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Chapter 1 
 

Introduction 
 
 

I 
 

n the fall of 1998, the Computer Society of the Institute for Electrical and Electronics Engineers (IEEE-CS) and 
the Association for Computing Machinery (ACM) established the Joint Task Force on “model Curricula for 
Computing” (or CC for short) to undertake a major review of curriculum guidelines for undergraduate programs 

in computing.  The charter of the task force is as follows:  

To review the Joint ACM and IEEE/CS Computing Curricula 1991 and develop a revised and enhanced 
version that addresses developments in computing technologies in the past decade and will sustain through 
the next decade. 

 
 As indicated in the charter, the goal of the CC effort is to revise Computing Curricula 1991 so that it 
incorporates the developments of the past decade.  Computing has changed dramatically over that time in ways that 
have a profound effect on curriculum design and pedagogy.  Moreover, the scope of what one calls computing has 
broadened to the point that it is difficult to define it as a single discipline.  Previous curricula reports have attempted 
to merge such disciplines as computer science, computer engineering, and software engineering into a single report 
about computing education.  While such an approach may have seemed reasonable in the past, there is no question 
that computing in the twenty-first century encompasses many vital disciplines with their own identities and 
pedagogical traditions.  
 
 Another part of the charter of this group includes supporting the community of professionals responsible for 
developing and teaching a range of courses throughout the global community.  Providing an international 
perspective presents different challenges, but is an important ingredient given the global nature of computing related 
developments. 
 
 
1.1 Overall Structure of the Computing Curricula Project  
 
Due to the broadening scope of computing—and the feedback received on the initial draft — the CC initiative 
contains several reports.  This report focuses specifically on computer engineering, referred to as “Computing 
Curricula: Computer Engineering” or simply CCCE.  To encompass the different disciplines that are part of the 
overall scope of computing, professional organizations have created additional committees to undertake similar 
efforts in other areas.  These areas include computer science (“Computing Curricula: Computer Science” or the 
CCCS report published in December 2001), information systems (“Computing Curricula: Information Systems” or 
the CCIS report published in 2002), software engineering (“Computing Curricula: Software Engineering” or the 
CCSE report currently under development), and information technology (“Computing Curricula: Information 
Technology” or the CCIT report currently under development).  
 
 As the individual reports unfold to completion, representatives from the five computing disciplines have 
produced an overview report that links them together.  That overview report contains descriptions of the various 
computing disciplines along with an assessment of the commonalities and differences that exist among them.  It also 
suggests the possibility of future curricular areas in computing.  The structure of the series appears in Figure 1-1 as 
taken from the overview report.  The area of information technology is the newest component of the computing 
curricula project.  
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  Figure 1.1:  Computing curricula reports 
 
 
 
 
1.2 Overview of the CCCE Process  
 
In their charter, the main CC Steering Committee gave individual groups freedom to produce reports that best reflect 
the needs and requirements of their particular disciplines.  However, the committee did request that groups address a 
certain minimal number of matters and, consequently, that they should include certain components in the individual 
reports.  The minimal set includes: 

 The body of knowledge (BOK) for the field; that is, the topics the field should cover, 
 A set of courses that cover the body of knowledge in one or more ways, 
 The core requirements for the discipline; that is, the requirements that would apply to all undergraduates, and  
 The characteristics of graduates of degree programs  

The Steering Committee viewed the set of requirements as minimal, as one of its goals was to avoid prescription.  
The experts must have the freedom to act as they see fit.  Yet there must be some commonality across the different 
series of reports.  The anticipation is that each report will exceed this minimal set in various ways. 
 
 In pursuing this charter, it is natural that the Computer Engineering Task Force be cognizant of what the 
Computer Science Task Force had already accomplished.  The thrust of the Computer Engineering Task Force was 
to build on work already completed wherever possible. 
 
 Despite the considerable growth of computer engineering as a discipline, the literature in computer engineering 
curricular development is modest.  There are a few contributions such as [Bennett 1986], [EAB 1986], and 
[Langdon, et. al. 1986].  The focus on the first three of these was not curricular development; they addressed issues 
such as resources and design processes.  These issues are still important and appear elsewhere in this document. 
 
 To respond to the challenges of their charter, the Computer Engineering Task Force emerged from computer 
engineering interests from different countries.  In addition, there was some overlap with the original Computer 
Science Task Force to ensure continuity.  In discharging its duty, the Computer Engineering Task Force felt that it 
was vital to involve the wider community; indeed, several consultative activities occurred to confirm the view 
expressed in this volume.  In addition, the task force used the world wide web [Aub] to allow any interested party 
the opportunity to provide comment and suggestion.  The published report has benefited from this wide and 
important involvement 
 
 Developing the recommendations in this report is primarily the responsibility of the CCCE Task Force, the 
members of which appear at the beginning of this report.  Given the scale of the CCCE project and the scope over 
which it extends, it was necessary to secure the involvement of many other people, representing a wide range of 
constituencies and areas of expertise.  
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1.3 Structure of the CCCE Report  
 
This CCCE report addresses computer engineering programs.  The main body of the report consists of eight 
chapters.  Chapter 2 illustrates how computer engineering evolved as a discipline.  It also highlights many of the 
characteristics expected of a computer engineering graduate, especially their service to the public, their design 
abilities, and their expected breadth of knowledge.  It also suggests possible organizational structures, the 
responsibility of professional practices, and program assessment.  Chapter 3 articulates the principles that have 
guided the work of the Computer Engineering Task Force and how these principles relate to CC2001.  Chapters 4 
and 5 present overviews of the computer engineering body of knowledge and curriculum recommendations.  They 
also articulate learning objectives, the differences between core and elective knowledge units, the number of core 
hours in the program, the importance of design and laboratory experiences, and various skills needed to become an 
effective computer engineer.  Chapter 6 highlights the importance of professionalism in the practice of computer 
engineering.  Chapter 7 provides a discussion on the issues affecting the implementation of a computer engineering 
curriculum.  These include the arrangement of courses within and external to the program and other implementation 
considerations.  Chapter 8 suggests some challenges that need reviewing when creating or continuing computer 
engineering programs.  This report provides two sets of references: those made within this report and a full set of 
references related to all computing curricula programs.   
 
 The bulk of the material in the report appears in two appendices.  Appendix A addresses the body of knowledge 
in detail for undergraduate computer engineering programs.  It includes all the computing knowledge areas, their 
associated knowledge units and related topics, student outcomes, and two related mathematics areas.  Appendix B 
illustrates sample curricula and course descriptions, as they might appear at different academic institutions.  The 
Task Force is hopeful that providing the body of knowledge, course descriptions, and sample curricula will help 
departments to create effective curricula or to improve the curricula they already have.  
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Chapter 2 
 

Computer Engineering as a Discipline 
 
 

T 
 

his chapter presents some of the characteristics that distinguish computer engineering from other computing 
disciplines.  It provides some background of the field and shows how it evolved over time.  It also highlights 
some of the characteristics expected from its graduates, preparation for entering the curriculum, and student 

outcomes and assessment.  The chapter also highlights the importance of graduates to have a proper sense of 
professionalism to ensure a proper perspective in the practice of computer engineering.    
 
 
2.1        Background 
 
Computer engineering embodies the science and technology of design, construction, implementation, and 
maintenance of software and hardware components of modern computing systems and computer-controlled 
equipment.  Computer engineering has traditionally been viewed as a combination of both computer science (CS) 
and electrical engineering (EE).  It has evolved over the past three decades as a separate, although intimately related, 
discipline.  Computer engineering is solidly grounded in the theories and principles of computing, mathematics, 
science, and engineering and it applies these theories and principles to solve technical problems through the design 
of computing hardware, software, networks, and processes. 
 
 Historically, the field of computer engineering has been widely viewed as “designing computers.”  In reality, 
the design of computers themselves has been the province of relatively few highly skilled engineers whose goal was 
to push forward the limits of computer and microelectronics technology.  The successful miniaturization of silicon 
devices and their increased reliability as system building blocks has created an environment in which computers 
have replaced the more conventional electronic devices.  These applications manifest themselves in the proliferation 
of mobile telephones, personal digital assistants, location-aware devices, digital cameras, and similar products.  It 
also reveals itself in the myriad of applications involving embedded systems, namely those computing systems that 
appear in applications such as automobiles, large-scale electronic devices, and major appliances.   
 
 Increasingly, computer engineers are involved in the design of computer-based systems to address highly 
specialized and specific application needs.  Computer engineers work in most industries, including the computer, 
aerospace, telecommunications, power production, manufacturing, defense, and electronics industries.  They design 
high-tech devices ranging from tiny microelectronic integrated-circuit chips, to powerful systems that utilize those 
chips and efficient telecommunication systems that interconnect those systems.  Applications include consumer 
electronics (CD and DVD players, televisions, stereos, microwaves, gaming devices) and advanced microprocessors, 
peripheral equipment, systems for portable, desktop and client/server computing, and communications devices 
(cellular phones, pagers, personal digital assistants).  It also includes distributed computing environments (local and 
wide area networks, wireless networks, internets, intranets), and embedded computer systems (such as aircraft, 
spacecraft, and automobile control systems in which computers are embedded to perform various functions).  A 
wide array of complex technological systems, such as power generation and distribution systems and modern 
processing and manufacturing plants, rely on computer systems developed and designed by computer engineers. 
 
 Technological advances and innovation continue to drive computer engineering.  There is now a convergence of 
several established technologies (such as television, computer, and networking technologies) resulting in widespread 
and ready access to information on an enormous scale.  This has created many opportunities and challenges for 
computer engineers.  This convergence of technologies and the associated innovation lie at the heart of economic 
development and the future of many organizations.  The situation bodes well for a successful career in computer 
engineering.  
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2.2        Evolution of the Field 
 
As noted previously, computer engineering evolved from the disciplines of electrical engineering and computer 
science.  Initial curricular efforts in computer engineering commonly occurred as a specialization within EE 
programs, extending digital logic design to the creation of small-scale digital systems and, eventually, the design of 
microprocessors and computer systems. 
 
 In the United States, the first computer engineering program accredited by ABET (formerly the Accreditation 
Board for Engineering and Technology) was at Case Western Reserve University in 1971.  As of 2003 December, 
ABET has accredited over 150 computer engineering or similarly named programs.  Table 2-1 summarizes the 
growth in programs by title and year of initial ABET accreditation (or change of program name).  As a point of 
comparison, there are approximately 300 accredited electrical engineering programs.   
 
 

Table 2-1 
Summary of ABET-accredited computer engineering programs in the U.S. - as of 2003 December 

 
Year of Initial Accreditation 

Program Name 
Before 
1980 

1980 to 
1989 

1990 to 
1999 

2000 to 
2003 Totals 

Computer Engineering 10 32 44 43 129 
Computer Systems Engineering 2 2 0 1 5 
Electrical and Computer Engineering 
(includes programs previously named EE) 2 4 0 5 11 

Computer Science and Engineering 2 6 1 1 10 
Other titles 0 2 1 1 4 

Totals 16 46 46 51 159 

 
 
 
 
 
 
 
 
 
 
 
 
 One would expect that the growth trend in computer engineering will increase as computing and electronic 
technologies become more complex.  The evolution may take many forms, including (a) an expanded content from 
computer science, (b) collaboration with the emerging software engineering discipline on application-focused 
projects and embedded systems with a greater emphasis on design and analysis tools to manage complexity, or (c) 
re-integration with electrical engineering, as computer-based systems become dominant in areas such as control 
systems and telecommunications.  
 
 
2.3        Characteristics of Computer Engineering Graduates 
 
With the ubiquity of computers and computer-based systems in the world today, computer engineers must be 
versatile in the knowledge drawn from standard topics in computer science and electrical engineering as well as the 
foundations in mathematics and sciences.  Because of the rapid pace of change in the computing field, computer 
engineers must be life-long learners to maintain their knowledge and skills within their chosen discipline. 
 
2.3.1 Distinctions  
 
An important distinction should be made between computer engineers, electrical engineers, other computer 
professionals, and engineering technologists.  While such distinctions are sometimes ambiguous, computer 
engineers generally should satisfy the following three characteristics. 

1. Possess the ability to design computer systems that include both hardware and software to solve novel 
engineering problems, subject to trade-offs involving a set of competing goals and constraints.  In this 
context, “design” refers to a level of ability beyond “assembling” or “configuring” systems. 

2. Have a breadth of knowledge in mathematics and engineering sciences, associated with the broader scope 
of engineering and beyond that narrowly required for the field. 

3. Acquire and maintain a preparation for professional practice in engineering. 
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 In contrast, electrical engineers concern themselves mostly with the physical aspects of electronics including 
circuits, signal analysis, and microelectronic devices.  Computer scientists concern themselves primarily with the 
theoretical and algorithmic aspects of computing with a focus on the theoretical underpinnings of computing.  
Software engineers have a focus on the principles underlying the development and maintenance of correct (large-
scale) software throughout its lifecycle.  Information systems specialists encompass the acquisition, deployment, and 
management of information resources for use in organizational processes.  Information technology specialists would 
focus on meeting the needs of users within an organizational and societal context through the selection, creation, 
application, integration, and administration of computing technologies.  Computer engineering technologists 
concern themselves with making computer-based products work properly and in the maintenance of those products.  
 
2.3.2 Professionalism  
 
The public has entrusted in engineers a level of responsibility because the systems they design (whether x-ray 
machines, air traffic control systems, or nuclear power plants) affect the public directly and indirectly.  Therefore, it 
is incumbent upon computer engineers to exercise the utmost conscientiousness when designing and implementing 
computing systems.  As such, graduates should have an understanding of the responsibilities associated with 
engineering practice, including the professional, societal, and ethical context in which they do their work.  Such 
responsibilities often involve complicated trade-offs involving fiscal and social contexts.  This social context 
encompasses a range of legal and economic issues such as intellectual property rights, security and privacy issues, 
liability, technological access, and global implications and uses of technologies.   
 
 Professionalism and ethics are critical elements, since the focus of engineering on design and development 
makes social context paramount to studies in the field.  Computer engineering students must learn to integrate 
theory, professional practice, and social constructs in their engineering careers.  It is incumbent upon all computer 
engineers to uphold the tenets of their profession and to adhere to the codes of professional practice.  The public 
expects engineers to follow prescribed rules of professional practice and to not engage in activities that would 
tarnish their image or that of their practicing colleagues.  Because of the importance of this topic, Chapter 6 of this 
report is devoted to an expanded discussion on professional practice and responsibilities. 
 
2.3.3 Ability to Design 
 
Engineering draws heavily on the ability to design.  The International Technology Education Association (ITEA) 
defines engineering design as “The systematic and creative application of scientific and mathematical principles to 
practical ends such as the design, manufacture, and operation of efficient and economical structures, machines, 
processes, and systems.” [ITEA]  Other definitions are possible such as the creative ability required for the 
development of better devices, systems, processes, and new products.  Many reasons prompt new designs such as 
seeking to exploit new developments in related technologies or to develop improvements on existing products (e.g. 
making products less expensive, safer, more flexible, or lighter in weight).  Identifying deficiencies or weaknesses in 
existing products is another motivation for engineering design.  Of course, novel ideas are especially important.  
 
 Design is fundamental to all engineering.  For the computer engineer, design relates to software and hardware 
components of modern computing systems and computer-controlled equipment.  Computer engineers apply the 
theories and principles of science and mathematics to design hardware, software, networks, and processes and to 
solve technical problems.  Continuing advances in computers and digital systems have created opportunities for 
professionals capable of applying these developments to a broad range of applications in engineering.  
Fundamentally, it is about making well-considered choices or trade-offs, subject to given constraints.  These relate 
to such matters as structure and organization, techniques, technologies, methodologies, interfaces, as well as the 
selection of components.  The outcome needs to exhibit desirable properties and these tend to relate to simplicity 
and elegance.  Chapter 5 presents a more detailed discussion of design and related laboratory experiences. 
 
2.3.4 Breadth of Knowledge  
 
Because of the breadth of the computer-engineering field, curricular content may vary widely among programs, or 
even among students in the same program.  Computer-related coursework typically comes from computer 
organization and architecture, algorithms, programming, databases, networks, software engineering, and 
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communications.  Electrical engineering related coursework typically comes from circuits, digital logic, 
microelectronics, signal processing, electromagnetics, and integrated circuit design.  Foundational topics typically 
include basic sciences, mathematics for both discrete and continuous domains, and applications of probability and 
statistics. 
 
 At one extreme, a degree program in computer engineering might provide opportunities for its students to study 
a wide range of topics spanning the entire field.  At another extreme, there may be programs that focus on one 
specific aspect of computer engineering and cover it in great depth.  The graduates from such programs will 
typically tend to seek opportunities in the specialist area they studied, whether it is multimedia systems 
development, computer design, network design, safety-critical systems, pervasive computing, or whatever other 
specialties emerge and become important.  One common measure for differentiating among computer engineering 
programs is the relative amount of emphasis placed on topics that are commonly associated with either electrical 
engineering or computer science programs. 
 
 Despite differences in emphasis and content, there are certain common elements that one should expect of any 
computer engineering program.  The Body of Knowledge, described in Chapter 4, identifies topical areas that one 
may reasonably expect in all programs, as opposed to those that are often included in some programs or those that 
one might consider elective or specialized topics.  From a higher-level perspective, however, one can reasonably 
expect several characteristics of all computer engineering graduates.  These include: 

 System Level Perspective – Graduates must appreciate the concept of a computer system, the design of the 
hardware and software for that system, and the processes involved in constructing or analyzing it.  They must 
have an understanding of its operation that goes to a greater depth than a mere external appreciation of what 
the system does or the way(s) in which one uses it.  

 Depth and Breadth – Graduates should have familiarity with topics across the breadth of the discipline, with 
advanced knowledge in one or more areas. 

 Design Experiences – Graduates should have completed a sequence of design experiences, encompassing 
hardware and software elements, building on prior work, and including at least one major project. 

 Use of Tools – Graduates should be capable of utilizing a variety of computer-based and laboratory tools for 
the analysis and design of computer systems, including both hardware and software elements. 

 Professional Practice – Graduates should understand the societal context in which engineering is practiced, 
as well as the effects of engineering projects on society.   

 Communication Skills – Graduates should be able to communicate their work in appropriate formats (written, 
oral, graphical) and to critically evaluate materials presented by others in those formats. 

 
 
2.4  Organizational Considerations  
 
The administration of computer engineering programs falls within a variety of organizational structures.  Currently, 
computer engineering programs are rarely organized as separate academic departments.  They often appear in 
colleges or schools of engineering, either within an electrical engineering department, within a combined 
engineering department, or within an electrical and computer engineering department.  In such cases, the expectation 
is a strong emphasis on circuits and electronic components.  Computer engineering programs also appear in areas 
such as computer science departments, colleges of arts and sciences, schools or divisions of information technology, 
or co-sponsored by multiple entities.  In these cases, the programs often relate more to the issues of theory, 
abstraction, and organization rather than those of a more applied nature.  
 
 As noted in Table 2-1, the most common degree title for these programs is “Computer Engineering.”  Other 
titles may reflect program specializations, organizational structures, historical constraints, or other factors.  The 
principles presented in this report apply to all computer engineering programs regardless of their organizational 
structure or official degree title. 
 
 
2.5  Preparation for Professional Practice 
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Unlike professions such as law and medicine, engineering generally does not require an advanced degree for 
employment in the field.  Thus, undergraduate programs in computer engineering must include not only basic 
knowledge within the field, but the ability to apply it to the solution of realistic projects.  This preparation 
encompasses several areas. 
 

Section 2.3.2 defined the professionalism and ethics that are fundamental characteristics of a computer 
engineering graduate.  Preparation for professional practice requires graduates to have an understanding of their 
responsibilities associated with engineering practice, as well as an ability to apply these principles to specific 
situations.  Professionalism should be a constant theme that pervades the entire curriculum.  In particular, the social 
context of engineering should be integrated into the teaching of engineering design, including the use of best 
practices and trade-offs among technical, fiscal, and social requirements. 
 

In addition to professionalism, appropriate preparation encompasses both technical (design ability, laboratory 
experiences, use of engineering tools) and non-technical (teamwork, communication) elements.  Chapter 5 of this 
report provides a detailed discussion on the integration of these issues into the curriculum. 
 
 
2.6        Program Evaluation and Accreditation  
 
Processes for program evaluation must accommodate the variations among computer engineering programs.  Such 
evaluation is critical to ensure that graduates have the proper preparation and that programs are evolving to meet the 
emerging requirements of the field.  Often, professional societies and governments look toward an external 
assessment of programs to ensure that graduates achieve minimally what professional organizations expect of them.  
 
 Within the United States, ABET accreditation is widely recognized and accepted.  The current engineering 
criteria [ABET, 2004] are intended to ensure that all accredited programs satisfy a minimum set of criteria common 
to all engineering disciplines and criteria specific to each discipline.  A key element of this process is a requirement 
that each program engage in an ongoing process of self-assessment and continuous improvement.  Programs should 
demonstrate that all graduates achieve a set of program outcomes based on the program’s educational objectives.  
The ABET criteria are broadly defined.  They leave the interpretation of what constitutes the appropriate knowledge 
for a given discipline to the professional societies affiliated with that discipline.  We anticipate that this report will 
provide guidance to accrediting agencies on the appropriate technical content of computer engineering programs. 
 
 In the United Kingdom, benchmarking of degrees has developed in recent years and each institution is required 
to demonstrate that their degrees meet the requisite benchmark standards for that discipline.  One example of these 
benchmark standards is [UKQAA2000].  This benchmarking defines both threshold (minimal) and modal (average) 
expectations with respect to demonstrated student knowledge, skills, and judgment.  An example of a 
[threshold/modal] criterion is the following:  

Graduates will be able to produce work involving problem identification, the analysis, the design and the 
development of a system with appropriate documentation.  The work will show [some / a range of] problem 
solving and evaluation skills drawing on [some/] supporting evidence, and demonstrate a [requisite/good] 
understanding of the need for quality. 

 
 The Engineering Council UK has overall responsibility for the accreditation of engineering degrees within the 
United Kingdom.  Its basic responsibilities include setting standards (of competence and commitment) for the 
accreditation of engineering degrees and approving nominating bodies that carry out detailed accreditation on its 
behalf.  In general, the British Computer Society (BCS) carries out accreditation of computing degree programs and 
the Institute of Electrical Engineers (IEE) carries out the accreditation of electronic and electrical engineering degree 
programs.  Degree programs in computer engineering could be accredited by either society, though perhaps more 
often by IEE.  However, joint accreditation by both societies is common.  Links with professional engineers in other 
countries exist through the mechanisms of the Washington Accord, the Sydney Accord, the Dublin Accord, FEANI, 
and the International Register for Engineers. 
 
 The accreditation process in engineering in the UK dates back to around 1978.  Over the years, there have been 
various formulations of the rules and criteria for accredited degrees.  But in broad terms, the expectation is to have 
degrees that 
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 Encourage and foster an engineering ethos.  This includes attention to such matters as design and a problem 
solving approach.  Invariably, such degrees must include (normally in their final year) an individual project in 
which students have to demonstrate their ability to tackle and solve a substantial problem of a technical 
nature. 

 Present a challenge and address appropriate underpinnings and theoretical considerations. 
 Address the environmental concerns as well as the professional, legal, and ethical concerns associated with 
engineering including preparation for life-long learning. 

 Have strong and effective input from industry into curriculum design and perspective including relevance to 
industry; manifestations of industry involvement include the existence of industrial scholarships or prizes as 
well as a willingness to host external activities such as internships.  

 
Although there are some unique aspects to each accreditation agency, there also are many common elements: 

1. The accreditation review process involves a visit to the institution by a panel of experts who meet staff and 
students and produce a report with accompanying recommendations about accreditation status.  

2. Typical periods of accreditation range from zero to six years; the length of period generally reflects the 
confidence that the visiting panel has in the program. 

3. A major goal of the process is one of support and development, with every attempt made to encourage and 
foster good practice.   

4. Graduation with an accredited degree plus an appropriate period (typically about two years) of relevant 
industrial experience can lead to the award in the UK of the accolade of Chartered Engineer.  Professionals 
generally regard designation as a well-qualified engineer; other routes to Chartered Engineer also exist.  In 
the United States, graduation from an accredited engineering program is the initial step towards licensure as 
a professional engineer. 

 
 In general, institutions tend to use accreditation as a vehicle to provide evidence of quality that they can use in 
marketing activities; most institutions offering engineering degrees will have some form of recognition in 
accreditation terms.  Currently, some jobs demand accredited degree status or professional licensure, although this 
requirement is not as widespread in computing-related fields as in some other engineering fields. 
 
 While accreditation and benchmarking standards typically refer to the minimum or average graduate, the 
expectation is that computer engineering programs also will provide opportunities for the best students to achieve 
their full potential.  Such students will be creative and innovative in their application of the principles covered in the 
curriculum; they will be able to contribute significantly to the analysis, design, and development of complex 
systems; and they will be able to exercise critical evaluation and review of both their own work and the work of 
others. 
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Chapter 3 
 

Principles 
 
 

C 
 

omputing is a growing and important area of endeavor.  The Computer Engineering Task Force established a 
set of principles to guide its work that reflects in part those that appeared in the Computer Science Report.  
They appear here with appropriate rewording and modification to reflect better the tenets expected from a 

computer engineering program.  The presentation here is not in order of priority.  
 
1. Computer engineering is a broad and developing field.  The original CC Steering Committee had taken the 

view that a single report, covering primarily computer science, could not address the full range of issues that 
colleges and universities have to consider as they seek to address their computing curricula, and that a different 
task force should develop a separate report addressing computer engineering.  
 

2. Computer engineering is a distinct discipline with its own body of knowledge, its own ethos, and its own 
practices. That discipline embodies the science and the technology of specification, design, construction, 
implementation, and maintenance of the hardware and software components of modern computer systems and 
computer-controlled equipment.   
 

3. Computer engineering draws its foundations from a wide variety of other disciplines.  Computer engineering 
education is solidly grounded in the theories and principles of computing, mathematics, and engineering, and it 
applies these theoretical principles to design hardware, software, networks and computerized equipment and 
instruments to solve technical problems in diverse application areas. 
 

4. The rapid evolution of computer engineering requires an ongoing review of the corresponding curriculum.  
Given the pace of change in the discipline, the professional associations in this discipline must establish an 
ongoing review process that allows the timely update of the individual components of the curriculum 
recommendations. 
 

5. Development of a computer engineering curriculum must be sensitive to changes in technology, new 
developments in pedagogy, and the importance of lifelong learning.  In a field that evolves as rapidly as 
computer engineering, educational institutions must adopt explicit strategies for responding to change.  
Computer engineering education must seek to prepare students for lifelong learning that will enable them to 
move beyond today’s technology to meet the challenges of the future. 
 

6. The Computer Engineering Task Force should seek to identify the fundamental skills and knowledge that all 
computer engineering graduates must possess.  Computer engineering is a broadly based discipline.  The final 
report must seek to identify the common concepts and skills of the discipline.  
 

7. The required core of the body of knowledge should be as small as reasonably possible.  The Task Force should 
make every effort to keep that core to a minimum to allow flexibility, customization, and choice in other parts 
of the curriculum to enable creation of individualized programs. 
 

8. Computer engineering must include appropriate and necessary design and laboratory experiences.  A computer 
engineering program should include “hands-on” experience in designing, building, and testing both hardware 
and software systems.  
 

9. The computer engineering core acknowledges that engineering curricula are often subject to accreditation, 
licensure, or governmental constraints.  This computer engineering report recognizes existing external 
constraints and is intended to provide guidance for their evolution. 
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10. The computer engineering curriculum must include professional practice as an integral component.  These 
practices encompass a wide range of activities including management, ethics and values, written and oral 
communication, working as part of a team, and remaining current in a rapidly changing discipline.  
 

11. The computer engineering report must include discussions of strategies and tactics for implementation along 
with high-level recommendations.  Although it is important for computing curricula to articulate a broad vision 
of computing education, the success of any curriculum depends heavily on implementation details.  To 
accomplish this, the report should provide sample curricula models.  
 

12. The development of the final report must contain a broad base.  To be successful, the process of creating the 
computer engineering recommendations must include participation from many different constituencies 
including industry, government, and the full range of higher educational institutions involved in computer 
engineering education. 

 
13. The computer engineering final report must strive to be international in scope.  Despite the fact that curricular 

requirements differ from country to country, this report must be useful to computing educators throughout the 
world.  Although educational practice in the United States may influence curriculum, the report makes every 
effort to ensure that the curriculum recommendations are sensitive to national and cultural differences so that 
they will be widely applicable throughout the world. 
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Chapter 4 
 

Overview of the Computer Engineering  
Body of Knowledge 

 
 

D 
 

eveloping any curriculum for undergraduate study in computer engineering should reflect the current needs 
of computer engineering students.  The curriculum should also reflect current educational practice and 
suggest improvements where necessary.  The discussion that follows attempts to accomplish this in 

preparing a body of knowledge commensurate with producing competent computer engineering graduates.  
 
 
4.1  The Body of Knowledge 
 
The Computer Engineering Task Force has sought to assemble a modern curriculum by first defining the primary 
disciplines that make up the body of knowledge for computer engineering.  Some of these discipline areas contain 
material that should be part of all computer engineering curricula. These are the 18 knowledge areas, including two 
covering related mathematics topics, listed in Table 4.1.  Other areas contain material that might, or might not, be 
part of such curricula, depending on the specific educational objectives of a program. Some of these are listed in 
Chapter 7, but are not described in detail in this report. 
 

Table 4.1 
CCCE Discipline Areas Containing Core Material 

      
CE-ALG Algorithms and Complexity  
CE-CAO Computer Architecture and Organization  
CE-CSE  Computer Systems Engineering  
CE-CSG  Circuits and Signals  
CE-DBS  Database Systems  
CE-DIG  Digital Logic  
CE-DSP  Digital Signal Processing  
CE-ELE  Electronics  
CE-ESY  Embedded Systems  
CE-HCI  Human-Computer Interaction 
CE-NWK Computer Networks  
CE-OPS  Operating Systems  
CE-PRF  Programming Fundamentals  
CE-SPR  Social and Professional Issues  
CE-SWE Software Engineering  
CE-VLS  VLSI Design and Fabrication 
----------  -------------------------------------  
CE-DSC  Discrete Structures 
CE-PRS    Probability and Statistics 

 
 
 After defining the above areas, each task force member designed and reviewed initial drafts defining the body 
of knowledge for one or more areas.  In some cases, new members joined the task force to cover areas of expertise 
outside of those originally represented.  Subsequently, a second task force member reviewed and revised each initial 
draft.  After each revision, the entire task force reviewed the resulting draft for comment.  At the completion of this 
process, the entire task force met as a group to review the draft body of knowledge, with follow-up modifications 
made as appropriate.  
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 The task force released the resulting document for public review.  It solicited reviews at a number of meetings, 
conferences, and other sources.  The task force held an NSF-sponsored workshop in November 2002 in conjunction 
with the Frontiers in Education Conference [FIE’02] in Boston.  Reviewers from academia and industry participated 
in the workshop and provided comments on the preliminary versions of the body of knowledge.  Members from the 
task force presented and discussed the body of knowledge at a variety of conferences through panel discussions and 
poster sessions.  Presentations to date appear in Table 4.2.  The entire CCCE project has been available at [Aub] 
since 2002.  
 

Table 4.2 
CCCE Presentations 

 
Date Conference or meeting Type 

   
2002 June 16-19 American Society for Engineering Education (ASEE 2002) – Montreal  [ASEE’02] Panel 

2002 November 6-9 Frontiers in Education – Boston  [FIE’02] Panel 
2003 February 19-23 SIGCSE Technical Symposium – Reno  [SIGCSE’03] Panel 

2003 March Electrical and Computer Engineering Department Heads Association - Hawaii Panel 
2003 June 22-25 American Society for Engineering Education (ASEE 2002) – Nashville  [ASEE’03] Panel 

2003 June 29 – July 2 Innovation and Technology in Computer Science Education – Greece  [ITiCSE’03] Poster 
2003 November 5-8 Frontiers in Education - Denver  [FIE’03] Panel &Paper 

2004 March 3-7 SIGCSE Technical Symposium – Norfolk  [SIGCSE’04] Panel 
2004 June 21-24 MultiConference in Computer Sci. & Computer Engineering – Las Vegas [MCSCE’04] Paper 
2004 June 20-23 American Society for Engineering Education (ASEE 2002) – Salt Lake City  [ASEE’04] Paper 
2004 June 29-30 Innovation and Technology in Computer Science Education – England  [ITiCSE’04] Poster 

2004 October 20-23  Frontiers in Education – Savannah  [FIE’04]  Panel & Paper 
   

 
 
 
4.2   Structure of the Body of Knowledge 
 
The body of knowledge has a hierarchical organization comprising three levels described as follows. 

 The highest level of the hierarchy is the knowledge area, which represents a particular disciplinary sub-field.  
A three-letter abbreviated tag identifies each area, such as CE-DIG for “Digital Logic” and CE-CAO for 
“Computer Architecture and Organization.”   

 Each knowledge area is broken down into smaller divisions called knowledge units, which represent 
individual thematic modules within an area.  A numeric suffix added to the area name identifies each 
knowledge unit.  For example, CE-CAO3 is a knowledge unit on “Memory System Organization and 
Architecture” within the CE-CAO knowledge area.   

 A set of topics, which are the lowest level of the hierarchy, further subdivides each knowledge unit.  A group 
of learning outcomes addresses the related technical skills associated with each knowledge unit.  Section 4.3 
expands the discussion on learning outcomes. 

 
 To differentiate knowledge areas and knowledge units in computer engineering from those that may have the 
same or similar names in the other four curriculum areas associated with this computing curriculum project, the 
prefix “CE-” accompanies all knowledge areas and units in computer engineering.  Reflecting the examples above, 
therefore, tags such as CE-DIG for knowledge areas and CE-CAO3 for knowledge units appear throughout the 
report.  
 
 
4.3   Learning Outcomes 
 
To capture the various skills associated with obtaining knowledge, this report uses the phrase learning outcomes as a 
component of each knowledge unit.  The emphasis on learning is important.  The concept of learning outcomes is a 
mechanism for describing not just knowledge and relevant practical skills, but also personal and transferable skills.  
Outcomes can be associated with a knowledge unit, a class, a course, or even a degree program.  Teachers can use 
them to convey different aspects of the ethos of a course or area of study. 
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 Any specification of a course will include both knowledge and associated learning outcomes.  In designing 
courses, some designers start with knowledge while others start with the learning outcomes.  In reality, a 
combination of the two approaches appears most appropriate.  In addition, a certain duality exists between the 
elements of knowledge and the related learning outcomes or objectives.  Different people will place different levels 
of emphasis on each.  For this document, the view is that they are complementary. 
 
 Since learning outcomes imply assessment and since assessment guides learning, teachers should exercise 
considerable care in selecting and formulating these.  Excessive numbers of very detailed learning outcomes can 
lead to bureaucracy and tedium, which is highly undesirable.  The existence of these outcomes must not inhibit 
course development; it should enhance that activity. 
 
 Learning outcomes are part of knowledge units and can be part of modules, which constitute the formal units of 
assessment.  The number of learning outcomes per knowledge unit or module should be a small number—at most 
four or five.  The learning outcomes for a module will naturally build on the knowledge units and the associated 
practical skills.  They tend to be of the form: 
 

Demonstrate the acquisition of competence; that is, show the ability to apply knowledge and 
practical skills to solve a problem. 

 
Of course, the ways of demonstrating skills can be many and varied; in particular, they can involve a range of 
communication and other skills.  In this way, imaginative approaches to assessment can lead to the assessment of a 
range of skills in a well-conceived assignment. 
 
 
4.4  Core and Elective Knowledge Units 
 
As computer engineering evolves, the number of topics required in the undergraduate curriculum is growing.  Over 
the last decade, computer engineering has expanded to such an extent that it is no longer possible to add new topics 
without taking others away.  One of the goals in proposing curricular recommendations is to keep the required 
component of the body of knowledge as small as possible. 
 
 To implement this principle, the Computer Engineering Task Force has defined a minimal core comprising 
those knowledge units for which there is broad consensus that the corresponding material is essential to anyone 
obtaining an undergraduate degree in computer engineering.  The core is considered essential, independent of the 
specific program degree title or organizational structure.  Knowledge units presented as part of an undergraduate 
program, but which fall outside the core, are elective to the curriculum.  Based on program goals, an institution may 
deem many elective units and areas as essential and require them for its program. 
 
 In discussing the recommendations during their development, the Task Force has found that it helps to 
emphasize the following important points. 
 

 The core is not a complete curriculum.   
The intention of the core is minimal and it does not constitute a complete undergraduate curriculum.  Every 
undergraduate program must include additional elective knowledge units from the body of knowledge.  This 
report does not define what those units should be; that decision is the choice of each institution.  A complete 
curriculum must also contain supporting areas covered through courses in mathematics, natural sciences, 
business, humanities, and/or social sciences.  Chapter 7 presents some detail in this area.   

 
 Core units are not necessarily limited to a set of introductory courses taken early in the undergraduate 
curriculum.  
Many of the knowledge units defined as core are indeed introductory.  However, some core knowledge can 
appear only after students have developed significant background in the field.  For example, the Task Force 
believes that all students must develop a significant application at some point during their undergraduate 
program.  The material that is essential to successful management of projects at this scale is obviously part of 
the core, since it is required of all students.  At the same time, the project course experience is very likely to 
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come toward the end of a student's undergraduate program.  Similarly, introductory courses may include 
elective knowledge units together with the coverage of core material.  From a practical point of view, the 
designation core simply means required and says nothing about the level of the course in which it appears.  

 
 
4.5   Knowledge Units and Time Required for Coverage 
 
To provide readers a sense of the time required to cover a particular unit, this report defines a metric that establishes 
a standard of measurement.  Choosing such a metric has proven difficult, because no standard measure has global 
recognition.  For consistency with the computer science report and earlier curriculum reports, the Task Force has 
chosen to express time in hours, corresponding to the in-class time required to present that material in a traditional 
lecture-oriented format.  To dispel any potential confusion, however, it is important to underscore the following 
observations about the use of lecture hours as a measure. 
 

 The Task Force does not seek to endorse the lecture format.  Even though this report refers to a metric with 
its roots in a classical lecture-oriented form, the Task Force believes there are other styles - particularly given 
recent improvements in educational technology - that can be at least as effective.  For some of these styles, 
the notion of hours may be difficult to apply.  Even so, the time specifications should at least serve as a 
comparative measure, in the sense that a five-hour unit will presumably take roughly five times as much time 
to cover as a one-hour unit, independent of the teaching style. 
 

 The hours specified do not include time spent outside of a class.  The time assigned to a unit does not include 
the instructor's preparation time or the time students spend outside of class.  As a general guideline, the 
amount of out-of-class work for a student is approximately three times the in-class time.  Thus, a unit that is 
listed as requiring three hours will typically entail a total of twelve hours (three in-class hours and nine 
outside hours) of student effort. 
 

 The hours listed for a unit represent a minimum level of coverage.  One should interpret the time 
measurements assigned to each knowledge unit as the minimum amount of time necessary to enable a student 
to perform the learning objectives for that unit.  It may be appropriate to spend more time on a knowledge 
unit than the mandated minimum. 

 
 
4.6   Core Hours and a Complete Program 
 
The knowledge units designated as core constitute only a fraction (approximately 30%) of the total body of 
knowledge.  Different computer engineering programs can have different program objectives and as a result, will 
have different emphases.  The remainder of a specific program at an institution usually will require specific 
additional knowledge units that complement the core areas, as well as elective hours chosen by individual students.  
Thus, each local program should seek to encompass that portion of the body of knowledge relevant to its program 
goals.   
 
A summary of the body of knowledge—showing the areas, units, which units are core, and the minimum time 
required for each—appears in Table 4-3.  It consists of 18 knowledge areas; 16 relate directly to computer 
engineering and 2 relate to mathematics (discrete structures, probability and statistics).  The Computer Engineering 
Task Force has singled out these two mathematics areas as core because some programs may not consider them 
essential to computer engineering, as they would consider calculus.  The details of the body of knowledge for 
computer engineering appear in Appendix A.   
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Table 4-3 

The Computer Engineering Body of Knowledge 
 

Computer Engineering Knowledge Areas and Units 
CE-ALG  Algorithms and Complexity [30 core hours] 

CE-ALG0  History and overview [1] 
CE-ALG1  Basic algorithmic analysis [4] 
CE-ALG2  Algorithmic strategies [8] 
CE-ALG3  Computing algorithms [12] 
CE-ALG4  Distributed algorithms [3] 
CE-ALG5  Algorithmic complexity [2] 
CE-ALG6  Basic computability theory  

CE-CAO  Computer Architecture and Organization [63 core hours] 
CE-CAO0  History and overview [1] 
CE-CAO1  Fundamentals of computer architecture [10] 
CE-CAO2  Computer arithmetic [3] 
CE-CAO3  Memory system organization and architecture [8] 
CE-CAO4  Interfacing and communication [10] 
CE-CAO5  Device subsystems  [5] 
CE-CAO6  Processor systems design  [10] 
CE-CAO7  Organization of the CPU  [10] 
CE-CAO8  Performance  [3] 
CE-CAO9  Distributed system models [3] 
CE-CAO10 Performance enhancements 

CE-CSE  Computer Systems Engineering [18 core hours] 
CE-CSE0  History and overview [1] 
CE-CSE1  Life cycle [2] 
CE-CSE2  Requirements analysis and elicitation [2] 
CE-CSE3  Specification [2] 
CE-CSE4  Architectural design [3] 
CE-CSE5  Testing [2] 
CE-CSE6  Maintenance [2] 
CE-CSE7 Project management [2] 
CE-CSE8  Concurrent (hardware/software) design [2] 
CE-CSE9  Implementation 
CE-CSE10 Specialized systems 
CE-CSE11 Reliability and fault tolerance 

CE-CSG  Circuits and Signals [43 core hours]  
CE-CSG0  History and overview [1] 
CE-CSG1  Electrical Quantities [3] 
CE-CSG2  Resistive Circuits and Networks [9] 
CE-CSG3  Reactive Circuits and Networks [12] 
CE-CSG4  Frequency Response [9] 
CE-CSG5  Sinusoidal Analysis [6] 
CE-CSG6  Convolution [3] 
CE-CSG7  Fourier Analysis 
CE-CSG8  Filters 
CE-CSG9  Laplace Transforms 

 
CE-DBS  Database Systems [5 core hours] 

CE-DBS0  History and overview [1] 
CE-DBS1  Database systems [2] 
CE-DBS2  Data modeling [2]  
CE-DBS3  Relational databases 
CE-DBS4  Database query languages 
CE-DBS5  Relational database design 
CE-DBS6  Transaction processing 
CE-DBS7  Distributed databases 
CE-DBS8  Physical database design 

 

CE-DIG  Digital Logic [57 core hours]  
CE-DIG0  History and overview [1] 
CE-DIG1  Switching theory [6] 
CE-DIG2  Combinational logic circuits [4] 
CE-DIG3  Modular design of combinational circuits [6] 
CE-DIG4  Memory elements [3] 
CE-DIG5  Sequential logic circuits [10] 
CE-DIG6  Digital systems design [12] 
CE-DIG7  Modeling and simulation [5] 
CE-DIG8  Formal verification [5] 
CE-DIG9  Fault models and testing [5] 

   CE-DIG10 Design for testability 
CE-DSP  Digital Signal Processing [17 core hours] 
CE-DSP0  History and overview [1]  
CE-DSP1  Theories and concepts [3] 
CE-DSP2  Digital spectra analysis [1] 
CE-DSP3  Discrete Fourier transform [7] 
CE-DSP4  Sampling [2] 
CE-DSP5  Transforms [2] 
CE-DSP6  Digital filters [1] 
CE-DSP7  Discrete time signals  
CE-DSP8  Window functions 
CE-DSP9  Convolution 

  CE-DSP10 Audio processing 
  CE-DSP11 Image processing 

CE-ELE  Electronics [40 core hours] 
CE-ELE0  History and overview [1] 
CE-ELE1  Electronic properties of materials [3] 
CE-ELE2  Diodes and diode circuits [5] 
CE-ELE3  MOS transistors and biasing [3] 
CE-ELE4  MOS logic families [7] 
CE-ELE5  Bipolar transistors and logic families [4] 
CE-ELE6  Design parameters and issues [4] 
CE-ELE7  Storage elements [3] 
CE-ELE8  Interfacing logic families and standard buses [3] 
CE-ELE9  Operational amplifiers [4] 
CE-ELE10 Circuit modeling and simulation [3]  
CE-ELE11 Data conversion circuits 
CE-ELE12 Electronic voltage and current sources 
CE-ELE13 Amplifier design 
CE-ELE14 Integrated circuit building blocks 

 CE-ESY  Embedded Systems [20 core hours] 
CE-ESY0  History and overview [1] 
CE-ESY1  Embedded microcontrollers [6] 
CE-ESY2  Embedded programs [3] 
CE-ESY3  Real-time operating systems [3] 
CE-ESY4  Low-power computing [2] 
CE-ESY5  Reliable system design [2] 
CE-ESY6  Design methodologies [3] 
CE-ESY7  Tool support 
CE-ESY8  Embedded multiprocessors 
CE-ESY9  Networked embedded systems 
CE-ESY10 Interfacing and mixed-signal systems 

CE-HCI  Human-Computer Interaction [8 core hours] 
CE-HCI0  History and overview [1] 
CE-HCI1  Foundations of human-computer interaction [2] 
CE-HCI2  Graphical user interface [2] 
CE-HCI3  I/O technologies [1] 
CE-HCI4  Intelligent systems [2] 
CE-HCI5  Human-centered software evaluation 
CE-HCI6  Human-centered software development 
CE-HCI7  Interactive graphical user-interface design 
CE-HCI8  Graphical user-interface programming 
CE-HCI9  Graphics and visualization 
CE-HCI10 Multimedia systems 

Page 21  



Computing Curriculum – Computer Engineering  Curriculum Report 
Ironman Draft  2004June8 

CE-NWK  Computer Networks [21 core hours] 
CE-NWK0  History and overview [1] 
CE-NWK1  Communications network architecture [3] 
CE-NWK2  Communications network protocols [4] 
CE-NWK3  Local and wide area networks [4] 
CE-NWK4  Client-server computing [3] 
CE-NWK5  Data security and integrity [4] 
CE-NWK6  Wireless and mobile computing [2] 
CE-NWK7  Performance evaluation 
CE-NWK8  Data communications 
CE-NWK9  Network management  
CE-NWK10 Compression and decompression  

CE-OPS  Operating Systems [20 core hours] 
CE-OPS0  History and overview [1] 
CE-OPS1  Design principles [5] 
CE-OPS2  Concurrency [6] 
CE-OPS3  Scheduling and dispatch [3] 
CE-OPS4  Memory management [5] 
CE-OPS5  Device management 
CE-OPS6  Security and protection 
CE-OPS7  File systems 
CE-OPS8  System performance evaluation 

CE-PRF  Programming Fundamentals [39 core hours] 
CE-PRF0  History and overview [1] 
CE-PRF1  Programming Paradigms [5] 
CE-PRF2  Programming constructs [7] 
CE-PRF3  Algorithms and problem-solving [8] 
CE-PRF4  Data structures [13]  
CE-PRF5  Recursion [5] 
CE-PRF6  Object-oriented programming 
CE-PRF7  Event-driven and concurrent programming 
CE-PRF8  Using APIs 

CE-SPR  Social and Professional Issues [16 core hours] 
CE-SPR0  History and overview [1] 
CE-SPR1  Public policy [2] 
CE-SPR2  Methods and tools of analysis [2] 
CE-SPR3  Professional and ethical responsibilities [2] 
CE-SPR4  Risks and liabilities [2] 
CE-SPR5  Intellectual property [2] 
CE-SPR6  Privacy and civil liberties [2] 
CE-SPR7  Computer crime [1] 
CE-SPR8  Economic issues in computing [2] 
CE-SPR9  Philosophical frameworks 

CE-SWE  Software Engineering [13 core hours] 
CE-SWE0  History and overview [1] 
CE-SWE1  Software processes [2] 
CE-SWE2  Software requirements and specifications [2] 
CE-SWE3  Software design [2] 
CE-SWE4  Software testing and validation [2] 
CE-SWE5  Software evolution [2] 
CE-SWE6  Software tools and environments [2]  
CE-SWE7  Language translation 
CE-SWE8  Software project management 
CE-SWE9  Software fault tolerance 
 

CE-VLS  VLSI Design and Fabrication [10 core hours] 
CE-VLS0   History and overview [1] 
CE-VLS1   Electronic properties of materials [2] 
CE-VLS2   Function of the basic inverter structure [3] 
CE-VLS3   Combinational logic structures [1] 
CE-VLS4   Sequential logic structures [1] 
CE-VLS5   Semiconductor memories and array structures [2] 
CE-VLS6   Chip input/output circuits  
CE-VLS7   Processing and layout  
CE-VLS8   Circuit characterization and performance  
CE-VLS9   Alternative circuit structures/low power design 
CE-VLS10 Semi-custom design technologies 
CE-VLS11 ASIC design methodology 

 
 

Mathematics Knowledge Areas and Units 
CE-DSC  Discrete Structures [33 core hours] 

CE-DSC0  History and overview [1] 
CE-DSC1  Functions, relations, and sets [6] 
CE-DSC2  Basic logic [10] 
CE-DSC3  Proof techniques [6] 
CE-DSC4  Basics of counting [4] 
CE-DSC5  Graphs and trees [4] 
CE-DSC6  Recursion [2] 

CE-PRS  Probability and Statistics [33 core hours] 
CE-PRS0  History and overview [1] 
CE-PRS1  Discrete probability [6] 
CE-PRS2  Continuous probability [6] 
CE-PRS3  Expectation [4] 
CE-PRS4  Stochastic Processes [6] 
CE-PRS5  Sampling distributions [4] 
CE-PRS6  Estimation [4] 
CE-PRS7  Hypothesis tests [2]  
CE-PRS8  Correlation and regression  

 
 
 
 
 The core hours as specified in Table 4-3 total 420 hours of computer engineering and 66 hours of mathematics.  
Recall that an hour refers to a lecture hour and not a credit hour.  Assuming a typical 15-week semester, a typical 
three-credit-hour course would have about 42 lecture hours for presentation of material.  That is, approximately 14 
lecture hours are equivalent to 1 semester credit hour.  The 420 core computer engineering hours are thus roughly 
equivalent to ten three-credit-hour courses or 30 semester credit hours.  The 30 semester credit hours is 
approximately one quarter of the 128 credit hours included in a typical four-year engineering program.  The 420 
core hours leave ample room for the addition of laboratory courses, a culminating design project, and electives that 
allow an institution to customize their program.   
 
 In the United States, for example, ABET accreditation criteria currently requires one and one-half years 
(approximately 48 semester hours) of engineering topics; it also requires one year (32 semester hours) of 
mathematics and basic science.  The 48 semester hours are equivalent to 672 contact hours.  Therefore, the 420 core 
hours listed in Table 4.3 would constitute approximately two-thirds of the required minimum engineering content.  
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Programs often categorize the discrete structures area and the probability and statistics area as mathematics rather 
than engineering or computing areas.   
 
 Figure 4.1 illustrates a four-year model program.  It includes 1.0 year of mathematics and science, 1.0 year of 
computer engineering core, 0.5 year of computer engineering electives, 0.5 year of additional engineering studies, 
and 1.0 year of general studies.  The model is adaptable to any worldwide system of study.  In those countries where 
general studies precede university studies, a three-year model may be created, as shown in Figure 4.2, by removing 
the year of general studies and introductory mathematics and science.  Appendix B includes examples of both four-
year and three-year curricula. 
 
 

Computer Engineering Topics 
 
 

Math 
and 

Science 

 
Core  

CPE Topics 

 
Elective 

CPE 
Topics 

 

 
Additional Topics 

 
(from engineering, mathematics, 
general studies, and other topics 

based on program objectives) 
 

1 year 1 year 0.5 years 1.5 years 

 
Figure 4.1.  Organization of a four-year computer engineering curriculum. 
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Figure 4.2.  Organization of a three-year computer engineering curriculum. 
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Chapter 5 
 

Integration of Engineering Practice into the  
Computer Engineering Curriculum 

 
 

B 
 

y its very nature, any curriculum in computer engineering should reflect an engineering ethos that permeates 
all years of the curriculum in a consistent manner.  Such an approach has the effect of introducing students 
to engineering (and in particular computer engineering), teaching them to think and function as engineers, 

and setting expectations for the future.  Preparation for professional practice is essential since engineering, unlike 
such professions as law and medicine, generally does not require an advanced degree for employment in the field. 
 
 The role of this chapter is to go beyond the body of knowledge introduced in Chapter 4 and to examine the 
basic skills necessary to enable the computer engineering graduate to apply this body of knowledge to real-world 
problems and situations.  Chapter 6 will then address the important matter of professionalism, and Chapter 7 will 
consider overall curriculum design, along with introducing sample curriculum implementations given in Appendix 
B. 
 
 
5.1 The Nature of Computer Engineering 
 
An important initial aspect of the engineering ethos relates to acquiring the background necessary to understand and 
to reason about engineering concepts and artifacts.  This background stems from fundamental ideas in areas such as 
computing, electronics, mathematics and physics and students need to acquire familiarity and facility with these 
concepts.  An important role of the body of knowledge for computer engineering is to expose and develop these 
fundamental notions.  In many ways, the core of the body of knowledge reflects a careful set of decisions about 
selection of material that fulfils this role. 
 
 This basic material then provides underpinning for additional material whose ultimate expression is the building 
of better as well as novel computing systems.  A blend of theory and practice, with theory guiding practice, appears 
to be the best approach to the discipline.  The curriculum should accompany this blend with attention to a set of 
professional, ethical, and legal concerns that guide the activities and attitudes of the well-educated computer 
engineer.  The curriculum should also foster familiarity with a considerable range of diverse applications. 
 
 
5.2  Design in the Curriculum 
 
In Chapter 2 of this report, a brief discussion on the characteristics of a computer engineer included the ability to 
design and provided a definition of engineering design.   
 
5.2.1  Design Throughout the Curriculum 
 
The principles of engineering design must pervade the entire computer engineering curriculum to produce 
competent graduates.  Throughout their education, computer engineering students should encounter different 
approaches to design so that they become familiar with the strengths and weaknesses of these approaches.  
Typically, the context in which design occurs provides a framework to decide which choices one must make.  
Depending on the specific application requirements, the design context may emphasize technical considerations, 
reliability, security, cost, user interface, or other considerations.  Development of the requisite design skills cannot 
be achieved through a single course, but must be integrated throughout the curriculum, building on both the 
students’ accumulated technical knowledge and prior design experiences. 
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 One area of particular concern to the computer engineer is the software/hardware interface where difficult trade-
off decisions often provide engineering challenges.  Considerations on this boundary lead to an appreciation of and 
insights into computer architecture and the importance of a computer’s machine code.  At this boundary, difficult 
decisions regarding hardware/software trade-offs can occur and this leads naturally to the design of special purpose 
computers and systems.  For example, in the design of a critical-safety system, it is important to ensure that the 
system not harm the user or the public.  The computer engineer must thoroughly test, even with unlikely parameters, 
the hardware and software, and ultimately the system itself, to ensure the proper and reliable operation of the 
system.    
 
 At a different level, there are all the difficult issues of software design, including the human-computer interface.  
Addressing this comprehensively can lead to considerations about multi-media, graphics, animation, and a whole 
host of technologies.  Similarly, one can make the same argument for issues in hardware design.  In short, design is 
central to computer engineering. 
 
5.2.2  The Culminating Design Experience 
 
The concept of a culminating design project is widely valued as an important experience that occurs toward the end 
of a curriculum.  Students consider a significant problem associated with a discipline and, in solving the problem, 
they have the opportunity to demonstrate their ability to provide a solution.  Typically, the solution must involve the 
design and implementation of some product containing hardware and/or software components.  The design 
experience often includes cross-disciplinary teams, which best reflects industry practice.  Ideally, the design 
experience should incorporate engineering standards and realistic constraints to represent what may occur in a real 
environment.   
 
 The culminating design experience should provide students with a wealth of learning benefits.  The benefits 
stemming from this experience include: 

 Demonstration of the ability to integrate concepts from several different subjects into a solution 
 Demonstration of the application of disciplines associated with computer engineering 
 Production of a well-written document detailing the design and the design experience 
 Demonstration of creativity and innovation 
 Development of time management and planning skills  
 Self-awareness opportunities provided by an assessment of achievement as part of a final report 

Depending on the approach to assessment, other opportunities arise.  Assessment may include a demonstration, a 
presentation, an oral examination, production of a web page, industry review, and many other interesting 
possibilities.  Although not listed in the core body of knowledge, the culminating design experience must be an 
integral part of the undergraduate experience. 
 
 
5.3 The Laboratory Experience 
 
The laboratory experience is an essential part of the computer engineering curriculum and serves multiple functions.  
As in any engineering curriculum, it is important that computer engineering students have many opportunities to 
observe, explore and manipulate characteristics and behaviors of actual devices, systems, and processes.  This 
includes designing, implementing, testing, and documenting hardware and software, designing experiments to 
acquire data, analyzing and interpreting that data, and in some cases, using that data to correct or improve the 
design.  A laboratory setting most effectively demonstrates such experiences either as an integral part of a course or 
as a separate stand-alone course. 
 

Introductory laboratories are somewhat directed and designed to reinforce concepts presented in lecture classes 
and homework.  Such activities demonstrate specific phenomena or behavior, and provide experiences with 
measuring and studying desired characteristics.  Intermediate and advanced laboratories should include problems 
that are more open-ended, requiring students to design and implement solutions, to design experiments to acquire 
data needed to complete the design or measure various characteristics. 
 
 Laboratories should include some physical implementation of designs such as electronic and digital circuits, 
bread-boarding, microprocessor interfacing, prototyping, and implementation of hardware and software.  
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Laboratories should also include application and simulation software to design small digital and computer systems.  
The use of simulation tools to model and study real systems is often desirable and necessary to allow students to 
study systems that are not practical to design and implement physically.  Such tools would also be useful where it 
might be difficult to acquire the detailed information necessary to study their behavior.   
 
 Students should learn to record laboratory activity to document and keep track of all design activities, 
conducted experiments, and their measured/observed results whether good or bad.  It also offers opportunities to 
record trade-offs and to explore the effects of those design tradeoffs.  The laboratory experience should also assist 
students in learning practical issues, such as the following:. 

 Safety in all laboratories, especially where electronic equipment and electricity pose dangers 
 Proper use of computers and other test equipment 
 Building electronic circuits and devices 
 Understanding the processes and concerns associated with product development and manufacturing 
 Recognizing opportunities for trade-offs and being able to resolve decisions in this area; the trade-off between 

hardware and software is of particular concern 
 Treating laboratories as places of serious study and endeavor  

 
 At the formative stages of their education, students often are motivated by the “hands-on” nature of engineering.  
The laboratory experience capitalizes on this interest to provide a foundation for other important elements of 
practical activity.  Fundamentally, carefully planned practical assignments in a laboratory setting should help 
students develop confidence in their technical ability.  The laboratory experience should help students develop the 
expertise to build new devices and to appreciate the important role of technical staff, workshop teams, and 
professionals from other disciplines. 
 
 
5.4 The Role of Engineering Tools 
 
The use of tools is fundamental to engineering to effectively organize information and manage design complexity.  
Familiarity with commonly used tools, the ability to deploy them in appropriate situations, and the ability to use 
them effectively are important skills.  Recognizing the potential for tool use is a highly valued skill and in non-
standard contexts can provide important insights.  In the rapidly changing world of computer engineering, there are 
opportunities for identifying roles for new tools.  The development and exploitation of high quality tools is part of 
the role of the computer engineer. 
 
 For the computer engineer, the relevant range of tools spans the whole hardware and software spectrum.  
Hardware design and analysis tools include instruments for measuring and analyzing hardware behavior, VLSI 
design software, hardware description language and other design modeling tools, simulators and emulators, and 
debugging tools.  Other hardware tools include those to support circuit design, printed circuit design layout, 
analyzing circuit behavior, block diagrams creation and editing, modeling communications systems, modeling 
mixed analog and digital simulation, design rule checking, and virtual instruments.  Software design and analysis 
tools include operating systems, editors, compilers, language processors, debuggers, and computer-aided software 
engineering (CASE) tools.  General support tools include mathematical analysis programs (e.g. MATLAB, 
MathCad), office software (word processors, spreadsheets, browsers, and search engines), databases, 
communications software, and project management tools.  
 
 Not every computer engineering program will incorporate all of these tools.  The program should incorporate 
appropriate tools throughout the program of study, consistent with the program’s goals and objectives.  Identifying 
the scope for the development of tools and components generally is yet another role for the computer engineer.  A 
natural subsequent activity is engaging in the design and development of these.  Such activities need to be guided by 
concerns for quality in all its different guises – safety, usability, reliability, and so on. 
 
 
5.5 Applications of Computer Engineering Principles 
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Given the nature of computer engineering and the expectations of students entering such courses, applications play a 
fundamental role.  Instructors can use applications as a means for:  

 Motivating students in their studies  
 Guiding their thinking and ambition 
 Providing justification for the inclusion and the prominence of certain material 
 Demonstrating the application of theoretical ideas 

A program can achieve these attributes through a whole range of possible routes.  These include the use of up-to-
date and topical case studies, guided reading, assessments, speakers from industry, and other diverse paths.  This 
experience can happen at a whole range of levels including chip design, software tools, and entire systems.  Suitable 
applications can also provide a forum for group work, perhaps of an interdisciplinary nature.  To this end, all 
computer engineering students should engage in an in-depth study of some significant application that uses 
computing engineering in a substantive way. 
 
 Computer engineering students will typically have a wide range of interests and professional goals.  For many 
students, in-depth study of some aspect of computer engineering will be extremely useful.  Students might 
accomplish such work in several ways.  Some approaches might include an extended internship experience or the 
equivalent of a full semester's work that would count toward a major in that discipline.  Some institutions offer 
cooperative education programs in which students alternate terms of study and engineering work in industry.  
Activities of this kind can be interdisciplinary in nature and provide opportunities for particularly beneficial kinds of 
group activity.  Thus, the computer engineer may have to work with professionals from other disciplines, which may 
include computer scientists, electrical engineers, financial experts, marketers, and product designers. 
 
 
5.6 Complementary Skills 
 
With the relatively recent worldwide expansion in higher education, there are pressures on institutions to ensure that 
graduates have the capacity to meet the needs of employers.  Indeed, in many ways a more positive view is that 
institutions appear as agents of change capable of moving into employment with skills and expectations that ensure 
that organizations benefit from their presence and involvement. 
 
 One aspect of this is to ensure that students possess a set of transferable or personal skills such as 
communication skills, group working skills, and presentational skills.  Transferable skills are those skills a person 
can use in any occupation and can convey them from one type of work to another without retraining.  Additionally, 
one could include library and research skills as well as professional skills such as time management, project 
management, information management, career development, self-awareness, and keeping up-to-date with 
innovations in the field.  From a motivational perspective, one should assess these skills in the context of computer 
engineering and in a manner that highlights their relevance and importance to the discipline. 
 
 There is always a danger that time spent on complementary skills can absorb excessive amounts of time and 
effort and swamp or displace the more traditional material, thereby reducing knowledge.  There are delicate issues of 
balance here, and typically, a subtle approach to both teaching and assessment is required to ensure that there is not 
imbalance in the curriculum. 
 
 
5.7  Communication Skills 
 
Computer engineers must be able to communicate effectively with colleagues and clients.  Because of the 
importance of good communication skills in nearly all careers, students must sharpen their oral and writing skills in 
a variety of contexts—both inside and outside of computer engineering courses.   
 
 One particular aspect of the activity of a computer engineer is to pass project requirements to a workshop or to 
technical support staff, which in an industrial setting may be local or remote.  Providing clear and succinct 
instructions and having a proper regard for the role and purpose of support staff affects the efficiency and the nature 
of the working environment.  This trait is a fundamental communication skill.  Considering these issues, students 
should learn to: 
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 Communicate ideas effectively in written form; this should include technical writing experiences (e.g. of 
specifications, requirements, safety cases, documentation) as well as report writing and this should address 
the use of figures, diagrams and appropriate references 

 Make effective oral presentations, both formally and informally 
 Understand and offer constructive critiques of the presentations of others 
 Argue (politely yet effectively) in defense of a position  
 Extract requirements from a customer by careful and penetrating questions using a disciplined and structured 
approach 

 Demonstrate the capabilities of a product 

While institutions may adopt different strategies to accomplish these goals, the program of each computer 
engineering student must include numerous occasions for improving these skills in a way that emphasizes writing, 
speaking, and active listening skills.  
 
 To enhance or emphasize the requisite communication skills needed by all students, a computer engineering 
curriculum at a minimum should require: 

 Course work that emphasizes the mechanics and process of writing 
 Course work that emphasizes the mechanics and process of speaking 
 One or more formal written reports 
 Opportunities to critique a written report 
 One or more formal oral presentations to a group 
 Opportunities to critique an oral presentation 

Furthermore, the computer engineering curriculum should integrate writing and verbal discussion consistently in 
substantive ways.  Institutions should not view communication skills as separate entities; instead, teachers should 
incorporate fully such skills into the computer engineering curriculum and its requirements. 
 
 A complementary and important set of communication skills arise in the context of electronic media.  
Increasingly these have a central role to play in the life of the engineer.  Apart from the obvious need to address 
areas such as email and web design, students should engage at some level the ideas on effective cooperative working 
and group learning, which have an increased prominence in the curriculum. 
 
 
5.8  Teamwork Skills 
 
Few computer engineering professionals can expect to work in isolation for very much of the time.  Major computer 
engineering projects are often, if not always, implemented by groups of people working together as a team.  Many 
times the teams are interdisciplinary in nature.  Computer engineering students therefore need to learn about the 
mechanics and dynamics of effective team participation as part of their undergraduate education.  Moreover, 
because the value of working in teams (as well as the difficulties that arise) does not become evident in small-scale 
projects, students need to engage in team-oriented projects that extend over a reasonably long period of time, 
possibly a full semester or a significant fraction thereof. 
 
 Many of the problems of teamwork relate to communication skills.  Where multi-disciplinary teams are 
involved, individuals tend to receive roles, at least in part, based on their technical expertise.  In team activity, 
however, there are important additional issues related to such matters as the nature and composition of teams, roles 
within teams, organizing team meetings, developing methods of reaching consensus and for recording decisions, the 
importance of interfaces, the nature of deadlines and planning, and the importance of quality control mechanisms.  
Computer engineering programs should include activities that ensure students have the opportunity to acquire these 
skills as undergraduates; for example: 

 Opportunities to work in teams beginning relatively early in the curriculum  
 A significant project that a small student team undertakes that involves a complex design and implementation 
of some product or prototype  

 
 
5.9  Lifelong Learning Skills 
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Rapid technological change has been a characteristic of computer engineering and is likely to remain so for some 
time to come.  Graduates must be able to keep up-to-date with that change and a key requirement of undergraduate 
education is to equip them with the mechanisms for achieving this. 
 
 A number of basic strategies seem appropriate.  First, the curriculum itself must be up-to-date, the equipment 
has to be up-to-date, and faculty members need to be engaged in relevant scholarship.  Relevant reference material 
such as textbooks, software, web sites, case studies, and illustrations can be part of the learning experience with the 
aim of identifying sources of up-to-date and interesting information.  In addition, more considerations are 
fundamental. 
 
 Lifelong learning is essentially an attitude of mind.  Institutions can foster such attitudes by novel approaches to 
teaching and learning that continually question and challenge situations and by highlighting opportunities for 
advances.  Instructors can challenge students by assessments and exercises that seek to explore new avenues.  It is 
also essential to see learning as an aspect that merits attention throughout the curriculum.  It is possible to have a 
planned learning experience that challenges student thought processes.  Table 4.4 suggests stages that [Fellow, 
2002] identified in which learning is possible and the manner of participation by student and teacher.   
 
 

Table 4.4 
Learning Stages 

 
Stage Student Instructor Instructional Example 

1 Dependent Authority/coach Lecture, coaching 
2 Interested Motivator/guide Inspirational lecture, discussion group 
3 Involved Facilitator Discussion lead by instructor who participates as equal 
4 Self-directed Consultant Internships, dissertation, self directed study group 

 
 
5.10 The Business Perspective 
 
To complement the technical side of their experiences, computer engineer needs to have an understanding of the 
various non-technical processes associated with the development of new products.  Fundamentally, the computer 
engineer needs to develop an appreciation of creativity and innovation and have an eye to new opportunities for the 
creation of wealth, both within established companies and in entrepreneurial ventures.  Students can benefit from 
such knowledge in multiple ways, including: 

 Understanding the importance of the financial and economic imperatives associated with new products and 
organizations 

 Appreciating the relevance of the marketing perspective 
 Knowing what is involved in product design and product acceptability 
 Appreciating the benefits of  teamwork, often multi-disciplinary in nature 

In addition, students need to appreciate their fiscal responsibilities to their employers.  Time translates to money and 
the importance to complete jobs on schedule becomes important.  The business world can also present trade-offs 
between corporate needs and ethics.  Students should be aware of the professional challenges that may await them in 
government or corporate service.  
 
 Within the computer engineering curriculum, such topics may be covered in separate courses (for example, 
economics, engineering economics, marketing, or accounting), included as part of the culminating design project, or 
integrated into other courses throughout the program. 
 
 
5.11  The Elements of an Engineering Education 
 
In summary, proper preparation for professional practice should result in graduates who are capable of the 
following: 
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 Seeing their discipline as based on sound principles and sound underpinnings, to recognize what these are, 
and to be able to apply them 

 Understanding the important relationship between theory and practice 
 Placing importance on design and being able to select appropriate approaches in particular contexts 
 Recognizing the importance of understanding the relevant professional, ethical, and legal issues and the 
framework 

 Recognizing the importance of tools; being able to respond to the challenges of building them and 
recognizing the need to use these properly and effectively 

 Recognizing the range of applications for their work 
 Seeing innovation and creativity as important and understanding relevant business perspectives and 
opportunities 

 Recognizing the importance of team activity and the strengths that can be derived from this 
 Understanding principles of product design including health and safety as well as marketing issues 
 Seeing disciplined approaches as being important 
 Understanding the social context within which engineers needs to operate 
 Being able to address a significant problem in computer engineering, and demonstrating the ability to deploy 
an appropriate selection of tools and techniques as well as a disciplined approach in arriving at a solution of 
the problem 

Beyond these characteristics, this chapter has sought to address the range of basic ingredients that institutions must 
assemble and carefully integrate into a computer engineering program to ensure that graduates are aware of the best 
traditions of engineering practice.   
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Chapter 6 
 

Professionalism 
 
 

O 
 

ne aspect that makes computer engineers different from other computing specialists is their concentration on 
computer systems that include both hardware and software.  Computer engineers design and implement 
computing systems that often affect the public and should hold a special sense of responsibility knowing that 

almost every element of their work can have a public consequence.  Hence, computer engineers must consider the 
professional, societal, and ethical context in which they do their work.  This context includes many issues such as 
intellectual property rights embodied by copyrights and patents, legal issues including business contracts and law 
practice, security and privacy issues as they apply to networks and databases, liability issues as applied to hardware 
and software errors, and economic issues as they apply to tradeoffs between product quality and profits.  It also 
includes equity issues as they apply to technological access for all individuals.  Computer engineers must be aware 
of the social context of their actions and be sensitive to the global implications of their activities.  
 
 
6.1 Introduction 
 
The social context of engineering should be an integral component of engineering design and development.  The 
public would not expect that the design and construction of a building, bridge, or tunnel would be void of social 
context.  Likewise, it would not expect that the design and construction of a computer system used in an x-ray 
machine would be void of that same context.  Computer engineers should apply best practices to their work.  They 
should also follow prescribed rules of professional practice and not engage in activities that would tarnish their 
image or that of their practicing colleagues.   
 
 Professionalism and ethics should be the cornerstone of any curriculum in computer engineering.  The focus on 
design and development makes social context paramount to one’s studies in the field.  Professionalism should be a 
constant theme that pervades the entire curriculum.  Computer engineering students must learn to integrate theory, 
professional practice, and social constructs in their engineering careers.  Computing professionalism should be a 
major emphasis of the curriculum. 
 
 
6.2 Decisions in a Societal Context  
 
As designers of computing systems, computer engineers will face many decisions in their careers.  While most of 
these decisions will be technical ones, others will involve a significant societal context.  Computer engineers should 
understand the legal ramifications of contract law, business organization and management, and corporate law.   
 
 Of particular importance are issues related to intellectual property.  An understanding of patent law is important, 
particularly when the companies for whom they work may have an active patent program.  It is also necessary to 
understand copyrights since many employers copyright the software they produce.  Another method of protecting 
intellectual property is the use of trade secrets.  Different governments have different laws regarding patents, 
copyrights, and trade secrets.  Since the computer engineer will be working in a global context, an understanding of 
patents, copyrights, and trade secrets and their application is important.   
 
 The topics of privacy and secrecy are fundamental to computing.  Computers can store vast amounts of 
information about individuals, businesses, industries, and governments.  People can use this information to create 
profiles of these entities.  Computer engineers who are involved in the design of information storage systems must 
be cognizant of the multiple uses of the systems they develop.  Computer engineering students should study cases 
that trigger an awareness of the social context of how information systems maybe used. 
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 Computer engineers will most certainly have to deal with tradeoffs.  Sometimes these are technical decisions 
such as time versus space tradeoffs in a computer system.  Sometimes, however, they involve social, economic, or 
ethical tradeoffs.  Such decisions can be about levels of risk, product reliability, and professional accountability.  
Computer engineers must be aware of the ramifications of taking risks, be aware of the social consequences, be 
accountable for the designs they develop, and be aware of the actions they take.  These decisions may even involve 
safety critical systems or life/death situations.  Good engineers should not only be cognizant of the societal effects of 
such decisions, but they should take measures to act professionally to protect the public and to nurture the public 
trust. 
 
 Best practices begin in the instructional laboratory.  Educational institutions should encourage behavioral 
patterns in laboratories that reflect best practices.  Such patterns set a level or norm of behavior and elevate the 
professional expectations of students.  They also create a learning environment that is supportive of the professional 
tenets to which computer engineers aspire.  For example, institutions should establish safety guidelines for the 
proper use of machines and equipment.  Institutions should also provide guidelines on interpersonal skills between 
students, students working in groups, and students interacting with technicians in a laboratory setting.  Institutions 
should instill a sense of professionalism and best practices in all computer engineering students.   
 
 Morality is another aspect of making decisions in a societal context.  A computer engineer should be aware that 
many systems of morality exist.  Case studies can be helpful to students so they understand the environments in 
which they will have to function. 
 
 
6.3 Fostering Professionalism 
 
The issues highlighted in the previous sections have led many professional societies to develop codes of ethics and 
professional practice for their constituencies.  These codes help practitioners to understand expected standards of 
professional conduct and the expectation among member practitioners.  These codes also provide public information 
concerning the precepts considered central to the profession.  These codes provide a level playing field for 
professionals with the prospects of avoiding ethical dilemmas whenever possible and helping professionals “do the 
right thing” when faced with ethical decision making during their course of professional practice.  In computing, 
these codes are often binding upon the members of a society and they provide guidance in helping professionals 
make decisions affecting their practice.  Some of these codes include: 

 National Society of Professional Engineers - NSPE Code of Ethics for Engineers [NSPE 2003]  
 Institute of Electrical and Electronic Engineers (IEEE):  IEEE Code of Ethics [IEEE 2001] 
 Association for Computing Machinery (ACM): ACM Code of Ethics and Professional Conduct [ACM 2001] 
 ACM/IEEE-Computer Society:  Software Engineering Code of Ethics and Professional Practice 
[ACM/IEEECS 1999] 

 International Federation for Information Processing (IFIP):  Harmonization of Professional Standards and 
also Ethics of Computing [IFIP 1998]  

 Association of Information Technology Professionals (AITP):  AITP Code of Ethics and the AITP Standards 
of Conduct [AITP 2002] 

Computer engineers can use the codes of these societies to guide them to make decisions in their engineering 
careers.   
 
 Although each of these codes focus on the particular purposes of the society or societies sponsoring them, 
common themes pervade all of them.  Fundamental to all these codes are the responsibilities of the computing and 
engineering professional to the public and to the public good.  Additionally, these codes address issues of conflicts 
of interest, scope of competence, objectiveness and truthfulness, deception, and professional conduct.   
 
 The precepts delineated within these codes should be the hallmark of all practicing computer engineers.  
Computer engineers should adopt the tenets of these codes of ethics and professional practices in all the work they 
do.  It is incumbent upon educational programs to educate computer engineers to embrace these tenets for the benefit 
of their own careers and for the benefit of the computing and engineering professions.  
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 The inclusion of professional ethics in a computing engineering curriculum is fundamental to the discipline.  A 
listing of topics appears under the social and professional issues (CE-SPR) area as part of the body of knowledge for 
computer engineering (see Appendix A). 
 
 
6.4 Summary 
 
Computer engineers have shaped much of the technology we use today.  Indeed, computer engineers will continue to 
involve themselves to shape the technology we use in the future.  The computer engineer must apply the principles 
of best practices in designing and developing new technologies.  Computer engineers should be aware of the 
dilemmas they might face and they must weigh the options in responding to these dilemmas.  Using codes of ethics 
is a concrete approach to avoid potential problems and to resolve those that exist.   
 
 Additionally, computer engineers should understand that the technology they design may affect not only a small 
group of people, but all of society.  For example, a company could design a product in one country, develop the 
product in a second country, and manufacture it in a third company.  People from those and many other countries 
could use it.  Computer engineers may be involved in all aspects of the product -- from its design to its delivery.  
Therefore, computer engineers should be sensitive to the customs and laws affecting those people involved in the 
entire process.  
 
 Computer engineers must be aware of entrepreneurial and business developments and the importance of 
accounting, marketing, and finance.  Many computer engineers will become project leaders; in that setting, they 
must develop an understanding in the management of multi-disciplinary teams and working groups in industry and 
government.  Levels of such responsibility are part of being a professional and should be continuously cultivated 
throughout one’s studies and career.  
 
 It is incumbent upon all computer engineers to uphold the tenets of their profession and to foster the codes of 
professional practice for their colleagues or students.   
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Chapter 7 
 

Curriculum Implementation Issues 
 
 

T 
 

he creation of a complete degree program (an entire program of study) is far from straightforward.  The body 
of knowledge provides a starting point, but many other influences contribute to the creation of the 
curriculum.  The purpose of this chapter is to explore issues in the design and creation of a complete 

computer engineering degree program.  These issues include specifics such as packaging material from the BOK 
into courses, determining required mathematics and science courses, and more general considerations such as 
creating an overall style or ethos for a particular computer engineering degree program. 
 
 
7.1 General Considerations 
 
A computer engineering program requires a great variety of knowledge, practical skills, transferable skills, and 
attitudes that need consideration within the one single framework.  A program should exhibit an obvious and 
consistent ethos that permeates a complete program of study.  Students who enjoy and respond to particular 
approaches can be confident that they will continue to enjoy and be successful at the more advanced levels.  
 
 One key issue is how to distribute, among the fours years of study, relatively settled material (e.g., circuits or 
supporting mathematics courses) versus material that is more recent.  Computer engineering is a discipline in which 
the rate of change is very swift and this is likely to remain so.  Traditional approaches to course design suggest that 
fundamental and core material should appear at the start of a program.  By its very nature, the logic of this is that 
this material should exhibit a level of permanence and durability and should be unlikely to change over the lifetime 
of the program.  Then students can build on these foundations as they move forward to the later parts of the program 
and continue as lifelong learners. 
 
 This view requires tempering by consideration of the students’ point of view.  Students who choose to study 
computer engineering are often motivated by the hands-on nature of engineering, as well as their prior experience 
with computers.  During their initial academic terms, if students only take courses on mathematics and science, 
without obvious computer engineering applications, it may create a situation of frustration and disillusionment. 
 
 It is desirable to position topics involving very new topics in the later years.  These new topics are often at the 
forefront of research and development and after studying them, students can genuinely claim to be up-to-date in 
their subject area.  That is important since they enter industry or employment as the agents of technology change and 
transfer.  Other considerations will also influence the characteristics of a particular degree program.  These 
considerations include: 

 Local needs (institutional or regional) 
 Needs of an increasingly diverse student population, and 
 Interests and background of the faculty  

 
 In some cases, an institution may want to design a computer engineering degree program that focuses on one 
specific area of computer engineering or perhaps gives students a choice among a few such areas.  A variety of 
specialized degree programs is perfectly achievable within the general framework.  Included, for example, would be 
degrees with particular orientations in areas such as computer communications, embedded computer systems, 
system level integration, mobile computing systems, computer systems design, computer devices, digital signal 
processing, multi-media systems, computing and broadcasting, pervasive computing, high integrity computing 
systems, and real-time systems.  
 
 Another consideration is how many modules can be designed specifically for computer engineering students 
and how many will be shared with either (or both) of computer science or electrical engineering curricula.  For 
instance, institutions may construct a computer engineering curriculum with one of the following alternative options.   
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 There may be enough students in computer engineering to justify the provision of specialist courses devised 
solely for computer engineering students 

 Alternatively, computer engineers might attend classes offered from the computer science and electrical 
engineering curricula with additional selected classes being mounted specifically to address the specialist 
topics for computer engineering students  

 Additional possibilities also exist depending on local arrangements and circumstances  
 
 
7.2 Basic Computer Engineering Components 
 
In assembling the curriculum, institutions must package material into modules, typically into classes or courses.  
Different institutions will possess different conventions about classes.  In keeping with the spirit of the Computer 
Science Report, the Task Force suggests that program designers think in terms of introductory, intermediate, and 
advanced classes in computer engineering.  These need to encompass and reflect the elements of the engineering 
ethos identified in Chapter 5 as well as the requirements of the professional, legal and ethical issues outlined in 
Chapter 6.  
 
7.2.1 Introductory Courses and the Core 
 
It is important to ensure that the curriculum includes at least the minimum coverage specified in the core of the body 
of knowledge.  The core itself does not constitute a curriculum.  The Computer Engineering Task Force wished to 
allow different institutions to devise different and novel curricula that would incorporate the core in different and 
varied ways. 
 
 Introductory courses are the first courses that students encounter and are extremely important.  Almost of 
necessity, they will tend to focus on material from the core and will tend to be compulsory.  However, institutions 
wishing to address the specific needs of students who already have considerable experience and competence in core 
material (e.g. of programming) may permit some form of recognition of this experience.  
 
7.2.2 Intermediate Courses  
 
By their very nature, intermediate courses provide a bridge between introductory courses and advanced courses. 
They may well include core material but could also include material that falls outside the core.  Intermediate courses 
will typically have introductory courses or other intermediate courses as prerequisites.  Typically, these courses 
occur at second and third year level.  Students may have a choice of intermediate courses, but such choices are likely 
to be limited.  
 
7.2.3 Advanced Courses 
 
The term “advanced course” should mean those courses whose content is substantially beyond the material of the 
core.  The knowledge units give testimony to the rich set of possibilities that exist for these.  Institutions will wish to 
orient such courses to their own areas of expertise, guided by the needs of students, the expertise of faculty members 
and the needs of the wider community.  They will reflect leading edge developments and reflect the stated 
orientation of the degree program.  However, if specific core units are not included in the introductory and 
intermediate phase, the institution must then ensure that students acquire this material in advanced courses.  
Institutions should give students a reasonable choice of advanced courses so that they can specialize in areas of 
choice, consistent with program objectives. 
 
7.2.4 Culminating Project 
 
The culmination of the study of computer engineering should include a final year project that requires students to 
demonstrate the use of a range of knowledge, practices and techniques in solving a substantial problem.  This 
culminating experience can synthesize a broad range of undergraduate learning and can foster teamwork and 
professional practice among peers.  The culminating project is essential to every computer engineering program.   
 
7.2.5 Engineering Professional, Ethical, and Legal Issues  
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The curriculum must address the elements of the engineering ethos as well as professional, legal, and ethical issues 
with progression and integration taking place within these elements as well as within the technical domain.  
Addressing this vast array of requirements presents a complex task.  If an institution treats the various requirements 
separately and in an undisciplined fashion, the result will be less than satisfactory.  
 
 Earlier, mention was made of the importance of giving attention to creativity and innovation in a computer 
engineering context.  It is worth remarking that certain approaches to the other important matter of professional, 
legal, and ethical matters can have the highly undesirable effect of stifling beneficial innovation.  Teachers need to 
recognize this and indeed take positive steps to counter such trends.  It is most important to ensure that the balance is 
heavily in favor of beneficial innovation and creativity. 
 
 A program may choose to include courses on topics such as ethics, business, or legal issues taught by specialists 
in those fields.  However, such courses do not eliminate the need to address these topics in the context of computer 
engineering. 
 
7.2.6 Communication Skills 
 
Students in computer engineering must be able to communicate ideas effectively in writing and in both formal and 
informal oral presentations.  Therefore, computer engineering programs must develop in their students the ability to 
present both technical and non-technical material to a range of audiences using rational and reasoned arguments.  
The manner of presentation includes oral, electronic, and written methods that are necessary for all engineering 
programs.  While courses taught outside of computer engineering may contribute to achieving these skills, it is 
essential that appropriate communication requirements be included in computer engineering courses.  This is 
necessary to ensure that students have the ability to communicate discipline-specific content; further, such activities 
contribute to the students’ learning of technical material. 
 
7.2.7 Assessment of Student Learning  
 
One should observe a number of important considerations in the assessing of students’ learning beyond those that 
apply to all university learning. 

 There is the issue of coursework; many topics lend themselves naturally to practical laboratory work.  It is 
normally desirable to ensure that the practical work counts towards the final assessment; indeed some would 
take the view that a pass in the practical activity should be mandatory for a pass overall.  All aspects of the 
practical activity must be of high quality 

 Where there are sophisticated technical skills involved, there should be sufficient time provided for laboratory 
experiences with support for the students to ensure that they are learning the material and acquiring effective 
skills. 

 
 When assessing transferable skills, there is merit in integrating this assessment with the assessment of computer 
engineering activity.  In this manner, the skills manifest themselves in their natural setting and students learn ways 
to address them.  An additional advantage of this approach is that it serves to reduce the assessment load. 
 
 
7.3 Courses Often Taught Outside of Computer Engineering 
 
Beyond the technical courses specifically on computer engineering, a number of other courses reflect material that 
needs inclusion within the curriculum.  For example, computer engineering students must learn a certain amount of 
mathematics and science, which form the basis for engineering.  In this subsection, we discuss various materials that 
students must learn, but that typically appear in courses outside of the department where computer engineering 
resides.  
 
7.3.1 Mathematics Requirements  
 

Page 36  



Computing Curriculum – Computer Engineering  Curriculum Report 
Ironman Draft  2004June8 

Mathematical techniques and formal mathematical reasoning are integral to most areas of computer engineering.  
The discipline depends on mathematics for many of its fundamental underpinnings.  In addition, mathematics 
provides a language for working with ideas relevant to computer engineering, specific tools for analysis and 
verification, and a theoretical framework for understanding important ideas.  
 
 Given the pervasive role of mathematics within computer engineering, the curriculum must include 
mathematical concepts early and often.  Basic mathematical concepts should appear early within a student's course 
work and later courses should use these concepts regularly.  While different colleges and universities will need to 
adjust their prerequisite structures to reflect local needs and opportunities, it is important for upper-level computer 
engineering courses to make use of the mathematical content developed in earlier courses.  A formal prerequisite 
structure should reflect this dependency.  
 
 Some material that is mathematical in nature lies in a boundary region between computer science and 
engineering and computer engineering faculty members may actually teach it.  Other material such as basic 
differential and integral calculus will likely be under the purview of faculty members outside the department where 
computer engineering resides.  For example, discrete structures topics are important for all students in computer 
engineering and the Task Force considers it as much as part of computer engineering as mathematics or computer 
science.  Regardless of the implementation, computer engineering programs must take responsibility for ensuring 
that students obtain the appropriate mathematics they need.    
 
 The Computer Engineering Task Force makes the following recommendations with respect to the mathematical 
content of the computer engineering curriculum.  

 Discrete structures:  All students need exposure to the tools of discrete structures.  All programs should 
include enough exposure to this area to cover the core topics specified in the computer engineering body of 
knowledge.   

 Differential and integral calculus:  The calculus is required to support such computer engineering material as 
communications theory, signals and systems, and analog electronics and it is fundamental to all engineering 
programs. 

 Probability and statistics:  These related topics underpin considerations of reliability, safety, dependence, and 
various other concepts of concern to the computer engineer.  Many programs will have students take an 
existing course in probability and statistics; some programs may allow some students to study less than a full 
semester course in the subject.  Regardless of the implementation, all students should get at least some brief 
exposure to discrete and continuous probability, stochastic processes, sampling distributions, estimation, 
hypothesis testing, and correlation and regression.  

 Additional mathematics:  Students should take additional mathematics to develop their sophistication in this 
area and to support classes in topics such as communications theory, security, signals and systems, analog 
electronics.  That mathematics might consist of courses in any number of areas, including further calculus, 
differential equations, transform theory, linear algebra, numerical methods, complex variables, geometry, 
number theory, or symbolic logic.  The choice should depend on program objectives, institutional 
requirements, and the needs of the individual student. 

 
 
7.3.2 Science Requirements 
 
The process of abstraction (data collection, hypothesis formation and testing, experimentation, analysis) represents a 
vital component of logical thought within the field of computer engineering.  The scientific method represents a 
basis methodology for much of the discipline of computer engineering, and students should have a solid exposure to 
this methodology. 
 
 Computer engineering students need a knowledge of basic sciences, such as physics and chemistry.  Basic 
physics concepts in electricity and magnetism for the basis for much of the underlying electrical engineering content 
in the body of knowledge.  Other science course, such as biology, are relevant to specific application areas in which 
computer engineers may specialize.  The precise nature of the basic science requirement will vary, based on 
institutional and programs needs and resources. 
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 To develop a firm understanding of the scientific method, students must have direct hand-on experience with 
hypothesis formulation, experimental design, hypothesis testing, and data analysis.  While a curriculum may provide 
this experience as part of the basic science coursework, another way of addressing this is through appropriate 
courses in computer engineering itself.  For example, considerations of the user interface provide a rich vein of 
experimental situations.   
 

It is vital that computer engineering students “do science” and not just “read about science” in their education.  
The overall objectives of this element of the curriculum include the following: 

 Students should acquire knowledge of the basic sciences underlying computer engineering and relevant 
application areas. 

 Students must develop an understanding of the scientific method and experience this mode of inquiry in 
courses that provide some exposure to laboratory work, including data collection and analysis. 

 Students may acquire their scientific perspective in any of a variety of domains, depending on program 
objectives and their area of interest. 

 
7.3.3 General Education 
 
Most institutions have a general education requirement that applies to all students in all disciplines.  The size and 
content of this requirement varies widely, depending on institutional mission, legal requirements, and other factors.  
General education courses often include subjects drawn from the humanities, social sciences, languages, and the 
liberal arts.  In designing a computer engineering program, attention should be given to utilizing these course 
requirements to contribute to the students’ understanding of the social context of engineering and the potential 
impact of engineering solutions in a global environment.  
 
 
7.4 Degree Program Implementation: Strategies and Examples 
 
Institutions that wish to follow the suggestions provided herein will typically begin by choosing an implementation 
for the introductory phase and an implementation for the intermediate phase.  From there, they will choose advanced 
elective courses that conform to local conditions and program objectives.  The following attempts to assist 
institutions to fulfill their program objectives for computer engineering.  
 
 
7.4.1 Course Considerations 
 
As previously mentioned, the precise courses will depend on the character of each individual program of study.  
However, in broad terms various considerations will tend to govern the courses at the introductory, intermediate, and 
advanced levels.   
 
 At the initial stages, it is appropriate to develop basic skills within introductory courses.  Accordingly, 
introductory courses should address the following characteristics.  

 Basic skills in the design and development of a range of electronic circuits and digital systems   
 Basic skills in programming and algorithmic design  
 An understanding of the basic structure and organization of a variety of computer systems  

These characteristics should address the basic electronics and chip aspects as well as the software approach.  These 
should serve to integrate the various aspects of the courses and provide an overview of the discipline of computer 
engineering.  Fundamentally, the perspective of the computer system as a hierarchy of abstract machines is relevant 
to the various approaches one could take and suggests references to alternative models.  
 
 At the intermediate level, the program should apply the basic skills already acquired and seek to develop them 
further.  Instructors should indicate how to utilize these skills in the design and the development of various 
components such as in hardware, software, communications, or hybrid systems.  Additional coursework serves to 
introduce remaining core topics and focus students towards areas of specialization.  Again, the choices here will 
depend heavily on the precise characteristics of the program of study.  In developing intermediate courses, it is 
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important to be aware that skills require constant reinforcing.  Thus, as an example, it is typically not desirable to 
introduce students to programming and then drop programming for several semesters. 
 
7.4.2 Elective Courses  
 
At the advanced level, the Computer Engineering Task Force has identified a range of possible elective courses that 
focus on material that, in keeping with the spirit of computer engineering, involves both hardware and software at an 
advanced level.  Of course, one recognizes that other courses may concentrate on specific aspects of hardware or 
software.  Table 7.1 identifies some elective courses that likely would be relevant to computer engineering 
programs.  The number and scope of electives will vary widely among programs, based on constituent needs, 
program goals, and resources. 
 
 

Table 7.1 
Examples of Elective Courses 

 
Fault tolerant computer systems 

Digital video processing 
Parallel processing 

Re-configurable computing 
Intelligent systems 

Safety critical systems 
Pervasive computing 

Advanced graphical systems 
Computer based medical systems 

Virtual environment 
Quantum computing 

Performance evaluation 
System level integration 

High performance computer systems 
Hardware software co-design 

Computer security 
Tool development 

Multimedia systems and algorithms 
Genetic algorithms 

Entertainment systems 
Robotics 

DNA computing 

Advanced computer architecture 
Audio signal processing 

Mobile computer systems 
Multi-media signal processing 
Security in wireless systems 

Computer based devices 
Novel computer architectures 

Distributed information systems 
Virtual devices 

Multi-valued logic systems 
Nano-computing 

 
 
7.5  Degree Titles and Organizational Structures 
 
As noted in Section 2 of this report, computer engineering programs are offered under a variety of degree titles and 
within many different organizational structures.  As a general rule, variations in the program title tend to imply 
variations in program content, while variations in organizational structures tend to affect the manner in which 
courses are organized and taught.  Computer engineering is not centric to any one locale or country.  Many 
institutions have considerable expertise in the design and development of hardware and computer systems and their 
program provisions reflect this, whether or not the program has the specific title of ‘computer engineering’. 
 

Programs of study with a body of knowledge comparable to that defined in this report likely will have titles 
such as computer engineering or computer systems engineering,  Other program titles, such as computer and 
electronic systems, electrical and computer engineering, or computer science and engineering typically reflect a 
more broadly based set of concerns (and a corresponding broader body of knowledge) than might be implied by the 
“computer engineering” title.  Such program titles also may reflect joint programs administered by multiple 
academic departments. 
 
 Most computer engineering programs are offered by institutions that also offer other engineering and/or 
computer science programs.  Such institutions, thus, have existing resources that may be applied to support a 
computer engineering program, whether or not it is administratively managed by those units.  All organizational 
arrangements have both drawbacks and benefits.  For example, students may take a blend of courses designed 
primarily for mainstream computer science or electrical engineering majors with relatively few courses specially 
designed for computer engineering students.  Such a structure will likely affect the topics added to the core elements 
of the body of knowledge, based on maximizing course commonality rather than other factors.  However, such 
programs may achieve “accredited” status (sometimes by more than one professional body) and produce graduates 
who are highly attractive to industry specifically because of their breadth of knowledge.  
 
 Independent of organizational structure, it is essential that a computer engineering program have a core faculty 
of appropriate size and technical competence.  Many of the technical courses included within a computer 
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engineering program may be taught by faculty from areas such as computer science, electrical engineering, or 
physics.  However, the distinct disciplinary emphases and the preparation for professional practice requires faculty 
with appropriate technical training and professional expertise. 
 
 
7.6  Sample Curricula 
 
Appendix B provides four sample implementations of complete computer engineering programs.  To provide a 
framework for the curriculum that illustrates the ideas presented in this report, the first three examples assume the 
following.  

 Each year consists of two semesters with a student studying five modules (courses) per semester.  Each 
module is approximately 45 contact hours (42 contact hours for presentation and 3 contact hours for 
assessment).  

 Students should experience 3 computer engineering modules in the first year of study, 4 or 5 in the second 
year of study, and 5 or 6 in each of the third and fourth years of study. 

The above pattern is used by many US institutions, and is common in many other parts of the world.  The fourth 
example implementation is of a three-year program (such as commonly exists in the U.K., Europe, and some other 
countries) and assumes additional pre-university preparation in mathematics, science, and general studies. 
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Chapter 8 
 

Institutional Challenges 
 
 

T 
 

his report provides a significant resource for colleges and universities seeking to develop or improve 
undergraduate programs in computer engineering.  The appendices to this report offer an extensive analysis 
of the structure and scope of computer engineering knowledge along with viable approaches to the 

undergraduate curriculum.  Implementing a curriculum successfully, however, requires each institution to consider 
broad strategic and tactical issues that transcend such details.  The purpose of this chapter is to enumerate some of 
these issues and illustrate how addressing those issues affects curriculum design. 
 
 
8.1 The Need for Local Adaptation 
 
The task of designing a computer engineering curriculum is a difficult one in part because so much depends on the 
characteristics of the individual institution.  Even if every institution could agree on a common set of knowledge and 
skills for undergraduate education, many additional factors would influence curriculum design.  These factors 
include the following: 

 The type of institution and the expectations for its degree programs:  Institutions vary enormously in the 
structure and scope of undergraduate degree requirements.  A curriculum that works well at a small college in 
the United States may be completely inappropriate for a research university elsewhere in the world. 

 The range of postgraduate options that students pursue:  Institutions whose primary purpose is to prepare a 
skilled workforce for the computer engineering profession presumably have different curricular goals than 
those seeking to prepare students for research and graduate study.  Individual schools must ensure that the 
curriculum they offer gives students the necessary preparation for their eventual academic and career paths.  

 The preparation and background of entering students:  Students at different institutions—and often within a 
single institution—vary substantially in their level of preparation.  As a result, computer engineering 
departments often need to tailor their introductory offerings so that they meet the needs of their students.  

 The faculty resources available to an institution:  The number of faculty in a computer engineering 
department may vary from as little as three or four at a small college to 100 or more at a large research 
university.  The flexibility and options available in these smaller programs is obviously a great deal less. 
Therefore, faculty members in smaller departments need to set priorities for how they will use their limited 
resources.  

 The interests and expertise of the faculty:  Individual curricula often vary according to the specific interests 
and knowledge base of the department, particularly at smaller institutions where expertise is concentrated in 
particular areas. 

 
 Creating a workable curriculum requires finding an appropriate balance among these factors, which will require 
different choices at every institution.  No single curriculum can work for everyone.  Every college and university 
will need to consider the various models proposed in this document and design an implementation that meets the 
need of their environment.  
 
 
8.2 Principles for Curriculum Design 
 
Despite the fact that curriculum design requires significant local adaptation, curriculum designers can draw on 
several key principles to help in the decision-making process.  These principles include the following: 
 

 The curriculum must reflect the integrity and character of computer engineering as an independent 
discipline.  Computer engineering is a discipline in it own right.  A combination of theory, practice, 
knowledge, and skills characterize the discipline.  Any computer engineering curriculum should therefore 
ensure that both theory and a spirit of professionalism guide the practice.   
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 The curriculum must respond to rapid technical change and encourage students to do the same.  Computer 
engineering is a vibrant and fast-changing discipline.  The enormous pace of change means that computer 
engineering programs must update their curricula on a regular basis.  Equally importantly, the curriculum 
must teach students to respond to change as well.  Computer engineering graduates must keep up to date with 
modern developments and the prospects of doing so should stimulate their engineering curiosity.  One of the 
most important goals of a computer engineering program should be to produce students who are life-long 
learners. 

 
 Outcomes a program hopes to achieve must guide curriculum design.  Throughout the process of defining a 
computer engineering curriculum, it is essential to consider the goals of the program and the specific 
capabilities students must have at its conclusion.  These goals—and the associated techniques for determining 
whether a program is meeting these goals—provide the foundation for the entire curriculum.  Throughout the 
world, accreditation bodies have focused increasing attention on the definition of goals and assessment 
strategies.  Programs that seek to defend their effectiveness must be able to demonstrate that their curricula in 
fact accomplish what they intended to do. 

 
 The curriculum as a whole should maintain a consistent ethos that promotes innovation, creativity, and 
professionalism.  Students respond best when they understand the expectations of them.  It is unfair to 
students to encourage particular modes of behavior in early courses, only to discourage that same behavior in 
later courses.  Throughout the entire curriculum, students should be encouraged to use their initiative and 
imagination to go beyond the minimal requirements.  At the same time, students must be encouraged from the 
very beginning to maintain a professional and responsible attitude toward their work and give credence to the 
ethical and legal issues affecting their professional practice. 

 
 The curriculum must provide students with a culminating design experience that gives them a chance to apply 
their skills and knowledge to solve challenging problems.  The culmination of an undergraduate computer 
engineering degree should include a project that requires students to use a range of practices and techniques 
in solving a substantial problem as a key component in preparing them for professional practice.  

 
 
8.3 The Need for Adequate Laboratory Resources 
 
It is essential for institutions to recognize that equipment and software costs to support computer engineering 
programs are large.  Software can represent a substantial fraction of the overall cost of computing, particularly if one 
includes the development costs of courseware.  Providing adequate support staff to maintain the laboratory facilities 
represents another expense.  To be successful, computer engineering programs must receive adequate funding to 
support the laboratory needs of both faculty and students and to provide an atmosphere conducive to learning.  
 
 Because of rapid changes in technology, computer hardware generally becomes obsolete long before it ceases to 
function.  The useful lifetime of computer systems, particularly those used to support advanced laboratories and 
state-of-the-art software tools, may be as little as two or three years.  Planning and budgeting for regular updating 
and replacement of computer systems is essential. 
 
 Computer engineering typically has many scheduled laboratories included in the curriculum.  The laboratory 
component leads to an increased need for staff to assist in both the development of materials and the teaching of 
laboratory sections.  This development will add to the academic support costs of a high-quality computer 
engineering program.  
 
 
8.4 Attracting and Retaining Faculty 
 
One of the most daunting problems that computer engineering departments face is the problem of attracting 
qualified faculty.  In computer engineering, there are often more advertised positions than the number of highly 
qualified candidates.  The shortage of faculty applicants, coupled with the fact that computer engineers command 
high salaries outside academia, makes it difficult to attract and retain faculty.  Institutions will need to have an 
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aggressive plan to recruit and retain faculty.  Incentives such as hiring packages and modified teaching 
responsibilities may prove advantageous for this endeavor.  
 
 While the computer engineering program may draw on faculty from related disciplines, as a professional field 
there must be a core faculty with appropriate professional training and experience.  Additionally, faculty members 
must maintain currency with developments in the field.  Institutions must make appropriate accommodations for the 
professional development of faculty, whether achieved through research, conference participation, consulting, or 
other activities. 
 
 
8.5 Summary 
 
No single formula exists for success in designing a computer engineering curriculum.  Although the Computer 
Engineering Task Force believes that the recommendations of this report and the specific strategic suggestions in 
this chapter will prove useful to a wide variety of institutions, every computer engineering program must adapt those 
recommendations and strategies to match the characteristics of the particular institution.  It is, moreover, important 
to evaluate and modify curricular programs on a regular basis to keep up with the rapid changes in the field.  The 
curricula of the future will depend on the creativity that follows in the wake of this report to build even better 
computer engineering programs for undergraduates throughout the world. 
 
 

Page 43  



Computing Curriculum – Computer Engineering  Curriculum Report 
Ironman Draft  2004June8 

 
 

Endnote References to this Report 
 
 
 
[ABET, Design]  Definition of Design, ABET 2004-2005 Criteria for Accrediting Programs in Engineering in the United States, 

Criterion 4  
[ABET, 2004]  Evaluation Criteria, 2004-2005 Engineering Criteria, <http://www.abet.org/criteria_eac.html>. 
[ACM, 1992]  ACM Code of Ethics and Professional Conduct, < http://www.acm.org/constitution/code.html>, 16 October 1992.  
[ACM/IEEECS, 1999]  CAN and IEEE Computer Society, Software Engineering Code of Ethics and Professional Practice,  

<http://computer.org/certification/ethics.htm>, 1999.   
[Aub]  CCCE website at <http://www.eng.auburn.edu/ece/CCCE> 
[AITP, 2002]  Association of Information Technology Professionals, Code of Ethics, 

<http://www.aitp.org/organization/about/ethics/ethics.jsp >, 2002.  
[ASEE’02]  American Society for Engineering Education, ASEE Annual Conference and Exhibition, 

<http://www.asee.org/conferences/annual2002/default.cfm>, Montreal, Canada, 16-19 June 2002.  
[ASEE’03]  American Society for Engineering Education, ASEE Annual Conference and Exhibition, 

<http://www.asee.org/conferences/annual2003/default.cfm>, Nashville, Tennessee, 22-25 June 2003.  
[ASEE’04]  American Society for Engineering Education, ASEE Annual Conference and Exhibition, 

<http://www.asee.org/conferences/annual2004/default.cfm >, Salt Lake City, Utah, 20-23 June 2004.  
[Bennett 1986]  W. Bennett. A position paper on guidelines for electrical and computer engineering education. IEEE 

Transactions in Education, E-29(3):175-177, August 1986. 
[EAB 1986]  Educational Activities Board. Design education in computer science and engineering. Technical Report 971, 

Computer Society of the IEEE, October 1986. 
[Fellows 2002]  Sharon Fellows, Richard Culver, Peter Ruggieri, William Benson  Instructional Tools for Promoting Self-

directed Skills in Freshmen, FIE 2002, Boston, November, 2002. 
[FIE’02]  Frontiers in Education Conference, <http://www.wpi.edu/News/Conf/FIE2002/>, Boston, Massachusetts, 6-9 

November 2002. 
[FIE’03]  Frontiers in Education Conference, <http://www.fie-conference.org/03/>, Denver, Colorado, 5-8 November 2003. 
[FIE’04]  Frontiers in Education Conference, <http://www.fie-conference.org/04/>, Savannah, Georgia, 20-23 October 2004. 
[IEEE, 1990]  IEEE Code of Ethics, <http://www.ieee.org/>, About IEEE, August 1990.  
[IFIP, 1998]  Harmonization of Professional Standards (Draft Version), <www.ifip.or.at/minutes/C99/C99_harmonization.htm>, 

October 1998.  
[ITEA]  International Technology Educational Association, <http://www.iteawww.org/TAA/Glossary.htm>  
[ITiCSE’03]  Innovation and Technology in Computer Science Education, <http://www.cs.utexas.edu/users/csed/iticse/>, 

Thessaloniki, Greece, 30 June – 2 July 2003 
[ITiCSE’04]  Innovation and Technology in Computer Science Education, <http://www.iticse04.leeds.ac.uk/>, Leeds, England, 

28-30 June 2004.  
[Langdon, et. al. 1986]  Design Education in Computer Science and Engineering, Technical Report, IEEE Computer Society 

Educational Activities Board, October 1, 1986. 
[MCSCE’04]  International MultiConference in Computer Science and Computer Engineering, <http://www.world-academy-

of-science.org:8080/CSREA/ws/>, Las Vegas, Nevada, 21-24 June 2004.   
[NSPE, 2003]  National Society of Professional Engineers, NSPE Code of Ethics for Engineers, <http://www.nspe.org/ethics/ehl-

code.asp>, 2003. 
[SIGCSE’03]  SIGCSE Technical Symposium, <http://www.csis.gvsu.edu/sigcse2003/>, Reno, Nevada, 19-23 February 2003.  
[SIGCSE’04]  SIGCSE Technical Symposium, <http://www.csc.vill.edu/sigcse2004/>, Norfolk, Virginia, 3-7 March 2004.  
[UKQAA, 2000]  Quality Assurance Agency for Higher Education, “Computing, a report on benchmark levels for Computing,” 

Southgate House, Gloucester, England, April 2000. 
 
 

Page 44  



Computing Curriculum – Computer Engineering  Curriculum Report 
Ironman Draft  2004June8 

 
 

All References 
 
 
 
[Abelson et al, 1985]  Harold Abelson and Gerald Jay Sussman with Julie Sussman. Structure and Interpretation of Computer 

Programs. Cambridge, MA: MIT Press, 1985. 
[ABET, 2000]  Accreditation Board for Engineering and Technology. Accreditation policy and procedure manual. Baltimore, 

MD: ABET, Inc., November 2000. http://www.abet.org/images/policies.pdf. 
[ABET, 2002]  Accreditation Board for Engineering and Technology, Inc., “Criteria for Accrediting Engineering Programs,” 

November 2002. 
[ABET, 2004]  Evaluation Criteria, 2003-2004 Engineering Criteria, <http://www.abet.org/criteria_eac.html>. 
[ABET, Design]  Definition of Design, ABET 2003-2004 Criteria for Accrediting Programs in Engineering in the United States, 

Section IV.C.3.d.(3)(c).  
[ACM,1965]   ACM Curriculum Committee on Computer Science. An undergraduate program in computer science—preliminary 

recommendations. Communications of the ACM, 8(9):543-552, September 1965. 
[ACM, 1968]  ACM Curriculum Committee on Computer Science. Curriculum ’68: Recommendations for the undergraduate 

program in computer science. Communications of the ACM, 11(3):151-197, March 1968. 
[ACM, 1978]   ACM Curriculum Committee on Computer Science. Curriculum ’78: Recommendations for the undergraduate 

program in computer science. Communications of the ACM, 22(3):147-166, March 1979. 
[ACM, 1992]  ACM Code of Ethics and Professional Conduct, < http://www.acm.org/constitution/code.html>, 16 October 1992.  
[ACM, 1999]   ACM Two-Year College Education Committee. Guidelines for associate-degree and certificate programs to 

support computing in a networked environment. New York: The Association for Computing Machinery, September 
1999. 

[ACM, 2001]   Association for Computing Machinery.  ACM code of ethics and professional conduct. New York: The 
Association for Computing Machinery, May 2001. http://www.acm.org/constitution/code.html. 

[ACM/IEEECS, 1999]  CAN and IEEE Computer Society, Software Engineering Code of Ethics and Professional Practice,  
<http://computer.org/certification/ethics.htm>, 1999.   

[AITP, 2002]  Association of Information Technology Professionals, Code of Ethics, 
<http://www.aitp.org/organization/about/ethics/ethics.jsp >, 2002.  

[APP, 2000]  Advanced Placement Program. Introduction of Java in 2003-2004. The College Board, December 20, 2000. 
http://www.collegeboard.org/ap/computer-science. 

[ASEE’02]  American Society for Engineering Education, ASEE Annual Conference and Exhibition, 
<http://www.asee.org/conferences/annual2002/default.cfm>, Montreal, Canada, 16-19 June 2002.  

[ASEE’03]  American Society for Engineering Education, ASEE Annual Conference and Exhibition, 
<http://www.asee.org/conferences/annual2003/default.cfm>, Nashville, Tennessee, 22-25 June 2003.  

[ASEE’04]  American Society for Engineering Education, ASEE Annual Conference and Exhibition, 
<http://www.asee.org/conferences/annual2004/default.cfm >, Salt Lake City, Utah, 20-23 June 2004.  

[Aub]  CCCE website at <http://www.eng.auburn.edu/ece/CCCE> 
[BCS, 1989a]  British Computer Society and The Institution of Electrical Engineers. Undergraduate curricula for software 

engineers. London, June 1989. 
[BCS, 1989b]  British Computer Society and The Institution of Electrical Engineers. Software in safety-related systems. London, 

October 1989. 
[Beidler et al, 1985]  John Beidler, Richard Austing, and Lillian Cassel. Computing programs in small colleges. Communications 

of the ACM, 28(6):605-611, June 1985. 
[Bennett, 1986]  W. Bennett. A position paper on guidelines for electrical and computer engineering education. IEEE 

Transactions in Education, E-29(3):175-177, August 1986. 
[Bott et al, 1991]  Frank Bott, Allison Coleman, Jack Eaton, and Diane Rowland. Professional issues in software engineering. 

London: Pitman, 1991. 
[Carnegie, 1992]  Carnegie Commission on Science, Technology, and Government. Enabling the future: Linking science and 

technology to societal goals. New York: Carnegie Commission, September 1992. 
[COSINE, 1967]  COSINE Committee. Computer science in electrical engineering. Washington, DC: Commission on 

Engineering Education, September 1967. 
[CSAB, 1986]  Computing Sciences Accreditation Board. Defining the computing sciences professions. October 1986. 

http://www.csab.org/comp_sci_profession.html. 
[CSAB, 2000]  Computing Sciences Accreditation Board. Criteria for accrediting programs in computer science in the United 

States. Version 1.0, January 2000. http://www.csab.org/criteria2k_v10.html. 
[CSTB, 1994]  Computing Science and Telecommunications Board. Realizing the information future. Washington DC: National 

Academy Press, 1994. 

Page 45  



Computing Curriculum – Computer Engineering  Curriculum Report 
Ironman Draft  2004June8 

[CSTB, 1999]  Computing Science and Telecommunications Board. Being fluent with information technology. Washington DC: 
National Academy Press, 1999. 

[Curtis, 1983]  Kent K. Curtis.  Computer manpower: Is there a crisis?  Washington DC: National Science Foundation, 1983.  
http://www.acm.org/sigcse/papers/curtis83/. 

[Davis et al, 1997]  Gordon B. Davis, John T. Gorgone, J. Daniel Couger, David L. Feinstein, and Herbert E. Longnecker, Jr. 
IS’97 model curriculum and guidelines for undergraduate degree programs in information systems. Association of 
Information Technology Professionals, 1997.  http://webfoot.csom.umn.edu/faculty/gdavis/curcomre.pdf. 

[Denning et al, 1989]  Peter J. Denning, Douglas E. Comer, David Gries, Michael C. Mulder, Allen B. Tucker, A. Joe Turner, 
and Paul R. Young. Computing as a discipline. Communications of the ACM, 32(1):9-23, January 1989. 

[Denning, 1998]  Peter J. Denning. Computing the profession. Educom Review, November 1998. 
[Denning, 1999]  Peter J. Denning. Our seed corn is growing in the commons. Information Impacts Magazine, March 1999. 

http://www.cisp.org/imp/march_99/denning/03_99denning.htm. 
[EAB, 1983]  Educational Activities Board. The 1983 model program in computer science and engineering. Technical Report 

932, Computer Society of the IEEE, December 1983. 
[EAB, 1986]  Educational Activities Board. Design education in computer science and engineering. Technical Report 971, 

Computer Society of the IEEE, October 1986. 
[EC, 1977]  Education Committee of the IEEE Computer Society. A curriculum in computer science and engineering. Publication 

EHO119-8, Computer Society of the IEEE, January 1977. 
[Fellows et al, 2002]  Sharon Fellows, Richard Culver, Peter Ruggieri, William Benson  Instructional Tools for Promoting Self-

directed Skills in Freshmen, FIE 2002, Boston, November, 2002. 
[Feisel and Peterson, 2002]  Lyle D. Feisel, George D. Peterson, Learning Objectives for Engineering Laboratories, FIE 2002, 

Boston, November, 2002 
[Fleddermann, 2000]  C.B. Fleddermann Engineering Ethics Cases for Electrical and Computer Engineering Students, IEEE 

Transactions on Education, vol 43, no 3, 284 – 287, August 2000.  
[Feiel et al, 2002]  Lyle D. Feisel, George D. Peterson, Learning Objectives for Engineering Laboratories, FIE 

2002, Boston, November, 2002  
[FIE’02]  Frontiers in Education Conference, <http://www.wpi.edu/News/Conf/FIE2002/>, Boston, Massachusetts, 6-9 

November 2002. 
[FIE’03]  Frontiers in Education Conference, <http://www.fie-conference.org/03/>, Denver, Colorado, 5-8 November 2003. 
[FIE’04]  Frontiers in Education Conference, <http://www.fie-conference.org/04/>, Savannah, Georgia, 20-23 October 2004. 
[Gibbs et al, 1986]  Norman E. Gibbs and Allen B. Tucker. Model curriculum for a liberal arts degree in computer science. 

Communications of the ACM, 29(3):202-210, March 1986. 
[Giladi, 1999]  R. Giladi, An Undergraduate Degree Program for Communications Systems Engineering, IEEE Transactions on 

Education, vol 42, no 4, 295 – 304,  November 1999. 
[Gorgone et al, 2000]  John T. Gorgone, Paul Gray, David L. Feinstein, George M. Kasper, Jerry N. Luftman, Edward A. Stohr, 

Joseph S. Valacich, and Rolf T. Wigand. MSIS 2000: Model curriculum and guidelines for graduate degree programs 
in information systems. Association for Computing Machinery and Association for Information Systems, January 2000. 
http://cis.bentley.edu/ISA/pages/documents/msis2000jan00.pdf. 

[Gorgone et al, 2002]  John T. Gorgone, Gordon B. Davis, Joseph S Valacich, Heikki Topi, David L. Feinstein, and Herbert E. 
Longenecker, Jr.  IS 2002: Model Curriculum for Undergraduate Degree Programs in Information Systems, published 
by the ACM, 2002. 

[IEEE, 1990]  IEEE Code of Ethics, <http://www.ieee.org/>, About IEEE, August 1990.  
[IEEE, 2001]  Institute for Electrical and Electronic Engineers. IEEE code of ethics. Piscataway, NJ: IEEE, May 2001. 

http://www.ieee.org/about/whatis/code.html. 
[IFIP, 1998]  Harmonization of Professional Standards (Draft Version), <www.ifip.or.at/minutes/C99/C99_harmonization.htm>, 

October 1998.  
[ITEA]  International Technology Educational Association, <http://www.iteawww.org/TAA/Glossary.htm>  
[ITiCSE’03]  Innovation and Technology in Computer Science Education, <http://www.cs.utexas.edu/users/csed/iticse/>, 

Thessaloniki, Greece, 30 June – 2 July 2003 
[ITiCSE’04]  Innovation and Technology in Computer Science Education, <http://www.iticse04.leeds.ac.uk/>, Leeds, England, 

28-30 June 2004.  
[Kelemen et al, 1999]  Charles F. Kelemen (editor), Owen Astrachan, Doug Baldwin, Kim Bruce, Peter Henderson, Dale Skrien, 

Allen Tucker, and Charles Ban Loan. Computer Science Report to the CUPM Curriculum Foundations Workshop in 
Physics and Computer Science. Report from a workshop at Bowdoin College, October 28-31, 1999. 

[Koffman et al, 1984]  Elliot P. Koffman, Philip L. Miller, and Caroline E. Wardle. Recommended curriculum for CS1: 1984 a 
report of the ACM curriculum task force for CS1. Communications of the ACM, 27(10):998-1001, October 1984. 

[Koffman et al, 1985]  Elliot P. Koffman, David Stemple, and Caroline E. Wardle. Recommended curriculum for CS2, 1984: A 
report of the ACM curriculum task force for CS2. Communications of the ACM, 28(8):815-818, August 1985. 

[Langdon, et. al. 1986]  Design Education in Computer Science and Engineering, Technical Report, IEEE Computer Society 
Educational Activities Board, October 1, 1986. 

[Lee and Messerschmitt, 1998]  Edward A. Lee and David G. Messerschmitt. Engineering and education for the future. IEEE 
Computer, 77-85, January 1998. 

Page 46  



Computing Curriculum – Computer Engineering  Curriculum Report 
Ironman Draft  2004June8 

[Lidtke et al, 1999]  Doris K. Lidtke, Gordon E. Stokes, Jimmie Haines, and Michael C. Mulder. ISCC ’99: An information 
systems-centric curriculum ’99, July 1999. http://www.iscc.unomaha.edu. 

[Martin et al, 1996]  C. Dianne Martin, Chuck Huff, Donald Gotterbarn, Keith Miller. Implementing a tenth strand in the CS 
curriculum. Communications of the ACM, 39(12):75-84, December 1996. 

[MCSCE’04]  International MultiConference in Computer Science and Computer Engineering, <http://www.world-academy-
of-science.org:8080/CSREA/ws/>, Las Vegas, Nevada, 21-24 June 2004.   

[Mulder, 1975]  Michael C. Mulder. Model curricula for four-year computer science and engineering programs: Bridging the tar 
pit. Computer, 8(12):28-33, December 1975. 

[Mulder and Dalphin, 1984]  Michael C. Mulder and John Dalphin. Computer science program requirements and accreditation—
an interim report of the ACM/IEEE Computer Society joint task force. Communications of the ACM, 27(4):330-335, 
April 1984. 

[Mulder and van Weert, 1998]  Fred Mulder and Tom van Weert. Informatics in higher education: Views on informatics and 
noninformatics curricula. Proceedings of the IFIP/WG3.2 Working Conference on Informatics (computer science) as a 
discipline and in other disciplines: What is in common? London: Chapman and Hall, 1998. 

[Myers and Walker, 1998]  J. Paul Myers, Jr. and Henry M. Walker. The state of academic hiring in computer science: An 
interim review. SIGCSE Bulletin, 30(4):32a-35a, December 1998. 

[NACE, 2001]  National Association of Colleges and Employers. Job outlook ’01 (online version).  http://www.jobweb.com 
[Neumann, 1995]  Peter G. Neumann. Computer related risks. New York: ACM Press, 1995. 
[Nordheden and Hoeflich, 1999]  K.J. Nordheden and M.H. Hoeflich,  Undergraduate Research and Intellectual Property Rights, 

IEEE Transactions on Software, vol 19 , no. 5, September / October, 22 – 24, 2002. Education, vol 42, no 4, 233-236,  
November 1999. 

[NSF, 1996]  National Science Foundation Advisory Committee. Shaping the future: New expectations for undergraduate 
education in science, mathematics, engineering, and technology. Washington DC: National Science Foundation, 1996. 

[NSPE, 2003]  National Society of Professional Engineers, NSPE Code of Ethics for Engineers, <http://www.nspe.org/ethics/ehl-
code.asp>, 2003. 

[NTIA, 1999]  National Telecommunications and Information Administration. Falling through the Net: Defining the digital 
divide. Washington, DC: Department of Commerce, November 1999. 

[Nunamaker et al, 1982]  Jay F. Nunamaker, Jr., J. Daniel Couger, Gordon B. Davis. Information systems curriculum 
recommendations for the 80s: Undergraduate and graduate programs. Communications of the ACM, 25(11):781-805, 
November 1982. 

[Oklobdzija, 2002]  Vojin G. Oklobdzija (editor) The Computer Engineering Handbook, published by  CRC Press LLC, Florida, 
USA, 2002. 

[OTA, 1988]  Office of Technology Assessment. Educating scientists and engineers: Grade school to grad school. OTA-SET-
377. Washington, DC: U.S. Government Printing Office, June 1988. 

[Paulk et al, 1995]  Mark Paulk, Bill Curtis, Mary Beth Chrissis, and Charles Weber. The capability maturity model: Guidelines 
for improving the software process.  Reading, MA: Addison-Wesley, 1995. 

[QAA, 2000]  Quality Assurance Agency for Higher Education. A report on benchmark levels for computing. Gloucester, 
England: Southgate House, 2000. 

[Ralston and Shaw, 1980]  Anthony Ralston and Mary Shaw. Curriculum ’78—Is computer science really that unmathematical. 
Communications of the ACM, (23)2:67-70, February 1980. 

[Richard et al, 1999]  W. D. Richard, D. E. Taylor and D. M. Zar,  A Capstone Computer Engineering Design Course, IEEE 
Transactions on Education, vol 42, no 4, 288 – 294,  November 1999. 

[Roberts et al, 2001]  Eric Roberts and Gerald Engel (editors) Computing Curricula 2001: Computer Science, Report of The 
ACM and IEEE-Computer Society Joint Task Force on Computing Curricula, Final Report, December 15th, 2001 

[Roberts et al, 1995]  Eric Roberts, John Lilly, and Bryan Rollins. Using undergraduates as teaching assistants in introductory 
programming courses: An update on the Stanford experience. SIGCSE Bulletin (27)1:48-52, March 1995. 

[Roberts, 1999]  Eric Roberts. Conserving the seed corn: Reflections on the academic hiring crisis. SIGCSE Bulletin (31)4:4-9, 
December 1999. 

[SAC, 1967]  President’s Science Advisory Commission. Computers in higher education. Washington DC: The White House, 
February 1967. 

[SEEPP, 1998]  IEEE-CS/ACM Joint Task Force on Software Engineering Ethics and Professional Practices (SEEPP). Software 
engineering code of ethics and professional practice (Version 5.2). http://www.acm.org/serving/se/code.htm. 

[Shaw, 1985]  Mary Shaw. The Carnegie-Mellon curriculum for undergraduate computer science. New York: Springer-Verlag, 
1985. 

[Shaw, 1991]  Mary Shaw and James E Tomayko. Models for undergraduate courses in software engineering. Pittsburgh: 
Software Engineering Institute, Carnegie Mellon University, January 1991. 

[Shaw, 1992]  Mary Shaw. We can teach software better. Computing Research News 4(4):2-12, September 1992. 
[SIGCHI, 1992]  Special Interest Group on Computer-Human Interaction. ACM SIGCHI Curricula for Human-Computer 

Interaction. New York: Association for Computing Machinery, 1992. 
[SIGCSE’03]  SIGCSE Technical Symposium, <http://www.csis.gvsu.edu/sigcse2003/>, Reno, Nevada, 19-23 February 2003.  
[SIGCSE’04]  SIGCSE Technical Symposium, <http://www.csc.vill.edu/sigcse2004/>, Norfolk, Virginia, 3-7 March 2004.  

Page 47  



Computing Curriculum – Computer Engineering  Curriculum Report 
Ironman Draft  2004June8 

[SWEBOK, 2001]  Software Engineering Coordinating Committee. Guide to the Software Engineering Body of Knowledge 
(SWEBOK). Stone Man Version 0.95. A Project of the IEEE Computer Society, May 2001.  
http://www.swebok.org/stoneman/version095.html/.  

[Tucker et al, 1991]  Allen B. Tucker, Bruce H. Barnes, Robert M. Aiken, Keith Barker, Kim B. Bruce, J. Thomas Cain, Susan E. 
Conry, Gerald L. Engel, Richard G. Epstein, Doris K. Lidtke, Michael C. Mulder, Jean B. Rogers, Eugene H. Spafford, 
and A. Joe Turner. Computing Curricula ’91. Association for Computing Machinery and the Computer Society of the 
Institute of Electrical and Electronics Engineers, 1991. 

[UKQAA, 2000]  Quality Assurance Agency for Higher Education, “Computing, a report on benchmark levels for Computing,” 
Southgate House, Gloucester, England, April 2000. 

[Walker and Schneider, 1996]  Henry M. Walker and G. Michael Schneider. A revised model curriculum for a liberal arts degree 
in computer science. Communications of the ACM, 39(12):85-95, December 1996. 

[Zadeh, 1968]  Lofti A. Zadeh. Computer science as a discipline. Journal of Engineering Education, 58(8):913-916, April 1968. 
 
 

Page 48  



Computing Curriculum – Computer Engineering  Curriculum Report 
Ironman Draft  2004June8 

 
 

Appendices 
 

(Each presented in a separate document.) 
 
 

Appendix A Knowledge Areas with Knowledge Units 
 
 
Appendix B Sample Curricula 
 

 

Page 49  



Computing Curriculum – Computer Engineering  Curriculum Report 
Ironman Draft  2004June8 

Page 50  

Reviewers 
 
 
The Computer Engineering Task Force thanks the following individuals for their comments and 
suggestions in the development of this report.   
 
 
 
 

NAME AFFILIATION 
xx yyy 
xx yyy 
xx yyy 
xx yyy 
xx yyy 
xx yyy 
xx yyy 
xx yyy 
xx yyy 
xx yyy 
xx yyy 
xx yyy 
xx yyy 
xx yyy 
xx yyy 
xx yyy 
xx yyy 
xx yyy 
xx yyy 

 
 
 


	CCCE Task Force Members
	Contents
	Chapter 8Institutional Challenges
	5.2Design in the Curriculum
	The Role of Engineering Tools
	Professionalism
	Chapter 7
	Curriculum Implementation Issues
	7.2.1Introductory Courses and the Core
	7.2.2Intermediate Courses
	7.2.3Advanced Courses

	Chapter 8

	Institutional Challenges

