update of the individual components of the curriculum
recommendations.

5. Development of a computer engineering curriculum must be sensitive to changes in technology, new
developments in pedagogy, and the importance of lifelong learning. In a field that evolves as rapidly as
computer engineering, educational institutions must adopt explicit strategies for responding to change.
Computer engineering education must seek to prepare students for lifelong learning that will enable them to
move beyond today’s technology to meet the challenges of the future.

6. The Computer Engineering Task Force should seek to identify the fundamental skills and knowledge that all
computer engineering graduates must possess. Computer engineering is a broadly based discipline. The final
report must seek to identify the common concepts and skills of the discipline.

7. The required core of the body of knowledge should be as small as reasonably possible. The Task Force should
make every effort to keep that core to a minimum to allow flexibility, customization, and choice in other parts
of the curriculum to enable creation of individualized programs.

8. Computer engineering must include appropriate and necessary design and laboratory experiences. A computer
engineering program should include “hands-on” experience in designing, building, and testing both hardware
and software systems.

9. The computer engineering core acknowledges that engineering curricula are often subject to accreditation,
licensure, or governmental constraints. This computer engineering report recognizes existing external
constraints and is intended to provide guidance for their evolution.

Page 15

Computing Curriculum – Computer Engineering Curriculum Report
Ironman Draft 2004June8

10. The computer engineering curriculum must include professional practice as an integral component. These
practices encompass a wide range of activities including management, ethics and values, written and oral
communication, working as part of a team, and remaining current in a rapidly changing discipline.

11. The computer engineering report must include discussions of strategies and tactics for implementation along
with high-level recommendations. Although it is important for computing curricula to articulate a broad vision
of computing education, the success of any curriculum depends heavily on implementation details. To
accomplish this, the report should provide sample curricula models.

12. The development of the final report must contain a broad base. To be successful, the process of creating the
computer engineering recommendations must include participation from many different constituencies
including industry, government, and the full range of higher educational institutions involved in computer
engineering education.

13. The computer engineering final report must strive to be international in scope. Despite the fact that curricular

requirements differ from country to country, this report must be useful to computing educators throughout the
world. Although educational practice in the United States may influence curriculum, the report makes every
effort to ensure that the curriculum recommendations are sensitive to national and cultural differences so that
they will be widely applicable throughout the world.

Page 16

Computing Curriculum – Computer Engineering Curriculum Report
Ironman Draft 2004June8

Chapter 4

Overview of the Computer Engineering
Body of Knowledge

D

eveloping any curriculum for undergraduate study in computer engineering should reflect the current needs
of computer engineering students. The curriculum should also reflect current educational practice and
suggest improvements where necessary. The discussion that follows attempts to accomplish this in

preparing a body of knowledge commensurate with producing competent computer engineering graduates.

4.1 The Body of Knowledge

The Computer Engineering Task Force has sought to assemble a modern curriculum by first defining the primary
disciplines that make up the body of knowledge for computer engineering. Some of these discipline areas contain
material that should be part of all computer engineering curricula. These are the 18 knowledge areas, including two
covering related mathematics topics, listed in Table 4.1. Other areas contain material that might, or might not, be
part of such curricula, depending on the specific educational objectives of a program. Some of these are listed in
Chapter 7, but are not described in detail in this report.

Table 4.1
CCCE Discipline Areas Containing Core Material

CE-ALG Algorithms and Complexity
CE-CAO Computer Architecture and Organization
CE-CSE Computer Systems Engineering
CE-CSG Circuits and Signals
CE-DBS Database Systems
CE-DIG Digital Logic
CE-DSP Digital Signal Processing
CE-ELE Electronics
CE-ESY Embedded Systems
CE-HCI Human-Computer Interaction
CE-NWK Computer Networks
CE-OPS Operating Systems
CE-PRF Programming Fundamentals
CE-SPR Social and Professional Issues
CE-SWE Software Engineering
CE-VLS VLSI Design and Fabrication
---------- -------------------------------------
CE-DSC Discrete Structures
CE-PRS Probability and Statistics

 After defining the above areas, each task force member designed and reviewed initial drafts defining the body
of knowledge for one or more areas. In some cases, new members joined the task force to cover areas of expertise
outside of those originally represented. Subsequently, a second task force member reviewed and revised each initial
draft. After each revision, the entire task force reviewed the resulting draft for comment. At the completion of this
process, the entire task force met as a group to review the draft body of knowledge, with follow-up modifications
made as appropriate.

Page 17

Computing Curriculum – Computer Engineering Curriculum Report
Ironman Draft 2004June8

 The task force released the resulting document for public review. It solicited reviews at a number of meetings,
conferences, and other sources. The task force held an NSF-sponsored workshop in November 2002 in conjunction
with the Frontiers in Education Conference [FIE’02] in Boston. Reviewers from academia and industry participated
in the workshop and provided comments on the preliminary versions of the body of knowledge. Members from the
task force presented and discussed the body of knowledge at a variety of conferences through panel discussions and
poster sessions. Presentations to date appear in Table 4.2. The entire CCCE project has been available at [Aub]
since 2002.

Table 4.2
CCCE Presentations

Date Conference or meeting Type

2002 June 16-19 American Society for Engineering Education (ASEE 2002) – Montreal [ASEE’02] Panel

2002 November 6-9 Frontiers in Education – Boston [FIE’02] Panel
2003 February 19-23 SIGCSE Technical Symposium – Reno [SIGCSE’03] Panel

2003 March Electrical and Computer Engineering Department Heads Association - Hawaii Panel
2003 June 22-25 American Society for Engineering Education (ASEE 2002) – Nashville [ASEE’03] Panel

2003 June 29 – July 2 Innovation and Technology in Computer Science Education – Greece [ITiCSE’03] Poster
2003 November 5-8 Frontiers in Education - Denver [FIE’03] Panel &Paper

2004 March 3-7 SIGCSE Technical Symposium – Norfolk [SIGCSE’04] Panel
2004 June 21-24 MultiConference in Computer Sci. & Computer Engineering – Las Vegas [MCSCE’04] Paper
2004 June 20-23 American Society for Engineering Education (ASEE 2002) – Salt Lake City [ASEE’04] Paper
2004 June 29-30 Innovation and Technology in Computer Science Education – England [ITiCSE’04] Poster

2004 October 20-23 Frontiers in Education – Savannah [FIE’04] Panel & Paper

4.2 Structure of the Body of Knowledge

The body of knowledge has a hierarchical organization comprising three levels described as follows.

 The highest level of the hierarchy is the knowledge area, which represents a particular disciplinary sub-field.
A three-letter abbreviated tag identifies each area, such as CE-DIG for “Digital Logic” and CE-CAO for
“Computer Architecture and Organization.”

 Each knowledge area is broken down into smaller divisions called knowledge units, which represent
individual thematic modules within an area. A numeric suffix added to the area name identifies each
knowledge unit. For example, CE-CAO3 is a knowledge unit on “Memory System Organization and
Architecture” within the CE-CAO knowledge area.

 A set of topics, which are the lowest level of the hierarchy, further subdivides each knowledge unit. A group
of learning outcomes addresses the related technical skills associated with each knowledge unit. Section 4.3
expands the discussion on learning outcomes.

 To differentiate knowledge areas and knowledge units in computer engineering from those that may have the
same or similar names in the other four curriculum areas associated with this computing curriculum project, the
prefix “CE-” accompanies all knowledge areas and units in computer engineering. Reflecting the examples above,
therefore, tags such as CE-DIG for knowledge areas and CE-CAO3 for knowledge units appear throughout the
report.

4.3 Learning Outcomes

To capture the various skills associated with obtaining knowledge, this report uses the phrase learning outcomes as a
component of each knowledge unit. The emphasis on learning is important. The concept of learning outcomes is a
mechanism for describing not just knowledge and relevant practical skills, but also personal and transferable skills.
Outcomes can be associated with a knowledge unit, a class, a course, or even a degree program. Teachers can use
them to convey different aspects of the ethos of a course or area of study.

Page 18

Computing Curriculum – Computer Engineering Curriculum Report
Ironman Draft 2004June8

 Any specification of a course will include both knowledge and associated learning outcomes. In designing
courses, some designers start with knowledge while others start with the learning outcomes. In reality, a
combination of the two approaches appears most appropriate. In addition, a certain duality exists between the
elements of knowledge and the related learning outcomes or objectives. Different people will place different levels
of emphasis on each. For this document, the view is that they are complementary.

 Since learning outcomes imply assessment and since assessment guides learning, teachers should exercise
considerable care in selecting and formulating these. Excessive numbers of very detailed learning outcomes can
lead to bureaucracy and tedium, which is highly undesirable. The existence of these outcomes must not inhibit
course development; it should enhance that activity.

 Learning outcomes are part of knowledge units and can be part of modules, which constitute the formal units of
assessment. The number of learning outcomes per knowledge unit or module should be a small number—at most
four or five. The learning outcomes for a module will naturally build on the knowledge units and the associated
practical skills. They tend to be of the form:

Demonstrate the acquisition of competence; that is, show the ability to apply knowledge and
practical skills to solve a problem.

Of course, the ways of demonstrating skills can be many and varied; in particular, they can involve a range of
communication and other skills. In this way, imaginative approaches to assessment can lead to the assessment of a
range of skills in a well-conceived assignment.

4.4 Core and Elective Knowledge Units

As computer engineering evolves, the number of topics required in the undergraduate curriculum is growing. Over
the last decade, computer engineering has expanded to such an extent that it is no longer possible to add new topics
without taking others away. One of the goals in proposing curricular recommendations is to keep the required
component of the body of knowledge as small as possible.

 To implement this principle, the Computer Engineering Task Force has defined a minimal core comprising
those knowledge units for which there is broad consensus that the corresponding material is essential to anyone
obtaining an undergraduate degree in computer engineering. The core is considered essential, independent of the
specific program degree title or organizational structure. Knowledge units presented as part of an undergraduate
program, but which fall outside the core, are elective to the curriculum. Based on program goals, an institution may
deem many elective units and areas as essential and require them for its program.

 In discussing the recommendations during their development, the Task Force has found that it helps to
emphasize the following important points.

 The core is not a complete curriculum.
The intention of the core is minimal and it does not constitute a complete undergraduate curriculum. Every
undergraduate program must include additional elective knowledge units from the body of knowledge. This
report does not define what those units should be; that decision is the choice of each institution. A complete
curriculum must also contain supporting areas covered through courses in mathematics, natural sciences,
business, humanities, and/or social sciences. Chapter 7 presents some detail in this area.

 Core units are not necessarily limited to a set of introductory courses taken early in the undergraduate
curriculum.
Many of the knowledge units defined as core are indeed introductory. However, some core knowledge can
appear only after students have developed significant background in the field. For example, the Task Force
believes that all students must develop a significant application at some point during their undergraduate
program. The material that is essential to successful management of projects at this scale is obviously part of
the core, since it is required of all students. At the same time, the project course experience is very likely to

Page 19

Computing Curriculum – Computer Engineering Curriculum Report
Ironman Draft 2004June8

come toward the end of a student's undergraduate program. Similarly, introductory courses may include
elective knowledge units together with the coverage of core material. From a practical point of view, the
designation core simply means required and says nothing about the level of the course in which it appears.

4.5 Knowledge Units and Time Required for Coverage

To provide readers a sense of the time required to cover a particular unit, this report defines a metric that establishes
a standard of measurement. Choosing such a metric has proven difficult, because no standard measure has global
recognition. For consistency with the computer science report and earlier curriculum reports, the Task Force has
chosen to express time in hours, corresponding to the in-class time required to present that material in a traditional
lecture-oriented format. To dispel any potential confusion, however, it is important to underscore the following
observations about the use of lecture hours as a measure.

 The Task Force does not seek to endorse the lecture format. Even though this report refers to a metric with
its roots in a classical lecture-oriented form, the Task Force believes there are other styles - particularly given
recent improvements in educational technology - that can be at least as effective. For some of these styles,
the notion of hours may be difficult to apply. Even so, the time specifications should at least serve as a
comparative measure, in the sense that a five-hour unit will presumably take roughly five times as much time
to cover as a one-hour unit, independent of the teaching style.

 The hours specified do not include time spent outside of a class. The time assigned to a unit does not include
the instructor's preparation time or the time students spend outside of class. As a general guideline, the
amount of out-of-class work for a student is approximately three times the in-class time. Thus, a unit that is
listed as requiring three hours will typically entail a total of twelve hours (three in-class hours and nine
outside hours) of student effort.

 The hours listed for a unit represent a minimum level of coverage. One should interpret the time
measurements assigned to each knowledge unit as the minimum amount of time necessary to enable a student
to perform the learning objectives for that unit. It may be appropriate to spend more time on a knowledge
unit than the mandated minimum.

4.6 Core Hours and a Complete Program

The knowledge units designated as core constitute only a fraction (approximately 30%) of the total body of
knowledge. Different computer engineering programs can have different program objectives and as a result, will
have different emphases. The remainder of a specific program at an institution usually will require specific
additional knowledge units that complement the core areas, as well as elective hours chosen by individual students.
Thus, each local program should seek to encompass that portion of the body of knowledge relevant to its program
goals.

A summary of the body of knowledge—showing the areas, units, which units are core, and the minimum time
required for each—appears in Table 4-3. It consists of 18 knowledge areas; 16 relate directly to computer
engineering and 2 relate to mathematics (discrete structures, probability and statistics). The Computer Engineering
Task Force has singled out these two mathematics areas as core because some programs may not consider them
essential to computer engineering, as they would consider calculus. The details of the body of knowledge for
computer engineering appear in Appendix A.

Page 20

Computing Curriculum – Computer Engineering Curriculum Report
Ironman Draft 2004June8

Table 4-3

The Computer Engineering Body of Knowledge

Computer Engineering Knowledge Areas and Units
CE-ALG Algorithms and Complexity [30 core hours]

CE-ALG0 History and overview [1]
CE-ALG1 Basic algorithmic analysis [4]
CE-ALG2 Algorithmic strategies [8]
CE-ALG3 Computing algorithms [12]
CE-ALG4 Distributed algorithms [3]
CE-ALG5 Algorithmic complexity [2]
CE-ALG6 Basic computability theory

CE-CAO Computer Architecture and Organization [63 core hours]
CE-CAO0 History and overview [1]
CE-CAO1 Fundamentals of computer architecture [10]
CE-CAO2 Computer arithmetic [3]
CE-CAO3 Memory system organization and architecture [8]
CE-CAO4 Interfacing and communication [10]
CE-CAO5 Device subsystems [5]
CE-CAO6 Processor systems design [10]
CE-CAO7 Organization of the CPU [10]
CE-CAO8 Performance [3]
CE-CAO9 Distributed system models [3]
CE-CAO10 Performance enhancements

CE-CSE Computer Systems Engineering [18 core hours]
CE-CSE0 History and overview [1]
CE-CSE1 Life cycle [2]
CE-CSE2 Requirements analysis and elicitation [2]
CE-CSE3 Specification [2]
CE-CSE4 Architectural design [3]
CE-CSE5 Testing [2]
CE-CSE6 Maintenance [2]
CE-CSE7 Project management [2]
CE-CSE8 Concurrent (hardware/software) design [2]
CE-CSE9 Implementation
CE-CSE10 Specialized systems
CE-CSE11 Reliability and fault tolerance

CE-CSG Circuits and Signals [43 core hours]
CE-CSG0 History and overview [1]
CE-CSG1 Electrical Quantities [3]
CE-CSG2 Resistive Circuits and Networks [9]
CE-CSG3 Reactive Circuits and Networks [12]
CE-CSG4 Frequency Response [9]
CE-CSG5 Sinusoidal Analysis [6]
CE-CSG6 Convolution [3]
CE-CSG7 Fourier Analysis
CE-CSG8 Filters
CE-CSG9 Laplace Transforms

CE-DBS Database Systems [5 core hours]

CE-DBS0 History and overview [1]
CE-DBS1 Database systems [2]
CE-DBS2 Data modeling [2]
CE-DBS3 Relational databases
CE-DBS4 Database query languages
CE-DBS5 Relational database design
CE-DBS6 Transaction processing
CE-DBS7 Distributed databases
CE-DBS8 Physical database design

CE-DIG Digital Logic [57 core hours]
CE-DIG0 History and overview [1]
CE-DIG1 Switching theory [6]
CE-DIG2 Combinational logic circuits [4]
CE-DIG3 Modular design of combinational circuits [6]
CE-DIG4 Memory elements [3]
CE-DIG5 Sequential logic circuits [10]
CE-DIG6 Digital systems design [12]
CE-DIG7 Modeling and simulation [5]
CE-DIG8 Formal verification [5]
CE-DIG9 Fault models and testing [5]

 CE-DIG10 Design for testability
CE-DSP Digital Signal Processing [17 core hours]
CE-DSP0 History and overview [1]
CE-DSP1 Theories and concepts [3]
CE-DSP2 Digital spectra analysis [1]
CE-DSP3 Discrete Fourier transform [7]
CE-DSP4 Sampling [2]
CE-DSP5 Transforms [2]
CE-DSP6 Digital filters [1]
CE-DSP7 Discrete time signals
CE-DSP8 Window functions
CE-DSP9 Convolution

 CE-DSP10 Audio processing
 CE-DSP11 Image processing

CE-ELE Electronics [40 core hours]
CE-ELE0 History and overview [1]
CE-ELE1 Electronic properties of materials [3]
CE-ELE2 Diodes and diode circuits [5]
CE-ELE3 MOS transistors and biasing [3]
CE-ELE4 MOS logic families [7]
CE-ELE5 Bipolar transistors and logic families [4]
CE-ELE6 Design parameters and issues [4]
CE-ELE7 Storage elements [3]
CE-ELE8 Interfacing logic families and standard buses [3]
CE-ELE9 Operational amplifiers [4]
CE-ELE10 Circuit modeling and simulation [3]
CE-ELE11 Data conversion circuits
CE-ELE12 Electronic voltage and current sources
CE-ELE13 Amplifier design
CE-ELE14 Integrated circuit building blocks

 CE-ESY Embedded Systems [20 core hours]
CE-ESY0 History and overview [1]
CE-ESY1 Embedded microcontrollers [6]
CE-ESY2 Embedded programs [3]
CE-ESY3 Real-time operating systems [3]
CE-ESY4 Low-power computing [2]
CE-ESY5 Reliable system design [2]
CE-ESY6 Design methodologies [3]
CE-ESY7 Tool support
CE-ESY8 Embedded multiprocessors
CE-ESY9 Networked embedded systems
CE-ESY10 Interfacing and mixed-signal systems

CE-HCI Human-Computer Interaction [8 core hours]
CE-HCI0 History and overview [1]
CE-HCI1 Foundations of human-computer interaction [2]
CE-HCI2 Graphical user interface [2]
CE-HCI3 I/O technologies [1]
CE-HCI4 Intelligent systems [2]
CE-HCI5 Human-centered software evaluation
CE-HCI6 Human-centered software development
CE-HCI7 Interactive graphical user-interface design
CE-HCI8 Graphical user-interface programming
CE-HCI9 Graphics and visualization
CE-HCI10 Multimedia systems

Page 21

Computing Curriculum – Computer Engineering Curriculum Report
Ironman Draft 2004June8

CE-NWK Computer Networks [21 core hours]
CE-NWK0 History and overview [1]
CE-NWK1 Communications network architecture [3]
CE-NWK2 Communications network protocols [4]
CE-NWK3 Local and wide area networks [4]
CE-NWK4 Client-server computing [3]
CE-NWK5 Data security and integrity [4]
CE-NWK6 Wireless and mobile computing [2]
CE-NWK7 Performance evaluation
CE-NWK8 Data communications
CE-NWK9 Network management
CE-NWK10 Compression and decompression

CE-OPS Operating Systems [20 core hours]
CE-OPS0 History and overview [1]
CE-OPS1 Design principles [5]
CE-OPS2 Concurrency [6]
CE-OPS3 Scheduling and dispatch [3]
CE-OPS4 Memory management [5]
CE-OPS5 Device management
CE-OPS6 Security and protection
CE-OPS7 File systems
CE-OPS8 System performance evaluation

CE-PRF Programming Fundamentals [39 core hours]
CE-PRF0 History and overview [1]
CE-PRF1 Programming Paradigms [5]
CE-PRF2 Programming constructs [7]
CE-PRF3 Algorithms and problem-solving [8]
CE-PRF4 Data structures [13]
CE-PRF5 Recursion [5]
CE-PRF6 Object-oriented programming
CE-PRF7 Event-driven and concurrent programming
CE-PRF8 Using APIs

CE-SPR Social and Professional Issues [16 core hours]
CE-SPR0 History and overview [1]
CE-SPR1 Public policy [2]
CE-SPR2 Methods and tools of analysis [2]
CE-SPR3 Professional and ethical responsibilities [2]
CE-SPR4 Risks and liabilities [2]
CE-SPR5 Intellectual property [2]
CE-SPR6 Privacy and civil liberties [2]
CE-SPR7 Computer crime [1]
CE-SPR8 Economic issues in computing [2]
CE-SPR9 Philosophical frameworks

CE-SWE Software Engineering [13 core hours]
CE-SWE0 History and overview [1]
CE-SWE1 Software processes [2]
CE-SWE2 Software requirements and specifications [2]
CE-SWE3 Software design [2]
CE-SWE4 Software testing and validation [2]
CE-SWE5 Software evolution [2]
CE-SWE6 Software tools and environments [2]
CE-SWE7 Language translation
CE-SWE8 Software project management
CE-SWE9 Software fault tolerance

CE-VLS VLSI Design and Fabrication [10 core hours]
CE-VLS0 History and overview [1]
CE-VLS1 Electronic properties of materials [2]
CE-VLS2 Function of the basic inverter structure [3]
CE-VLS3 Combinational logic structures [1]
CE-VLS4 Sequential logic structures [1]
CE-VLS5 Semiconductor memories and array structures [2]
CE-VLS6 Chip input/output circuits
CE-VLS7 Processing and layout
CE-VLS8 Circuit characterization and performance
CE-VLS9 Alternative circuit structures/low power design
CE-VLS10 Semi-custom design technologies
CE-VLS11 ASIC design methodology

Mathematics Knowledge Areas and Units
CE-DSC Discrete Structures [33 core hours]

CE-DSC0 History and overview [1]
CE-DSC1 Functions, relations, and sets [6]
CE-DSC2 Basic logic [10]
CE-DSC3 Proof techniques [6]
CE-DSC4 Basics of counting [4]
CE-DSC5 Graphs and trees [4]
CE-DSC6 Recursion [2]

CE-PRS Probability and Statistics [33 core hours]
CE-PRS0 History and overview [1]
CE-PRS1 Discrete probability [6]
CE-PRS2 Continuous probability [6]
CE-PRS3 Expectation [4]
CE-PRS4 Stochastic Processes [6]
CE-PRS5 Sampling distributions [4]
CE-PRS6 Estimation [4]
CE-PRS7 Hypothesis tests [2]
CE-PRS8 Correlation and regression

 The core hours as specified in Table 4-3 total 420 hours of computer engineering and 66 hours of mathematics.
Recall that an hour refers to a lecture hour and not a credit hour. Assuming a typical 15-week semester, a typical
three-credit-hour course would have about 42 lecture hours for presentation of material. That is, approximately 14
lecture hours are equivalent to 1 semester credit hour. The 420 core computer engineering hours are thus roughly
equivalent to ten three-credit-hour courses or 30 semester credit hours. The 30 semester credit hours is
approximately one quarter of the 128 credit hours included in a typical four-year engineering program. The 420
core hours leave ample room for the addition of laboratory courses, a culminating design project, and electives that
allow an institution to customize their program.

 In the United States, for example, ABET accreditation criteria currently requires one and one-half years
(approximately 48 semester hours) of engineering topics; it also requires one year (32 semester hours) of
mathematics and basic science. The 48 semester hours are equivalent to 672 contact hours. Therefore, the 420 core
hours listed in Table 4.3 would constitute approximately two-thirds of the required minimum engineering content.

Page 22

Computing Curriculum – Computer Engineering Curriculum Report
Ironman Draft 2004June8

Programs often categorize the discrete structures area and the probability and statistics area as mathematics rather
than engineering or computing areas.

 Figure 4.1 illustrates a four-year model program. It includes 1.0 year of mathematics and science, 1.0 year of
computer engineering core, 0.5 year of computer engineering electives, 0.5 year of additional engineering studies,
and 1.0 year of general studies. The model is adaptable to any worldwide system of study. In those countries where
general studies precede university studies, a three-year model may be created, as shown in Figure 4.2, by removing
the year of general studies and introductory mathematics and science. Appendix B includes examples of both four-
year and three-year curricula.

Computer Engineering Topics

Math
and

Science

Core

CPE Topics

Elective

CPE
Topics

Additional Topics

(from engineering, mathematics,
general studies, and other topics

based on program objectives)

1 year 1 year 0.5 years 1.5 years

Figure 4.1. Organization of a four-year computer engineering curriculum.

Computer Engineering Topics

Math
and

Science

Core

CPE Topics

Elective

CPE
Topics

Additional Topics

(from engineering,

mathematics, and other
topics based on

program objectives)

1 year 1 year 0.5 years 1.5 years

Figure 4.2. Organization of a three-year computer engineering curriculum.

Page 23

Computing Curriculum – Computer Engineering Curriculum Report
Ironman Draft 2004June8

Chapter 5

Integration of Engineering Practice into the
Computer Engineering Curriculum

B

y its very nature, any curriculum in computer engineering should reflect an engineering ethos that permeates
all years of the curriculum in a consistent manner. Such an approach has the effect of introducing students
to engineering (and in particular computer engineering), teaching them to think and function as engineers,

and setting expectations for the future. Preparation for professional practice is essential since engineering, unlike
such professions as law and medicine, generally does not require an advanced degree for employment in the field.

 The role of this chapter is to go beyond the body of knowledge introduced in Chapter 4 and to examine the
basic skills necessary to enable the computer engineering graduate to apply this body of knowledge to real-world
problems and situations. Chapter 6 will then address the important matter of professionalism, and Chapter 7 will
consider overall curriculum design, along with introducing sample curriculum implementations given in Appendix
B.

5.1 The Nature of Computer Engineering

An important initial aspect of the engineering ethos relates to acquiring the background necessary to understand and
to reason about engineering concepts and artifacts. This background stems from fundamental ideas in areas such as
computing, electronics, mathematics and physics and students need to acquire familiarity and facility with these
concepts. An important role of the body of knowledge for computer engineering is to expose and develop these
fundamental notions. In many ways, the core of the body of knowledge reflects a careful set of decisions about
selection of material that fulfils this role.

 This basic material then provides underpinning for additional material whose ultimate expression is the building
of better as well as novel computing systems. A blend of theory and practice, with theory guiding practice, appears
to be the best approach to the discipline. The curriculum should accompany this blend with attention to a set of
professional, ethical, and legal concerns that guide the activities and attitudes of the well-educated computer
engineer. The curriculum should also foster familiarity with a considerable range of diverse applications.

5.2 Design in the Curriculum

In Chapter 2 of this report, a brief discussion on the characteristics of a computer engineer included the ability to
design and provided a definition of engineering design.

5.2.1 Design Throughout the Curriculum

The principles of engineering design must pervade the entire computer engineering curriculum to produce
competent graduates. Throughout their education, computer engineering students should encounter different
approaches to design so that they become familiar with the strengths and weaknesses of these approaches.
Typically, the context in which design occurs provides a framework to decide which choices one must make.
Depending on the specific application requirements, the design context may emphasize technical considerations,
reliability, security, cost, user interface, or other considerations. Development of the requisite design skills cannot
be achieved through a single course, but must be integrated throughout the curriculum, building on both the
students’ accumulated technical knowledge and prior design experiences.

Page 24

Computing Curriculum – Computer Engineering Curriculum Report
Ironman Draft 2004June8

 One area of particular concern to the computer engineer is the software/hardware interface where difficult trade-
off decisions often provide engineering challenges. Considerations on this boundary lead to an appreciation of and
insights into computer architecture and the importance of a computer’s machine code. At this boundary, difficult
decisions regarding hardware/software trade-offs can occur and this leads naturally to the design of special purpose
computers and systems. For example, in the design of a critical-safety system, it is important to ensure that the
system not harm the user or the public. The computer engineer must thoroughly test, even with unlikely parameters,
the hardware and software, and ultimately the system itself, to ensure the proper and reliable operation of the
system.

 At a different level, there are all the difficult issues of software design, including the human-computer interface.
Addressing this comprehensively can lead to considerations about multi-media, graphics, animation, and a whole
host of technologies. Similarly, one can make the same argument for issues in hardware design. In short, design is
central to computer engineering.

5.2.2 The Culminating Design Experience

The concept of a culminating design project is widely valued as an important experience that occurs toward the end
of a curriculum. Students consider a significant problem associated with a discipline and, in solving the problem,
they have the opportunity to demonstrate their ability to provide a solution. Typically, the solution must involve the
design and implementation of some product containing hardware and/or software components. The design
experience often includes cross-disciplinary teams, which best reflects industry practice. Ideally, the design
experience should incorporate engineering standards and realistic constraints to represent what may occur in a real
environment.

 The culminating design experience should provide students with a wealth of learning benefits. The benefits
stemming from this experience include:

 Demonstration of the ability to integrate concepts from several different subjects into a solution
 Demonstration of the application of disciplines associated with computer engineering
 Production of a well-written document detailing the design and the design experience
 Demonstration of creativity and innovation
 Development of time management and planning skills
 Self-awareness opportunities provided by an assessment of achievement as part of a final report

Depending on the approach to assessment, other opportunities arise. Assessment may include a demonstration, a
presentation, an oral examination, production of a web page, industry review, and many other interesting
possibilities. Although not listed in the core body of knowledge, the culminating design experience must be an
integral part of the undergraduate experience.

5.3 The Laboratory Experience

The laboratory experience is an essential part of the computer engineering curriculum and serves multiple functions.
As in any engineering curriculum, it is important that computer engineering students have many opportunities to
observe, explore and manipulate characteristics and behaviors of actual devices, systems, and processes. This
includes designing, implementing, testing, and documenting hardware and software, designing experiments to
acquire data, analyzing and interpreting that data, and in some cases, using that data to correct or improve the
design. A laboratory setting most effectively demonstrates such experiences either as an integral part of a course or
as a separate stand-alone course.

Introductory laboratories are somewhat directed and designed to reinforce concepts presented in lecture classes
and homework. Such activities demonstrate specific phenomena or behavior, and provide experiences with
measuring and studying desired characteristics. Intermediate and advanced laboratories should include problems
that are more open-ended, requiring students to design and implement solutions, to design experiments to acquire
data needed to complete the design or measure various characteristics.

 Laboratories should include some physical implementation of designs such as electronic and digital circuits,
bread-boarding, microprocessor interfacing, prototyping, and implementation of hardware and software.

Page 25

Computing Curriculum – Computer Engineering Curriculum Report
Ironman Draft 2004June8

Laboratories should also include application and simulation software to design small digital and computer systems.
The use of simulation tools to model and study real systems is often desirable and necessary to allow students to
study systems that are not practical to design and implement physically. Such tools would also be useful where it
might be difficult to acquire the detailed information necessary to study their behavior.

 Students should learn to record laboratory activity to document and keep track of all design activities,
conducted experiments, and their measured/observed results whether good or bad. It also offers opportunities to
record trade-offs and to explore the effects of those design tradeoffs. The laboratory experience should also assist
students in learning practical issues, such as the following:.

 Safety in all laboratories, especially where electronic equipment and electricity pose dangers
 Proper use of computers and other test equipment
 Building electronic circuits and devices
 Understanding the processes and concerns associated with product development and manufacturing
 Recognizing opportunities for trade-offs and being able to resolve decisions in this area; the trade-off between

hardware and software is of particular concern
 Treating laboratories as places of serious study and endeavor

 At the formative stages of their education, students often are motivated by the “hands-on” nature of engineering.
The laboratory experience capitalizes on this interest to provide a foundation for other important elements of
practical activity. Fundamentally, carefully planned practical assignments in a laboratory setting should help
students develop confidence in their technical ability. The laboratory experience should help students develop the
expertise to build new devices and to appreciate the important role of technical staff, workshop teams, and
professionals from other disciplines.

5.4 The Role of Engineering Tools

The use of tools is fundamental to engineering to effectively organize information and manage design complexity.
Familiarity with commonly used tools, the ability to deploy them in appropriate situations, and the ability to use
them effectively are important skills. Recognizing the potential for tool use is a highly valued skill and in non-
standard contexts can provide important insights. In the rapidly changing world of computer engineering, there are
opportunities for identifying roles for new tools. The development and exploitation of high quality tools is part of
the role of the computer engineer.

 For the computer engineer, the relevant range of tools spans the whole hardware and software spectrum.
Hardware design and analysis tools include instruments for measuring and analyzing hardware behavior, VLSI
design software, hardware description language and other design modeling tools, simulators and emulators, and
debugging tools. Other hardware tools include those to support circuit design, printed circuit design layout,
analyzing circuit behavior, block diagrams creation and editing, modeling communications systems, modeling
mixed analog and digital simulation, design rule checking, and virtual instruments. Software design and analysis
tools include operating systems, editors, compilers, language processors, debuggers, and computer-aided software
engineering (CASE) tools. General support tools include mathematical analysis programs (e.g. MATLAB,
MathCad), office software (word processors, spreadsheets, browsers, and search engines), databases,
communications software, and project management tools.

 Not every computer engineering program will incorporate all of these tools. The program should incorporate
appropriate tools throughout the program of study, consistent with the program’s goals and objectives. Identifying
the scope for the development of tools and components generally is yet another role for the computer engineer. A
natural subsequent activity is engaging in the design and development of these. Such activities need to be guided by
concerns for quality in all its different guises – safety, usability, reliability, and so on.

5.5 Applications of Computer Engineering Principles

Page 26

Computing Curriculum – Computer Engineering Curriculum Report
Ironman Draft 2004June8

Given the nature of computer engineering and the expectations of students entering such courses, applications play a
fundamental role. Instructors can use applications as a means for:

 Motivating students in their studies
 Guiding their thinking and ambition
 Providing justification for the inclusion and the prominence of certain material
 Demonstrating the application of theoretical ideas

A program can achieve these attributes through a whole range of possible routes. These include the use of up-to-
date and topical case studies, guided reading, assessments, speakers from industry, and other diverse paths. This
experience can happen at a whole range of levels including chip design, software tools, and entire systems. Suitable
applications can also provide a forum for group work, perhaps of an interdisciplinary nature. To this end, all
computer engineering students should engage in an in-depth study of some significant application that uses
computing engineering in a substantive way.

 Computer engineering students will typically have a wide range of interests and professional goals. For many
students, in-depth study of some aspect of computer engineering will be extremely useful. Students might
accomplish such work in several ways. Some approaches might include an extended internship experience or the
equivalent of a full semester's work that would count toward a major in that discipline. Some institutions offer
cooperative education programs in which students alternate terms of study and engineering work in industry.
Activities of this kind can be interdisciplinary in nature and provide opportunities for particularly beneficial kinds of
group activity. Thus, the computer engineer may have to work with professionals from other disciplines, which may
include computer scientists, electrical engineers, financial experts, marketers, and product designers.

5.6 Complementary Skills

With the relatively recent worldwide expansion in higher education, there are pressures on institutions to ensure that
graduates have the capacity to meet the needs of employers. Indeed, in many ways a more positive view is that
institutions appear as agents of change capable of moving into employment with skills and expectations that ensure
that organizations benefit from their presence and involvement.

 One aspect of this is to ensure that students possess a set of transferable or personal skills such as
communication skills, group working skills, and presentational skills. Transferable skills are those skills a person
can use in any occupation and can convey them from one type of work to another without retraining. Additionally,
one could include library and research skills as well as professional skills such as time management, project
management, information management, career development, self-awareness, and keeping up-to-date with
innovations in the field. From a motivational perspective, one should assess these skills in the context of computer
engineering and in a manner that highlights their relevance and importance to the discipline.

 There is always a danger that time spent on complementary skills can absorb excessive amounts of time and
effort and swamp or displace the more traditional material, thereby reducing knowledge. There are delicate issues of
balance here, and typically, a subtle approach to both teaching and assessment is required to ensure that there is not
imbalance in the curriculum.

5.7 Communication Skills

Computer engineers must be able to communicate effectively with colleagues and clients. Because of the
importance of good communication skills in nearly all careers, students must sharpen their oral and writing skills in
a variety of contexts—both inside and outside of computer engineering courses.

 One particular aspect of the activity of a computer engineer is to pass project requirements to a workshop or to
technical support staff, which in an industrial setting may be local or remote. Providing clear and succinct
instructions and having a proper regard for the role and purpose of support staff affects the efficiency and the nature
of the working environment. This trait is a fundamental communication skill. Considering these issues, students
should learn to:

Page 27

Computing Curriculum – Computer Engineering Curriculum Report
Ironman Draft 2004June8

 Communicate ideas effectively in written form; this should include technical writing experiences (e.g. of
specifications, requirements, safety cases, documentation) as well as report writing and this should address
the use of figures, diagrams and appropriate references

 Make effective oral presentations, both formally and informally
 Understand and offer constructive critiques of the presentations of others
 Argue (politely yet effectively) in defense of a position
 Extract requirements from a customer by careful and penetrating questions using a disciplined and structured
approach

 Demonstrate the capabilities of a product

While institutions may adopt different strategies to accomplish these goals, the program of each computer
engineering student must include numerous occasions for improving these skills in a way that emphasizes writing,
speaking, and active listening skills.

 To enhance or emphasize the requisite communication skills needed by all students, a computer engineering
curriculum at a minimum should require:

 Course work that emphasizes the mechanics and process of writing
 Course work that emphasizes the mechanics and process of speaking
 One or more formal written reports
 Opportunities to critique a written report
 One or more formal oral presentations to a group
 Opportunities to critique an oral presentation

Furthermore, the computer engineering curriculum should integrate writing and verbal discussion consistently in
substantive ways. Institutions should not view communication skills as separate entities; instead, teachers should
incorporate fully such skills into the computer engineering curriculum and its requirements.

 A complementary and important set of communication skills arise in the context of electronic media.
Increasingly these have a central role to play in the life of the engineer. Apart from the obvious need to address
areas such as email and web design, students should engage at some level the ideas on effective cooperative working
and group learning, which have an increased prominence in the curriculum.

5.8 Teamwork Skills

Few computer engineering professionals can expect to work in isolation for very much of the time. Major computer
engineering projects are often, if not always, implemented by groups of people working together as a team. Many
times the teams are interdisciplinary in nature. Computer engineering students therefore need to learn about the
mechanics and dynamics of effective team participation as part of their undergraduate education. Moreover,
because the value of working in teams (as well as the difficulties that arise) does not become evident in small-scale
projects, students need to engage in team-oriented projects that extend over a reasonably long period of time,
possibly a full semester or a significant fraction thereof.

 Many of the problems of teamwork relate to communication skills. Where multi-disciplinary teams are
involved, individuals tend to receive roles, at least in part, based on their technical expertise. In team activity,
however, there are important additional issues related to such matters as the nature and composition of teams, roles
within teams, organizing team meetings, developing methods of reaching consensus and for recording decisions, the
importance of interfaces, the nature of deadlines and planning, and the importance of quality control mechanisms.
Computer engineering programs should include activities that ensure students have the opportunity to acquire these
skills as undergraduates; for example:

 Opportunities to work in teams beginning relatively early in the curriculum
 A significant project that a small student team undertakes that involves a complex design and implementation
of some product or prototype

5.9 Lifelong Learning Skills

Page 28

Computing Curriculum – Computer Engineering Curriculum Report
Ironman Draft 2004June8

Rapid technological change has been a characteristic of computer engineering and is likely to remain so for some
time to come. Graduates must be able to keep up-to-date with that change and a key requirement of undergraduate
education is to equip them with the mechanisms for achieving this.

 A number of basic strategies seem appropriate. First, the curriculum itself must be up-to-date, the equipment
has to be up-to-date, and faculty members need to be engaged in relevant scholarship. Relevant reference material
such as textbooks, software, web sites, case studies, and illustrations can be part of the learning experience with the
aim of identifying sources of up-to-date and interesting information. In addition, more considerations are
fundamental.

 Lifelong learning is essentially an attitude of mind. Institutions can foster such attitudes by novel approaches to
teaching and learning that continually question and challenge situations and by highlighting opportunities for
advances. Instructors can challenge students by assessments and exercises that seek to explore new avenues. It is
also essential to see learning as an aspect that merits attention throughout the curriculum. It is possible to have a
planned learning experience that challenges student thought processes. Table 4.4 suggests stages that [Fellow,
2002] identified in which learning is possible and the manner of participation by student and teacher.

Table 4.4
Learning Stages

Stage Student Instructor Instructional Example

1 Dependent Authority/coach Lecture, coaching
2 Interested Motivator/guide Inspirational lecture, discussion group
3 Involved Facilitator Discussion lead by instructor who participates as equal
4 Self-directed Consultant Internships, dissertation, self directed study group

5.10 The Business Perspective

To complement the technical side of their experiences, computer engineer needs to have an understanding of the
various non-technical processes associated with the development of new products. Fundamentally, the computer
engineer needs to develop an appreciation of creativity and innovation and have an eye to new opportunities for the
creation of wealth, both within established companies and in entrepreneurial ventures. Students can benefit from
such knowledge in multiple ways, including:

 Understanding the importance of the financial and economic imperatives associated with new products and
organizations

 Appreciating the relevance of the marketing perspective
 Knowing what is involved in product design and product acceptability
 Appreciating the benefits of teamwork, often multi-disciplinary in nature

In addition, students need to appreciate their fiscal responsibilities to their employers. Time translates to money and
the importance to complete jobs on schedule becomes important. The business world can also present trade-offs
between corporate needs and ethics. Students should be aware of the professional challenges that may await them in
government or corporate service.

 Within the computer engineering curriculum, such topics may be covered in separate courses (for example,
economics, engineering economics, marketing, or accounting), included as part of the culminating design project, or
integrated into other courses throughout the program.

5.11 The Elements of an Engineering Education

In summary, proper preparation for professional practice should result in graduates who are capable of the
following:

Page 29

Computing Curriculum – Computer Engineering Curriculum Report
Ironman Draft 2004June8

 Seeing their discipline as based on sound principles and sound underpinnings, to recognize what these are,
and to be able to apply them

 Understanding the important relationship between theory and practice
 Placing importance on design and being able to select appropriate approaches in particular contexts
 Recognizing the importance of understanding the relevant professional, ethical, and legal issues and the
framework

 Recognizing the importance of tools; being able to respond to the challenges of building them and
recognizing the need to use these properly and effectively

 Recognizing the range of applications for their work
 Seeing innovation and creativity as important and understanding relevant business perspectives and
opportunities

 Recognizing the importance of team activity and the strengths that can be derived from this
 Understanding principles of product design including health and safety as well as marketing issues
 Seeing disciplined approaches as being important
 Understanding the social context within which engineers needs to operate
 Being able to address a significant problem in computer engineering, and demonstrating the ability to deploy
an appropriate selection of tools and techniques as well as a disciplined approach in arriving at a solution of
the problem

Beyond these characteristics, this chapter has sought to address the range of basic ingredients that institutions must
assemble and carefully integrate into a computer engineering program to ensure that graduates are aware of the best
traditions of engineering practice.

Page 30

Computing Curriculum – Computer Engineering Curriculum Report
Ironman Draft 2004June8

Chapter 6

Professionalism

O

ne aspect that makes computer engineers different from other computing specialists is their concentration on
computer systems that include both hardware and software. Computer engineers design and implement
computing systems that often affect the public and should hold a special sense of responsibility knowing that

almost every element of their work can have a public consequence. Hence, computer engineers must consider the
professional, societal, and ethical context in which they do their work. This context includes many issues such as
intellectual property rights embodied by copyrights and patents, legal issues including business contracts and law
practice, security and privacy issues as they apply to networks and databases, liability issues as applied to hardware
and software errors, and economic issues as they apply to tradeoffs between product quality and profits. It also
includes equity issues as they apply to technological access for all individuals. Computer engineers must be aware
of the social context of their actions and be sensitive to the global implications of their activities.

6.1 Introduction

The social context of engineering should be an integral component of engineering design and development. The
public would not expect that the design and construction of a building, bridge, or tunnel would be void of social
context. Likewise, it would not expect that the design and construction of a computer system used in an x-ray
machine would be void of that same context. Computer engineers should apply best practices to their work. They
should also follow prescribed rules of professional practice and not engage in activities that would tarnish their
image or that of their practicing colleagues.

 Professionalism and ethics should be the cornerstone of any curriculum in computer engineering. The focus on
design and development makes social context paramount to one’s studies in the field. Professionalism should be a
constant theme that pervades the entire curriculum. Computer engineering students must learn to integrate theory,
professional practice, and social constructs in their engineering careers. Computing professionalism should be a
major emphasis of the curriculum.

6.2 Decisions in a Societal Context

As designers of computing systems, computer engineers will face many decisions in their careers. While most of
these decisions will be technical ones, others will involve a significant societal context. Computer engineers should
understand the legal ramifications of contract law, business organization and management, and corporate law.

 Of particular importance are issues related to intellectual property. An understanding of patent law is important,
particularly when the companies for whom they work may have an active patent program. It is also necessary to
understand copyrights since many employers copyright the software they produce. Another method of protecting
intellectual property is the use of trade secrets. Different governments have different laws regarding patents,
copyrights, and trade secrets. Since the computer engineer will be working in a global context, an understanding of
patents, copyrights, and trade secrets and their application is important.

 The topics of privacy and secrecy are fundamental to computing. Computers can store vast amounts of
information about individuals, businesses, industries, and governments. People can use this information to create
profiles of these entities. Computer engineers who are involved in the design of information storage systems must
be cognizant of the multiple uses of the systems they develop. Computer engineering students should study cases
that trigger an awareness of the social context of how information systems maybe used.

Page 31

Computing Curriculum – Computer Engineering Curriculum Report
Ironman Draft 2004June8

 Computer engineers will most certainly have to deal with tradeoffs. Sometimes these are technical decisions
such as time versus space tradeoffs in a computer system. Sometimes, however, they involve social, economic, or
ethical tradeoffs. Such decisions can be about levels of risk, product reliability, and professional accountability.
Computer engineers must be aware of the ramifications of taking risks, be aware of the social consequences, be
accountable for the designs they develop, and be aware of the actions they take. These decisions may even involve
safety critical systems or life/death situations. Good engineers should not only be cognizant of the societal effects of
such decisions, but they should take measures to act professionally to protect the public and to nurture the public
trust.

 Best practices begin in the instructional laboratory. Educational institutions should encourage behavioral
patterns in laboratories that reflect best practices. Such patterns set a level or norm of behavior and elevate the
professional expectations of students. They also create a learning environment that is supportive of the professional
tenets to which computer engineers aspire. For example, institutions should establish safety guidelines for the
proper use of machines and equipment. Institutions should also provide guidelines on interpersonal skills between
students, students working in groups, and students interacting with technicians in a laboratory setting. Institutions
should instill a sense of professionalism and best practices in all computer engineering students.

 Morality is another aspect of making decisions in a societal context. A computer engineer should be aware that
many systems of morality exist. Case studies can be helpful to students so they understand the environments in
which they will have to function.

6.3 Fostering Professionalism

The issues highlighted in the previous sections have led many professional societies to develop codes of ethics and
professional practice for their constituencies. These codes help practitioners to understand expected standards of
professional conduct and the expectation among member practitioners. These codes also provide public information
concerning the precepts considered central to the profession. These codes provide a level playing field for
professionals with the prospects of avoiding ethical dilemmas whenever possible and helping professionals “do the
right thing” when faced with ethical decision making during their course of professional practice. In computing,
these codes are often binding upon the members of a society and they provide guidance in helping professionals
make decisions affecting their practice. Some of these codes include:

 National Society of Professional Engineers - NSPE Code of Ethics for Engineers [NSPE 2003]
 Institute of Electrical and Electronic Engineers (IEEE): IEEE Code of Ethics [IEEE 2001]
 Association for Computing Machinery (ACM): ACM Code of Ethics and Professional Conduct [ACM 2001]
 ACM/IEEE-Computer Society: Software Engineering Code of Ethics and Professional Practice
[ACM/IEEECS 1999]

 International Federation for Information Processing (IFIP): Harmonization of Professional Standards and
also Ethics of Computing [IFIP 1998]

 Association of Information Technology Professionals (AITP): AITP Code of Ethics and the AITP Standards
of Conduct [AITP 2002]

Computer engineers can use the codes of these societies to guide them to make decisions in their engineering
careers.

 Although each of these codes focus on the particular purposes of the society or societies sponsoring them,
common themes pervade all of them. Fundamental to all these codes are the responsibilities of the computing and
engineering professional to the public and to the public good. Additionally, these codes address issues of conflicts
of interest, scope of competence, objectiveness and truthfulness, deception, and professional conduct.

 The precepts delineated within these codes should be the hallmark of all practicing computer engineers.
Computer engineers should adopt the tenets of these codes of ethics and professional practices in all the work they
do. It is incumbent upon educational programs to educate computer engineers to embrace these tenets for the benefit
of their own careers and for the benefit of the computing and engineering professions.

Page 32

Computing Curriculum – Computer Engineering Curriculum Report
Ironman Draft 2004June8

 The inclusion of professional ethics in a computing engineering curriculum is fundamental to the discipline. A
listing of topics appears under the social and professional issues (CE-SPR) area as part of the body of knowledge for
computer engineering (see Appendix A).

6.4 Summary

Computer engineers have shaped much of the technology we use today. Indeed, computer engineers will continue to
involve themselves to shape the technology we use in the future. The computer engineer must apply the principles
of best practices in designing and developing new technologies. Computer engineers should be aware of the
dilemmas they might face and they must weigh the options in responding to these dilemmas. Using codes of ethics
is a concrete approach to avoid potential problems and to resolve those that exist.

 Additionally, computer engineers should understand that the technology they design may affect not only a small
group of people, but all of society. For example, a company could design a product in one country, develop the
product in a second country, and manufacture it in a third company. People from those and many other countries
could use it. Computer engineers may be involved in all aspects of the product -- from its design to its delivery.
Therefore, computer engineers should be sensitive to the customs and laws affecting those people involved in the
entire process.

 Computer engineers must be aware of entrepreneurial and business developments and the importance of
accounting, marketing, and finance. Many computer engineers will become project leaders; in that setting, they
must develop an understanding in the management of multi-disciplinary teams and working groups in industry and
government. Levels of such responsibility are part of being a professional and should be continuously cultivated
throughout one’s studies and career.

 It is incumbent upon all computer engineers to uphold the tenets of their profession and to foster the codes of
professional practice for their colleagues or students.

Page 33

Computing Curriculum – Computer Engineering Curriculum Report
Ironman Draft 2004June8

Chapter 7

Curriculum Implementation Issues

T

he creation of a complete degree program (an entire program of study) is far from straightforward. The body
of knowledge provides a starting point, but many other influences contribute to the creation of the
curriculum. The purpose of this chapter is to explore issues in the design and creation of a complete

computer engineering degree program. These issues include specifics such as packaging material from the BOK
into courses, determining required mathematics and science courses, and more general considerations such as
creating an overall style or ethos for a particular computer engineering degree program.

7.1 General Considerations

A computer engineering program requires a great variety of knowledge, practical skills, transferable skills, and
attitudes that need consideration within the one single framework. A program should exhibit an obvious and
consistent ethos that permeates a complete program of study. Students who enjoy and respond to particular
approaches can be confident that they will continue to enjoy and be successful at the more advanced levels.

 One key issue is how to distribute, among the fours years of study, relatively settled material (e.g., circuits or
supporting mathematics courses) versus material that is more recent. Computer engineering is a discipline in which
the rate of change is very swift and this is likely to remain so. Traditional approaches to course design suggest that
fundamental and core material should appear at the start of a program. By its very nature, the logic of this is that
this material should exhibit a level of permanence and durability and should be unlikely to change over the lifetime
of the program. Then students can build on these foundations as they move forward to the later parts of the program
and continue as lifelong learners.

 This view requires tempering by consideration of the students’ point of view. Students who choose to study
computer engineering are often motivated by the hands-on nature of engineering, as well as their prior experience
with computers. During their initial academic terms, if students only take courses on mathematics and science,
without obvious computer engineering applications, it may create a situation of frustration and disillusionment.

 It is desirable to position topics involving very new topics in the later years. These new topics are often at the
forefront of research and development and after studying them, students can genuinely claim to be up-to-date in
their subject area. That is important since they enter industry or employment as the agents of technology change and
transfer. Other considerations will also influence the characteristics of a particular degree program. These
considerations include:

 Local needs (institutional or regional)
 Needs of an increasingly diverse student population, and
 Interests and background of the faculty

 In some cases, an institution may want to design a computer engineering degree program that focuses on one
specific area of computer engineering or perhaps gives students a choice among a few such areas. A variety of
specialized degree programs is perfectly achievable within the general framework. Included, for example, would be
degrees with particular orientations in areas such as computer communications, embedded computer systems,
system level integration, mobile computing systems, computer systems design, computer devices, digital signal
processing, multi-media systems, computing and broadcasting, pervasive computing, high integrity computing
systems, and real-time systems.

 Another consideration is how many modules can be designed specifically for computer engineering students
and how many will be shared with either (or both) of computer science or electrical engineering curricula. For
instance, institutions may construct a computer engineering curriculum with one of the following alternative options.

Page 34

Computing Curriculum – Computer Engineering Curriculum Report
Ironman Draft 2004June8

 There may be enough students in computer engineering to justify the provision of specialist courses devised
solely for computer engineering students

 Alternatively, computer engineers might attend classes offered from the computer science and electrical
engineering curricula with additional selected classes being mounted specifically to address the specialist
topics for computer engineering students

 Additional possibilities also exist depending on local arrangements and circumstances

7.2 Basic Computer Engineering Components

In assembling the curriculum, institutions must package material into modules, typically into classes or courses.
Different institutions will possess different conventions about classes. In keeping with the spirit of the Computer
Science Report, the Task Force suggests that program designers think in terms of introductory, intermediate, and
advanced classes in computer engineering. These need to encompass and reflect the elements of the engineering
ethos identified in Chapter 5 as well as the requirements of the professional, legal and ethical issues outlined in
Chapter 6.

7.2.1 Introductory Courses and the Core

It is important to ensure that the curriculum includes at least the minimum coverage specified in the core of the body
of knowledge. The core itself does not constitute a curriculum. The Computer Engineering Task Force wished to
allow different institutions to devise different and novel curricula that would incorporate the core in different and
varied ways.

 Introductory courses are the first courses that students encounter and are extremely important. Almost of
necessity, they will tend to focus on material from the core and will tend to be compulsory. However, institutions
wishing to address the specific needs of students who already have considerable experience and competence in core
material (e.g. of programming) may permit some form of recognition of this experience.

7.2.2 Intermediate Courses

By their very nature, intermediate courses provide a bridge between introductory courses and advanced courses.
They may well include core material but could also include material that falls outside the core. Intermediate courses
will typically have introductory courses or other intermediate courses as prerequisites. Typically, these courses
occur at second and third year level. Students may have a choice of intermediate courses, but such choices are likely
to be limited.

7.2.3 Advanced Courses

The term “advanced course” should mean those courses whose content is substantially beyond the material of the
core. The knowledge units give testimony to the rich set of possibilities that exist for these. Institutions will wish to
orient such courses to their own areas of expertise, guided by the needs of students, the expertise of faculty members
and the needs of the wider community. They will reflect leading edge developments and reflect the stated
orientation of the degree program. However, if specific core units are not included in the introductory and
intermediate phase, the institution must then ensure that students acquire this material in advanced courses.
Institutions should give students a reasonable choice of advanced courses so that they can specialize in areas of
choice, consistent with program objectives.

7.2.4 Culminating Project

The culmination of the study of computer engineering should include a final year project that requires students to
demonstrate the use of a range of knowledge, practices and techniques in solving a substantial problem. This
culminating experience can synthesize a broad range of undergraduate learning and can foster teamwork and
professional practice among peers. The culminating project is essential to every computer engineering program.

7.2.5 Engineering Professional, Ethical, and Legal Issues

Page 35

Computing Curriculum – Computer Engineering Curriculum Report
Ironman Draft 2004June8

The curriculum must address the elements of the engineering ethos as well as professional, legal, and ethical issues
with progression and integration taking place within these elements as well as within the technical domain.
Addressing this vast array of requirements presents a complex task. If an institution treats the various requirements
separately and in an undisciplined fashion, the result will be less than satisfactory.

 Earlier, mention was made of the importance of giving attention to creativity and innovation in a computer
engineering context. It is worth remarking that certain approaches to the other important matter of professional,
legal, and ethical matters can have the highly undesirable effect of stifling beneficial innovation. Teachers need to
recognize this and indeed take positive steps to counter such trends. It is most important to ensure that the balance is
heavily in favor of beneficial innovation and creativity.

 A program may choose to include courses on topics such as ethics, business, or legal issues taught by specialists
in those fields. However, such courses do not eliminate the need to address these topics in the context of computer
engineering.

7.2.6 Communication Skills

Students in computer engineering must be able to communicate ideas effectively in writing and in both formal and
informal oral presentations. Therefore, computer engineering programs must develop in their students the ability to
present both technical and non-technical material to a range of audiences using rational and reasoned arguments.
The manner of presentation includes oral, electronic, and written methods that are necessary for all engineering
programs. While courses taught outside of computer engineering may contribute to achieving these skills, it is
essential that appropriate communication requirements be included in computer engineering courses. This is
necessary to ensure that students have the ability to communicate discipline-specific content; further, such activities
contribute to the students’ learning of technical material.

7.2.7 Assessment of Student Learning

One should observe a number of important considerations in the assessing of students’ learning beyond those that
apply to all university learning.

 There is the issue of coursework; many topics lend themselves naturally to practical laboratory work. It is
normally desirable to ensure that the practical work counts towards the final assessment; indeed some would
take the view that a pass in the practical activity should be mandatory for a pass overall. All aspects of the
practical activity must be of high quality

 Where there are sophisticated technical skills involved, there should be sufficient time provided for laboratory
experiences with support for the students to ensure that they are learning the material and acquiring effective
skills.

 When assessing transferable skills, there is merit in integrating this assessment with the assessment of computer
engineering activity. In this manner, the skills manifest themselves in their natural setting and students learn ways
to address them. An additional advantage of this approach is that it serves to reduce the assessment load.

7.3 Courses Often Taught Outside of Computer Engineering

Beyond the technical courses specifically on computer engineering, a number of other courses reflect material that
needs inclusion within the curriculum. For example, computer engineering students must learn a certain amount of
mathematics and science, which form the basis for engineering. In this subsection, we discuss various materials that
students must learn, but that typically appear in courses outside of the department where computer engineering
resides.

7.3.1 Mathematics Requirements

Page 36

Computing Curriculum – Computer Engineering Curriculum Report
Ironman Draft 2004June8

Mathematical techniques and formal mathematical reasoning are integral to most areas of computer engineering.
The discipline depends on mathematics for many of its fundamental underpinnings. In addition, mathematics
provides a language for working with ideas relevant to computer engineering, specific tools for analysis and
verification, and a theoretical framework for understanding important ideas.

 Given the pervasive role of mathematics within computer engineering, the curriculum must include
mathematical concepts early and often. Basic mathematical concepts should appear early within a student's course
work and later courses should use these concepts regularly. While different colleges and universities will need to
adjust their prerequisite structures to reflect local needs and opportunities, it is important for upper-level computer
engineering courses to make use of the mathematical content developed in earlier courses. A formal prerequisite
structure should reflect this dependency.

 Some material that is mathematical in nature lies in a boundary region between computer science and
engineering and computer engineering faculty members may actually teach it. Other material such as basic
differential and integral calculus will likely be under the purview of faculty members outside the department where
computer engineering resides. For example, discrete structures topics are important for all students in computer
engineering and the Task Force considers it as much as part of computer engineering as mathematics or computer
science. Regardless of the implementation, computer engineering programs must take responsibility for ensuring
that students obtain the appropriate mathematics they need.

 The Computer Engineering Task Force makes the following recommendations with respect to the mathematical
content of the computer engineering curriculum.

 Discrete structures: All students need exposure to the tools of discrete structures. All programs should
include enough exposure to this area to cover the core topics specified in the computer engineering body of
knowledge.

 Differential and integral calculus: The calculus is required to support such computer engineering material as
communications theory, signals and systems, and analog electronics and it is fundamental to all engineering
programs.

 Probability and statistics: These related topics underpin considerations of reliability, safety, dependence, and
various other concepts of concern to the computer engineer. Many programs will have students take an
existing course in probability and statistics; some programs may allow some students to study less than a full
semester course in the subject. Regardless of the implementation, all students should get at least some brief
exposure to discrete and continuous probability, stochastic processes, sampling distributions, estimation,
hypothesis testing, and correlation and regression.

 Additional mathematics: Students should take additional mathematics to develop their sophistication in this
area and to support classes in topics such as communications theory, security, signals and systems, analog
electronics. That mathematics might consist of courses in any number of areas, including further calculus,
differential equations, transform theory, linear algebra, numerical methods, complex variables, geometry,
number theory, or symbolic logic. The choice should depend on program objectives, institutional
requirements, and the needs of the individual student.

7.3.2 Science Requirements

The process of abstraction (data collection, hypothesis formation and testing, experimentation, analysis) represents a
vital component of logical thought within the field of computer engineering. The scientific method represents a
basis methodology for much of the discipline of computer engineering, and students should have a solid exposure to
this methodology.

 Computer engineering students need a knowledge of basic sciences, such as physics and chemistry. Basic
physics concepts in electricity and magnetism for the basis for much of the underlying electrical engineering content
in the body of knowledge. Other science course, such as biology, are relevant to specific application areas in which
computer engineers may specialize. The precise nature of the basic science requirement will vary, based on
institutional and programs needs and resources.

Page 37

Computing Curriculum – Computer Engineering Curriculum Report
Ironman Draft 2004June8

 To develop a firm understanding of the scientific method, students must have direct hand-on experience with
hypothesis formulation, experimental design, hypothesis testing, and data analysis. While a curriculum may provide
this experience as part of the basic science coursework, another way of addressing this is through appropriate
courses in computer engineering itself. For example, considerations of the user interface provide a rich vein of
experimental situations.

It is vital that computer engineering students “do science” and not just “read about science” in their education.
The overall objectives of this element of the curriculum include the following:

 Students should acquire knowledge of the basic sciences underlying computer engineering and relevant
application areas.

 Students must develop an understanding of the scientific method and experience this mode of inquiry in
courses that provide some exposure to laboratory work, including data collection and analysis.

 Students may acquire their scientific perspective in any of a variety of domains, depending on program
objectives and their area of interest.

7.3.3 General Education

Most institutions have a general education requirement that applies to all students in all disciplines. The size and
content of this requirement varies widely, depending on institutional mission, legal requirements, and other factors.
General education courses often include subjects drawn from the humanities, social sciences, languages, and the
liberal arts. In designing a computer engineering program, attention should be given to utilizing these course
requirements to contribute to the students’ understanding of the social context of engineering and the potential
impact of engineering solutions in a global environment.

7.4 Degree Program Implementation: Strategies and Examples

Institutions that wish to follow the suggestions provided herein will typically begin by choosing an implementation
for the introductory phase and an implementation for the intermediate phase. From there, they will choose advanced
elective courses that conform to local conditions and program objectives. The following attempts to assist
institutions to fulfill their program objectives for computer engineering.

7.4.1 Course Considerations

As previously mentioned, the precise courses will depend on the character of each individual program of study.
However, in broad terms various considerations will tend to govern the courses at the introductory, intermediate, and
advanced levels.

 At the initial stages, it is appropriate to develop basic skills within introductory courses. Accordingly,
introductory courses should address the following characteristics.

 Basic skills in the design and development of a range of electronic circuits and digital systems
 Basic skills in programming and algorithmic design
 An understanding of the basic structure and organization of a variety of computer systems

These characteristics should address the basic electronics and chip aspects as well as the software approach. These
should serve to integrate the various aspects of the courses and provide an overview of the discipline of computer
engineering. Fundamentally, the perspective of the computer system as a hierarchy of abstract machines is relevant
to the various approaches one could take and suggests references to alternative models.

 At the intermediate level, the program should apply the basic skills already acquired and seek to develop them
further. Instructors should indicate how to utilize these skills in the design and the development of various
components such as in hardware, software, communications, or hybrid systems. Additional coursework serves to
introduce remaining core topics and focus students towards areas of specialization. Again, the choices here will
depend heavily on the precise characteristics of the program of study. In developing intermediate courses, it is

Page 38

Computing Curriculum – Computer Engineering Curriculum Report
Ironman Draft 2004June8

important to be aware that skills require constant reinforcing. Thus, as an example, it is typically not desirable to
introduce students to programming and then drop programming for several semesters.

7.4.2 Elective Courses

At the advanced level, the Computer Engineering Task Force has identified a range of possible elective courses that
focus on material that, in keeping with the spirit of computer engineering, involves both hardware and software at an
advanced level. Of course, one recognizes that other courses may concentrate on specific aspects of hardware or
software. Table 7.1 identifies some elective courses that likely would be relevant to computer engineering
programs. The number and scope of electives will vary widely among programs, based on constituent needs,
program goals, and resources.

Table 7.1
Examples of Elective Courses

Fault tolerant computer systems

Digital video processing
Parallel processing

Re-configurable computing
Intelligent systems

Safety critical systems
Pervasive computing

Advanced graphical systems
Computer based medical systems

Virtual environment
Quantum computing

Performance evaluation
System level integration

High performance computer systems
Hardware software co-design

Computer security
Tool development

Multimedia systems and algorithms
Genetic algorithms

Entertainment systems
Robotics

DNA computing

Advanced computer architecture
Audio signal processing

Mobile computer systems
Multi-media signal processing
Security in wireless systems

Computer based devices
Novel computer architectures

Distributed information systems
Virtual devices

Multi-valued logic systems
Nano-computing

7.5 Degree Titles and Organizational Structures

As noted in Section 2 of this report, computer engineering programs are offered under a variety of degree titles and
within many different organizational structures. As a general rule, variations in the program title tend to imply
variations in program content, while variations in organizational structures tend to affect the manner in which
courses are organized and taught. Computer engineering is not centric to any one locale or country. Many
institutions have considerable expertise in the design and development of hardware and computer systems and their
program provisions reflect this, whether or not the program has the specific title of ‘computer engineering’.

Programs of study with a body of knowledge comparable to that defined in this report likely will have titles
such as computer engineering or computer systems engineering, Other program titles, such as computer and
electronic systems, electrical and computer engineering, or computer science and engineering typically reflect a
more broadly based set of concerns (and a corresponding broader body of knowledge) than might be implied by the
“computer engineering” title. Such program titles also may reflect joint programs administered by multiple
academic departments.

 Most computer engineering programs are offered by institutions that also offer other engineering and/or
computer science programs. Such institutions, thus, have existing resources that may be applied to support a
computer engineering program, whether or not it is administratively managed by those units. All organizational
arrangements have both drawbacks and benefits. For example, students may take a blend of courses designed
primarily for mainstream computer science or electrical engineering majors with relatively few courses specially
designed for computer engineering students. Such a structure will likely affect the topics added to the core elements
of the body of knowledge, based on maximizing course commonality rather than other factors. However, such
programs may achieve “accredited” status (sometimes by more than one professional body) and produce graduates
who are highly attractive to industry specifically because of their breadth of knowledge.

 Independent of organizational structure, it is essential that a computer engineering program have a core faculty
of appropriate size and technical competence. Many of the technical courses included within a computer

Page 39

Computing Curriculum – Computer Engineering Curriculum Report
Ironman Draft 2004June8

engineering program may be taught by faculty from areas such as computer science, electrical engineering, or
physics. However, the distinct disciplinary emphases and the preparation for professional practice requires faculty
with appropriate technical training and professional expertise.

7.6 Sample Curricula

Appendix B provides four sample implementations of complete computer engineering programs. To provide a
framework for the curriculum that illustrates the ideas presented in this report, the first three examples assume the
following.

 Each year consists of two semesters with a student studying five modules (courses) per semester. Each
module is approximately 45 contact hours (42 contact hours for presentation and 3 contact hours for
assessment).

 Students should experience 3 computer engineering modules in the first year of study, 4 or 5 in the second
year of study, and 5 or 6 in each of the third and fourth years of study.

The above pattern is used by many US institutions, and is common in many other parts of the world. The fourth
example implementation is of a three-year program (such as commonly exists in the U.K., Europe, and some other
countries) and assumes additional pre-university preparation in mathematics, science, and general studies.

Page 40

Computing Curriculum – Computer Engineering Curriculum Report
Ironman Draft 2004June8

Chapter 8

Institutional Challenges

T

his report provides a significant resource for colleges and universities seeking to develop or improve
undergraduate programs in computer engineering. The appendices to this report offer an extensive analysis
of the structure and scope of computer engineering knowledge along with viable approaches to the

undergraduate curriculum. Implementing a curriculum successfully, however, requires each institution to consider
broad strategic and tactical issues that transcend such details. The purpose of this chapter is to enumerate some of
these issues and illustrate how addressing those issues affects curriculum design.

8.1 The Need for Local Adaptation

The task of designing a computer engineering curriculum is a difficult one in part because so much depends on the
characteristics of the individual institution. Even if every institution could agree on a common set of knowledge and
skills for undergraduate education, many additional factors would influence curriculum design. These factors
include the following:

 The type of institution and the expectations for its degree programs: Institutions vary enormously in the
structure and scope of undergraduate degree requirements. A curriculum that works well at a small college in
the United States may be completely inappropriate for a research university elsewhere in the world.

 The range of postgraduate options that students pursue: Institutions whose primary purpose is to prepare a
skilled workforce for the computer engineering profession presumably have different curricular goals than
those seeking to prepare students for research and graduate study. Individual schools must ensure that the
curriculum they offer gives students the necessary preparation for their eventual academic and career paths.

 The preparation and background of entering students: Students at different institutions—and often within a
single institution—vary substantially in their level of preparation. As a result, computer engineering
departments often need to tailor their introductory offerings so that they meet the needs of their students.

 The faculty resources available to an institution: The number of faculty in a computer engineering
department may vary from as little as three or four at a small college to 100 or more at a large research
university. The flexibility and options available in these smaller programs is obviously a great deal less.
Therefore, faculty members in smaller departments need to set priorities for how they will use their limited
resources.

 The interests and expertise of the faculty: Individual curricula often vary according to the specific interests
and knowledge base of the department, particularly at smaller institutions where expertise is concentrated in
particular areas.

 Creating a workable curriculum requires finding an appropriate balance among these factors, which will require
different choices at every institution. No single curriculum can work for everyone. Every college and university
will need to consider the various models proposed in this document and design an implementation that meets the
need of their environment.

8.2 Principles for Curriculum Design

Despite the fact that curriculum design requires significant local adaptation, curriculum designers can draw on
several key principles to help in the decision-making process. These principles include the following:

 The curriculum must reflect the integrity and character of computer engineering as an independent
discipline. Computer engineering is a discipline in it own right. A combination of theory, practice,
knowledge, and skills characterize the discipline. Any computer engineering curriculum should therefore
ensure that both theory and a spirit of professionalism guide the practice.

Page 41

Computing Curriculum – Computer Engineering Curriculum Report
Ironman Draft 2004June8

 The curriculum must respond to rapid technical change and encourage students to do the same. Computer
engineering is a vibrant and fast-changing discipline. The enormous pace of change means that computer
engineering programs must update their curricula on a regular basis. Equally importantly, the curriculum
must teach students to respond to change as well. Computer engineering graduates must keep up to date with
modern developments and the prospects of doing so should stimulate their engineering curiosity. One of the
most important goals of a computer engineering program should be to produce students who are life-long
learners.

 Outcomes a program hopes to achieve must guide curriculum design. Throughout the process of defining a
computer engineering curriculum, it is essential to consider the goals of the program and the specific
capabilities students must have at its conclusion. These goals—and the associated techniques for determining
whether a program is meeting these goals—provide the foundation for the entire curriculum. Throughout the
world, accreditation bodies have focused increasing attention on the definition of goals and assessment
strategies. Programs that seek to defend their effectiveness must be able to demonstrate that their curricula in
fact accomplish what they intended to do.

 The curriculum as a whole should maintain a consistent ethos that promotes innovation, creativity, and
professionalism. Students respond best when they understand the expectations of them. It is unfair to
students to encourage particular modes of behavior in early courses, only to discourage that same behavior in
later courses. Throughout the entire curriculum, students should be encouraged to use their initiative and
imagination to go beyond the minimal requirements. At the same time, students must be encouraged from the
very beginning to maintain a professional and responsible attitude toward their work and give credence to the
ethical and legal issues affecting their professional practice.

 The curriculum must provide students with a culminating design experience that gives them a chance to apply
their skills and knowledge to solve challenging problems. The culmination of an undergraduate computer
engineering degree should include a project that requires students to use a range of practices and techniques
in solving a substantial problem as a key component in preparing them for professional practice.

8.3 The Need for Adequate Laboratory Resources

It is essential for institutions to recognize that equipment and software costs to support computer engineering
programs are large. Software can represent a substantial fraction of the overall cost of computing, particularly if one
includes the development costs of courseware. Providing adequate support staff to maintain the laboratory facilities
represents another expense. To be successful, computer engineering programs must receive adequate funding to
support the laboratory needs of both faculty and students and to provide an atmosphere conducive to learning.

 Because of rapid changes in technology, computer hardware generally becomes obsolete long before it ceases to
function. The useful lifetime of computer systems, particularly those used to support advanced laboratories and
state-of-the-art software tools, may be as little as two or three years. Planning and budgeting for regular updating
and replacement of computer systems is essential.

 Computer engineering typically has many scheduled laboratories included in the curriculum. The laboratory
component leads to an increased need for staff to assist in both the development of materials and the teaching of
laboratory sections. This development will add to the academic support costs of a high-quality computer
engineering program.

8.4 Attracting and Retaining Faculty

One of the most daunting problems that computer engineering departments face is the problem of attracting
qualified faculty. In computer engineering, there are often more advertised positions than the number of highly
qualified candidates. The shortage of faculty applicants, coupled with the fact that computer engineers command
high salaries outside academia, makes it difficult to attract and retain faculty. Institutions will need to have an

Page 42

Computing Curriculum – Computer Engineering Curriculum Report
Ironman Draft 2004June8

aggressive plan to recruit and retain faculty. Incentives such as hiring packages and modified teaching
responsibilities may prove advantageous for this endeavor.

 While the computer engineering program may draw on faculty from related disciplines, as a professional field
there must be a core faculty with appropriate professional training and experience. Additionally, faculty members
must maintain currency with developments in the field. Institutions must make appropriate accommodations for the
professional development of faculty, whether achieved through research, conference participation, consulting, or
other activities.

8.5 Summary

No single formula exists for success in designing a computer engineering curriculum. Although the Computer
Engineering Task Force believes that the recommendations of this report and the specific strategic suggestions in
this chapter will prove useful to a wide variety of institutions, every computer engineering program must adapt those
recommendations and strategies to match the characteristics of the particular institution. It is, moreover, important
to evaluate and modify curricular programs on a regular basis to keep up with the rapid changes in the field. The
curricula of the future will depend on the creativity that follows in the wake of this report to build even better
computer engineering programs for undergraduates throughout the world.

Page 43

Computing Curriculum – Computer Engineering Curriculum Report
Ironman Draft 2004June8

Endnote References to this Report

[ABET, Design] Definition of Design, ABET 2004-2005 Criteria for Accrediting Programs in Engineering in the United States,

Criterion 4
[ABET, 2004] Evaluation Criteria, 2004-2005 Engineering Criteria, <http://www.abet.org/criteria_eac.html>.
[ACM, 1992] ACM Code of Ethics and Professional Conduct, < http://www.acm.org/constitution/code.html>, 16 October 1992.
[ACM/IEEECS, 1999] CAN and IEEE Computer Society, Software Engineering Code of Ethics and Professional Practice,

<http://computer.org/certification/ethics.htm>, 1999.
[Aub] CCCE website at <http://www.eng.auburn.edu/ece/CCCE>
[AITP, 2002] Association of Information Technology Professionals, Code of Ethics,

<http://www.aitp.org/organization/about/ethics/ethics.jsp >, 2002.
[ASEE’02] American Society for Engineering Education, ASEE Annual Conference and Exhibition,

<http://www.asee.org/conferences/annual2002/default.cfm>, Montreal, Canada, 16-19 June 2002.
[ASEE’03] American Society for Engineering Education, ASEE Annual Conference and Exhibition,

<http://www.asee.org/conferences/annual2003/default.cfm>, Nashville, Tennessee, 22-25 June 2003.
[ASEE’04] American Society for Engineering Education, ASEE Annual Conference and Exhibition,

<http://www.asee.org/conferences/annual2004/default.cfm >, Salt Lake City, Utah, 20-23 June 2004.
[Bennett 1986] W. Bennett. A position paper on guidelines for electrical and computer engineering education. IEEE

Transactions in Education, E-29(3):175-177, August 1986.
[EAB 1986] Educational Activities Board. Design education in computer science and engineering. Technical Report 971,

Computer Society of the IEEE, October 1986.
[Fellows 2002] Sharon Fellows, Richard Culver, Peter Ruggieri, William Benson Instructional Tools for Promoting Self-

directed Skills in Freshmen, FIE 2002, Boston, November, 2002.
[FIE’02] Frontiers in Education Conference, <http://www.wpi.edu/News/Conf/FIE2002/>, Boston, Massachusetts, 6-9

November 2002.
[FIE’03] Frontiers in Education Conference, <http://www.fie-conference.org/03/>, Denver, Colorado, 5-8 November 2003.
[FIE’04] Frontiers in Education Conference, <http://www.fie-conference.org/04/>, Savannah, Georgia, 20-23 October 2004.
[IEEE, 1990] IEEE Code of Ethics, <http://www.ieee.org/>, About IEEE, August 1990.
[IFIP, 1998] Harmonization of Professional Standards (Draft Version), <www.ifip.or.at/minutes/C99/C99_harmonization.htm>,

October 1998.
[ITEA] International Technology Educational Association, <http://www.iteawww.org/TAA/Glossary.htm>
[ITiCSE’03] Innovation and Technology in Computer Science Education, <http://www.cs.utexas.edu/users/csed/iticse/>,

Thessaloniki, Greece, 30 June – 2 July 2003
[ITiCSE’04] Innovation and Technology in Computer Science Education, <http://www.iticse04.leeds.ac.uk/>, Leeds, England,

28-30 June 2004.
[Langdon, et. al. 1986] Design Education in Computer Science and Engineering, Technical Report, IEEE Computer Society

Educational Activities Board, October 1, 1986.
[MCSCE’04] International MultiConference in Computer Science and Computer Engineering, <http://www.world-academy-

of-science.org:8080/CSREA/ws/>, Las Vegas, Nevada, 21-24 June 2004.
[NSPE, 2003] National Society of Professional Engineers, NSPE Code of Ethics for Engineers, <http://www.nspe.org/ethics/ehl-

code.asp>, 2003.
[SIGCSE’03] SIGCSE Technical Symposium, <http://www.csis.gvsu.edu/sigcse2003/>, Reno, Nevada, 19-23 February 2003.
[SIGCSE’04] SIGCSE Technical Symposium, <http://www.csc.vill.edu/sigcse2004/>, Norfolk, Virginia, 3-7 March 2004.
[UKQAA, 2000] Quality Assurance Agency for Higher Education, “Computing, a report on benchmark levels for Computing,”

Southgate House, Gloucester, England, April 2000.

Page 44

Computing Curriculum – Computer Engineering Curriculum Report
Ironman Draft 2004June8

All References

[Abelson et al, 1985] Harold Abelson and Gerald Jay Sussman with Julie Sussman. Structure and Interpretation of Computer

Programs. Cambridge, MA: MIT Press, 1985.
[ABET, 2000] Accreditation Board for Engineering and Technology. Accreditation policy and procedure manual. Baltimore,

MD: ABET, Inc., November 2000. http://www.abet.org/images/policies.pdf.
[ABET, 2002] Accreditation Board for Engineering and Technology, Inc., “Criteria for Accrediting Engineering Programs,”

November 2002.
[ABET, 2004] Evaluation Criteria, 2003-2004 Engineering Criteria, <http://www.abet.org/criteria_eac.html>.
[ABET, Design] Definition of Design, ABET 2003-2004 Criteria for Accrediting Programs in Engineering in the United States,

Section IV.C.3.d.(3)(c).
[ACM,1965] ACM Curriculum Committee on Computer Science. An undergraduate program in computer science—preliminary

recommendations. Communications of the ACM, 8(9):543-552, September 1965.
[ACM, 1968] ACM Curriculum Committee on Computer Science. Curriculum ’68: Recommendations for the undergraduate

program in computer science. Communications of the ACM, 11(3):151-197, March 1968.
[ACM, 1978] ACM Curriculum Committee on Computer Science. Curriculum ’78: Recommendations for the undergraduate

program in computer science. Communications of the ACM, 22(3):147-166, March 1979.
[ACM, 1992] ACM Code of Ethics and Professional Conduct, < http://www.acm.org/constitution/code.html>, 16 October 1992.
[ACM, 1999] ACM Two-Year College Education Committee. Guidelines for associate-degree and certificate programs to

support computing in a networked environment. New York: The Association for Computing Machinery, September
1999.

[ACM, 2001] Association for Computing Machinery. ACM code of ethics and professional conduct. New York: The
Association for Computing Machinery, May 2001. http://www.acm.org/constitution/code.html.

[ACM/IEEECS, 1999] CAN and IEEE Computer Society, Software Engineering Code of Ethics and Professional Practice,
<http://computer.org/certification/ethics.htm>, 1999.

[AITP, 2002] Association of Information Technology Professionals, Code of Ethics,
<http://www.aitp.org/organization/about/ethics/ethics.jsp >, 2002.

[APP, 2000] Advanced Placement Program. Introduction of Java in 2003-2004. The College Board, December 20, 2000.
http://www.collegeboard.org/ap/computer-science.

[ASEE’02] American Society for Engineering Education, ASEE Annual Conference and Exhibition,
<http://www.asee.org/conferences/annual2002/default.cfm>, Montreal, Canada, 16-19 June 2002.

[ASEE’03] American Society for Engineering Education, ASEE Annual Conference and Exhibition,
<http://www.asee.org/conferences/annual2003/default.cfm>, Nashville, Tennessee, 22-25 June 2003.

[ASEE’04] American Society for Engineering Education, ASEE Annual Conference and Exhibition,
<http://www.asee.org/conferences/annual2004/default.cfm >, Salt Lake City, Utah, 20-23 June 2004.

[Aub] CCCE website at <http://www.eng.auburn.edu/ece/CCCE>
[BCS, 1989a] British Computer Society and The Institution of Electrical Engineers. Undergraduate curricula for software

engineers. London, June 1989.
[BCS, 1989b] British Computer Society and The Institution of Electrical Engineers. Software in safety-related systems. London,

October 1989.
[Beidler et al, 1985] John Beidler, Richard Austing, and Lillian Cassel. Computing programs in small colleges. Communications

of the ACM, 28(6):605-611, June 1985.
[Bennett, 1986] W. Bennett. A position paper on guidelines for electrical and computer engineering education. IEEE

Transactions in Education, E-29(3):175-177, August 1986.
[Bott et al, 1991] Frank Bott, Allison Coleman, Jack Eaton, and Diane Rowland. Professional issues in software engineering.

London: Pitman, 1991.
[Carnegie, 1992] Carnegie Commission on Science, Technology, and Government. Enabling the future: Linking science and

technology to societal goals. New York: Carnegie Commission, September 1992.
[COSINE, 1967] COSINE Committee. Computer science in electrical engineering. Washington, DC: Commission on

Engineering Education, September 1967.
[CSAB, 1986] Computing Sciences Accreditation Board. Defining the computing sciences professions. October 1986.

http://www.csab.org/comp_sci_profession.html.
[CSAB, 2000] Computing Sciences Accreditation Board. Criteria for accrediting programs in computer science in the United

States. Version 1.0, January 2000. http://www.csab.org/criteria2k_v10.html.
[CSTB, 1994] Computing Science and Telecommunications Board. Realizing the information future. Washington DC: National

Academy Press, 1994.

Page 45

Computing Curriculum – Computer Engineering Curriculum Report
Ironman Draft 2004June8

[CSTB, 1999] Computing Science and Telecommunications Board. Being fluent with information technology. Washington DC:
National Academy Press, 1999.

[Curtis, 1983] Kent K. Curtis. Computer manpower: Is there a crisis? Washington DC: National Science Foundation, 1983.
http://www.acm.org/sigcse/papers/curtis83/.

[Davis et al, 1997] Gordon B. Davis, John T. Gorgone, J. Daniel Couger, David L. Feinstein, and Herbert E. Longnecker, Jr.
IS’97 model curriculum and guidelines for undergraduate degree programs in information systems. Association of
Information Technology Professionals, 1997. http://webfoot.csom.umn.edu/faculty/gdavis/curcomre.pdf.

[Denning et al, 1989] Peter J. Denning, Douglas E. Comer, David Gries, Michael C. Mulder, Allen B. Tucker, A. Joe Turner,
and Paul R. Young. Computing as a discipline. Communications of the ACM, 32(1):9-23, January 1989.

[Denning, 1998] Peter J. Denning. Computing the profession. Educom Review, November 1998.
[Denning, 1999] Peter J. Denning. Our seed corn is growing in the commons. Information Impacts Magazine, March 1999.

http://www.cisp.org/imp/march_99/denning/03_99denning.htm.
[EAB, 1983] Educational Activities Board. The 1983 model program in computer science and engineering. Technical Report

932, Computer Society of the IEEE, December 1983.
[EAB, 1986] Educational Activities Board. Design education in computer science and engineering. Technical Report 971,

Computer Society of the IEEE, October 1986.
[EC, 1977] Education Committee of the IEEE Computer Society. A curriculum in computer science and engineering. Publication

EHO119-8, Computer Society of the IEEE, January 1977.
[Fellows et al, 2002] Sharon Fellows, Richard Culver, Peter Ruggieri, William Benson Instructional Tools for Promoting Self-

directed Skills in Freshmen, FIE 2002, Boston, November, 2002.
[Feisel and Peterson, 2002] Lyle D. Feisel, George D. Peterson, Learning Objectives for Engineering Laboratories, FIE 2002,

Boston, November, 2002
[Fleddermann, 2000] C.B. Fleddermann Engineering Ethics Cases for Electrical and Computer Engineering Students, IEEE

Transactions on Education, vol 43, no 3, 284 – 287, August 2000.
[Feiel et al, 2002] Lyle D. Feisel, George D. Peterson, Learning Objectives for Engineering Laboratories, FIE

2002, Boston, November, 2002
[FIE’02] Frontiers in Education Conference, <http://www.wpi.edu/News/Conf/FIE2002/>, Boston, Massachusetts, 6-9

November 2002.
[FIE’03] Frontiers in Education Conference, <http://www.fie-conference.org/03/>, Denver, Colorado, 5-8 November 2003.
[FIE’04] Frontiers in Education Conference, <http://www.fie-conference.org/04/>, Savannah, Georgia, 20-23 October 2004.
[Gibbs et al, 1986] Norman E. Gibbs and Allen B. Tucker. Model curriculum for a liberal arts degree in computer science.

Communications of the ACM, 29(3):202-210, March 1986.
[Giladi, 1999] R. Giladi, An Undergraduate Degree Program for Communications Systems Engineering, IEEE Transactions on

Education, vol 42, no 4, 295 – 304, November 1999.
[Gorgone et al, 2000] John T. Gorgone, Paul Gray, David L. Feinstein, George M. Kasper, Jerry N. Luftman, Edward A. Stohr,

Joseph S. Valacich, and Rolf T. Wigand. MSIS 2000: Model curriculum and guidelines for graduate degree programs
in information systems. Association for Computing Machinery and Association for Information Systems, January 2000.
http://cis.bentley.edu/ISA/pages/documents/msis2000jan00.pdf.

[Gorgone et al, 2002] John T. Gorgone, Gordon B. Davis, Joseph S Valacich, Heikki Topi, David L. Feinstein, and Herbert E.
Longenecker, Jr. IS 2002: Model Curriculum for Undergraduate Degree Programs in Information Systems, published
by the ACM, 2002.

[IEEE, 1990] IEEE Code of Ethics, <http://www.ieee.org/>, About IEEE, August 1990.
[IEEE, 2001] Institute for Electrical and Electronic Engineers. IEEE code of ethics. Piscataway, NJ: IEEE, May 2001.

http://www.ieee.org/about/whatis/code.html.
[IFIP, 1998] Harmonization of Professional Standards (Draft Version), <www.ifip.or.at/minutes/C99/C99_harmonization.htm>,

October 1998.
[ITEA] International Technology Educational Association, <http://www.iteawww.org/TAA/Glossary.htm>
[ITiCSE’03] Innovation and Technology in Computer Science Education, <http://www.cs.utexas.edu/users/csed/iticse/>,

Thessaloniki, Greece, 30 June – 2 July 2003
[ITiCSE’04] Innovation and Technology in Computer Science Education, <http://www.iticse04.leeds.ac.uk/>, Leeds, England,

28-30 June 2004.
[Kelemen et al, 1999] Charles F. Kelemen (editor), Owen Astrachan, Doug Baldwin, Kim Bruce, Peter Henderson, Dale Skrien,

Allen Tucker, and Charles Ban Loan. Computer Science Report to the CUPM Curriculum Foundations Workshop in
Physics and Computer Science. Report from a workshop at Bowdoin College, October 28-31, 1999.

[Koffman et al, 1984] Elliot P. Koffman, Philip L. Miller, and Caroline E. Wardle. Recommended curriculum for CS1: 1984 a
report of the ACM curriculum task force for CS1. Communications of the ACM, 27(10):998-1001, October 1984.

[Koffman et al, 1985] Elliot P. Koffman, David Stemple, and Caroline E. Wardle. Recommended curriculum for CS2, 1984: A
report of the ACM curriculum task force for CS2. Communications of the ACM, 28(8):815-818, August 1985.

[Langdon, et. al. 1986] Design Education in Computer Science and Engineering, Technical Report, IEEE Computer Society
Educational Activities Board, October 1, 1986.

[Lee and Messerschmitt, 1998] Edward A. Lee and David G. Messerschmitt. Engineering and education for the future. IEEE
Computer, 77-85, January 1998.

Page 46

Computing Curriculum – Computer Engineering Curriculum Report
Ironman Draft 2004June8

[Lidtke et al, 1999] Doris K. Lidtke, Gordon E. Stokes, Jimmie Haines, and Michael C. Mulder. ISCC ’99: An information
systems-centric curriculum ’99, July 1999. http://www.iscc.unomaha.edu.

[Martin et al, 1996] C. Dianne Martin, Chuck Huff, Donald Gotterbarn, Keith Miller. Implementing a tenth strand in the CS
curriculum. Communications of the ACM, 39(12):75-84, December 1996.

[MCSCE’04] International MultiConference in Computer Science and Computer Engineering, <http://www.world-academy-
of-science.org:8080/CSREA/ws/>, Las Vegas, Nevada, 21-24 June 2004.

[Mulder, 1975] Michael C. Mulder. Model curricula for four-year computer science and engineering programs: Bridging the tar
pit. Computer, 8(12):28-33, December 1975.

[Mulder and Dalphin, 1984] Michael C. Mulder and John Dalphin. Computer science program requirements and accreditation—
an interim report of the ACM/IEEE Computer Society joint task force. Communications of the ACM, 27(4):330-335,
April 1984.

[Mulder and van Weert, 1998] Fred Mulder and Tom van Weert. Informatics in higher education: Views on informatics and
noninformatics curricula. Proceedings of the IFIP/WG3.2 Working Conference on Informatics (computer science) as a
discipline and in other disciplines: What is in common? London: Chapman and Hall, 1998.

[Myers and Walker, 1998] J. Paul Myers, Jr. and Henry M. Walker. The state of academic hiring in computer science: An
interim review. SIGCSE Bulletin, 30(4):32a-35a, December 1998.

[NACE, 2001] National Association of Colleges and Employers. Job outlook ’01 (online version). http://www.jobweb.com
[Neumann, 1995] Peter G. Neumann. Computer related risks. New York: ACM Press, 1995.
[Nordheden and Hoeflich, 1999] K.J. Nordheden and M.H. Hoeflich, Undergraduate Research and Intellectual Property Rights,

IEEE Transactions on Software, vol 19 , no. 5, September / October, 22 – 24, 2002. Education, vol 42, no 4, 233-236,
November 1999.

[NSF, 1996] National Science Foundation Advisory Committee. Shaping the future: New expectations for undergraduate
education in science, mathematics, engineering, and technology. Washington DC: National Science Foundation, 1996.

[NSPE, 2003] National Society of Professional Engineers, NSPE Code of Ethics for Engineers, <http://www.nspe.org/ethics/ehl-
code.asp>, 2003.

[NTIA, 1999] National Telecommunications and Information Administration. Falling through the Net: Defining the digital
divide. Washington, DC: Department of Commerce, November 1999.

[Nunamaker et al, 1982] Jay F. Nunamaker, Jr., J. Daniel Couger, Gordon B. Davis. Information systems curriculum
recommendations for the 80s: Undergraduate and graduate programs. Communications of the ACM, 25(11):781-805,
November 1982.

[Oklobdzija, 2002] Vojin G. Oklobdzija (editor) The Computer Engineering Handbook, published by CRC Press LLC, Florida,
USA, 2002.

[OTA, 1988] Office of Technology Assessment. Educating scientists and engineers: Grade school to grad school. OTA-SET-
377. Washington, DC: U.S. Government Printing Office, June 1988.

[Paulk et al, 1995] Mark Paulk, Bill Curtis, Mary Beth Chrissis, and Charles Weber. The capability maturity model: Guidelines
for improving the software process. Reading, MA: Addison-Wesley, 1995.

[QAA, 2000] Quality Assurance Agency for Higher Education. A report on benchmark levels for computing. Gloucester,
England: Southgate House, 2000.

[Ralston and Shaw, 1980] Anthony Ralston and Mary Shaw. Curriculum ’78—Is computer science really that unmathematical.
Communications of the ACM, (23)2:67-70, February 1980.

[Richard et al, 1999] W. D. Richard, D. E. Taylor and D. M. Zar, A Capstone Computer Engineering Design Course, IEEE
Transactions on Education, vol 42, no 4, 288 – 294, November 1999.

[Roberts et al, 2001] Eric Roberts and Gerald Engel (editors) Computing Curricula 2001: Computer Science, Report of The
ACM and IEEE-Computer Society Joint Task Force on Computing Curricula, Final Report, December 15th, 2001

[Roberts et al, 1995] Eric Roberts, John Lilly, and Bryan Rollins. Using undergraduates as teaching assistants in introductory
programming courses: An update on the Stanford experience. SIGCSE Bulletin (27)1:48-52, March 1995.

[Roberts, 1999] Eric Roberts. Conserving the seed corn: Reflections on the academic hiring crisis. SIGCSE Bulletin (31)4:4-9,
December 1999.

[SAC, 1967] President’s Science Advisory Commission. Computers in higher education. Washington DC: The White House,
February 1967.

[SEEPP, 1998] IEEE-CS/ACM Joint Task Force on Software Engineering Ethics and Professional Practices (SEEPP). Software
engineering code of ethics and professional practice (Version 5.2). http://www.acm.org/serving/se/code.htm.

[Shaw, 1985] Mary Shaw. The Carnegie-Mellon curriculum for undergraduate computer science. New York: Springer-Verlag,
1985.

[Shaw, 1991] Mary Shaw and James E Tomayko. Models for undergraduate courses in software engineering. Pittsburgh:
Software Engineering Institute, Carnegie Mellon University, January 1991.

[Shaw, 1992] Mary Shaw. We can teach software better. Computing Research News 4(4):2-12, September 1992.
[SIGCHI, 1992] Special Interest Group on Computer-Human Interaction. ACM SIGCHI Curricula for Human-Computer

Interaction. New York: Association for Computing Machinery, 1992.
[SIGCSE’03] SIGCSE Technical Symposium, <http://www.csis.gvsu.edu/sigcse2003/>, Reno, Nevada, 19-23 February 2003.
[SIGCSE’04] SIGCSE Technical Symposium, <http://www.csc.vill.edu/sigcse2004/>, Norfolk, Virginia, 3-7 March 2004.

Page 47

Computing Curriculum – Computer Engineering Curriculum Report
Ironman Draft 2004June8

[SWEBOK, 2001] Software Engineering Coordinating Committee. Guide to the Software Engineering Body of Knowledge
(SWEBOK). Stone Man Version 0.95. A Project of the IEEE Computer Society, May 2001.
http://www.swebok.org/stoneman/version095.html/.

[Tucker et al, 1991] Allen B. Tucker, Bruce H. Barnes, Robert M. Aiken, Keith Barker, Kim B. Bruce, J. Thomas Cain, Susan E.
Conry, Gerald L. Engel, Richard G. Epstein, Doris K. Lidtke, Michael C. Mulder, Jean B. Rogers, Eugene H. Spafford,
and A. Joe Turner. Computing Curricula ’91. Association for Computing Machinery and the Computer Society of the
Institute of Electrical and Electronics Engineers, 1991.

[UKQAA, 2000] Quality Assurance Agency for Higher Education, “Computing, a report on benchmark levels for Computing,”
Southgate House, Gloucester, England, April 2000.

[Walker and Schneider, 1996] Henry M. Walker and G. Michael Schneider. A revised model curriculum for a liberal arts degree
in computer science. Communications of the ACM, 39(12):85-95, December 1996.

[Zadeh, 1968] Lofti A. Zadeh. Computer science as a discipline. Journal of Engineering Education, 58(8):913-916, April 1968.

Page 48

Computing Curriculum – Computer Engineering Curriculum Report
Ironman Draft 2004June8

Appendices

(Each presented in a separate document.)

Appendix A Knowledge Areas with Knowledge Units

Appendix B Sample Curricula

Page 49

Computing Curriculum – Computer Engineering Curriculum Report
Ironman Draft 2004June8

Page 50

Reviewers

The Computer Engineering Task Force thanks the following individuals for their comments and
suggestions in the development of this report.

NAME AFFILIATION
xx yyy
xx yyy
xx yyy
xx yyy
xx yyy
xx yyy
xx yyy
xx yyy
xx yyy
xx yyy
xx yyy
xx yyy
xx yyy
xx yyy
xx yyy
xx yyy
xx yyy
xx yyy
xx yyy

	CCCE Task Force Members
	Contents
	Chapter 8Institutional Challenges
	5.2Design in the Curriculum
	The Role of Engineering Tools
	Professionalism
	Chapter 7
	Curriculum Implementation Issues
	7.2.1Introductory Courses and the Core
	7.2.2Intermediate Courses
	7.2.3Advanced Courses

	Chapter 8

	Institutional Challenges

