COE 444 - Internetwork Design and Management Fall 2007 (Term 071) ## Homework 8 Date: Wednesday, January 9th, 2008 ## Problem 1 Assume that three concentrators A, B, and C are connected according to a unidirectional ring topology (A-B-C-A) and that all links have the same capacity of 2 Mbps. Assume that 6 terminals, a, b, c, d, e, and f are connected as follows: (a, C), (b, C), (c, A), (d, A), (e, B), (f, B). The average packet size has been estimated equal to **2000 bits**. It has also been observed that the traffic generated by the various terminals is Poissonian with rates as indicated in the following table showing the **Inter-terminals traffic in pps**. | | a | b | c | d | e | f | |---|----|----|----|----|-----|-----| | a | - | 20 | 50 | 10 | 30 | 20 | | b | 20 | - | 10 | 20 | 40 | 60 | | c | 50 | 10 | - | 80 | 20 | 10 | | d | 10 | 20 | 80 | - | 50 | 50 | | e | 30 | 40 | 20 | 50 | _ | 100 | | f | 20 | 60 | 10 | 50 | 100 | - | - **a.** Find the inter-concentrators traffic in pps $(\gamma_{ik}, j, k = A, B, C)$. - **b.** Find the internal traffic rates on the links AB, BC, and CA, that is, λ_{AB} , λ_{BC} , and λ_{CA} . - c. Which link constitutes the primary bottleneck link? - **d.** What is the average number of links $\tilde{\mathbf{n}}$ traversed by a packet to go from any source to any destination? - **e.** Find *T*, the average delay per packet. - **f.** Assume that the external traffic from all terminals is multiplied by a constant factor α . What is largest value α_{max} that will cause the network to saturate? ## Problem 2 **Q1.** Assume that three backbone switches B_1 , B_2 , and B_3 are interconnected with full duplex links according to a tree topology with B_1 as the root of the tree, and B_2 and B_3 as the children of B_1 . The links are running at Fast Ethernet speed. Suppose that 6 workgroup switches, labelled S_1 to S_6 , are assigned as follows: S_4 and S_6 to B_1 , S_1 and S_3 to B_2 , and S_2 and S_5 to B_3 . The workgroup switches are connected to the backbone switches with full duplex links of 10 Mbps speed. The average packet size has been estimated equal to 1000 bits. It has also been observed that the traffic (in pps) generated by the various workgroups is Poissonian with rates as indicated in the following table: | | S_1 | S_2 | S_3 | S ₄ | S_5 | S_6 | |----------------|-------|-------|-------|----------------|-------|-------| | S_1 | - | 200 | 500 | 100 | 300 | 200 | | S_2 | 200 | - | 100 | 200 | 400 | 600 | | S_3 | 500 | 100 | - | 800 | 200 | 100 | | S ₄ | 100 | 200 | 800 | - | 500 | 500 | | S ₅ | 300 | 400 | 200 | 500 | - | 1000 | | S_6 | 200 | 600 | 100 | 500 | 1000 | - | - **a.** Find the internal traffic rates on all the links, that is $\lambda_{Si,Bj}$, and $\lambda_{Bj,Si}$, $i=1,\ldots,6$, j=1,2,3, where S_i is connected to B_j , and $\lambda_{Bi,Bj}$, i,j=1,2,3, $i\neq j$ and the link between B_i and B_j exists. - **b.** Find the utilizations of all the links, that is $\rho_{Si,Bj}$, and $\rho_{Bj,Si}$, i = 1, ..., 6, j = 1, 2, 3, where S_i is connected to B_j , and $\rho_{Bi,Bj}$, i, j = 1, 2, 3, $i \neq j$ and the link between B_i and B_i exists. - c. Which link constitutes the primary bottleneck link? - **d.** What is the average number of links $\tilde{\mathbf{n}}$ traversed by a packet to go from any source to any destination? - **e.** Find *T*, the average delay suffered by a packet to go from any workgroup switch to any other workgroup switch. - **f.** What is the largest load that can be sustained by the network before any of its links saturate? - **Q2.** For the tree network in question **Q1.**, assume that the MTBF and MTTR of any link are respectively 5 years and 1 day, and the MTBF and MTTR of any switch are respectively 15 years and 5 days. (1 year = 365.25 days) - **a.** Find P_I and P_s , the links and switches reliabilities (use precision at 10^{-5}) - **b.** Find the overall network reliability, that is, the probability that the network is connected. - c. Find $E(B_1)$, the expected number of nodes communicating with the root node B_1 . - **d.** Find $EPR(B_1)$, the expected number of node pairs communicating through the root node B_1 .