Chapter 5 Topology design and analysis

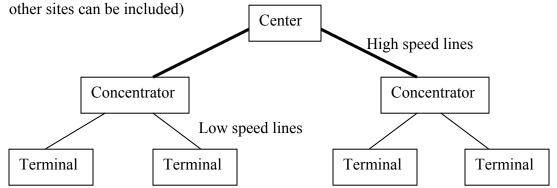
Topics covered:

Topology design. Network design algorithms. Terminal assignment. Concentrator location. Traffic flow analysis and performance evaluation. Network reliability. Network simulation.

5.1 Topology design

5.1.1 Centralized Network design

- > <u>Centralized network:</u> is where all communication is to and from a single central site.
- The "central site" is capable of making routing decisions.
 Tree topology provides only one path through the center (For reliability, lines between other sites can be included).



- > Three different problems:
 - <u>Multipoint line topology:</u> selection of links connecting terminals to concentrators or directly to the center.
 - o <u>Terminal assignment:</u> association of terminals with specific concentrators.
 - <u>Concentrator location:</u> deciding where to place concentrators, and whether or not to use them at all.

5.1.2 Finding Trees in Graphs

- ➤ Used to design and analyze networks.
- Connect a number of nodes to a central node:
 - Node: Hub, Switch, Router, etc.
 - <u>Central node:</u> backbone

- > A tree is a graph with no loops, with only one path between any pair of nodes.
- Trees are minimal networks: provide connectivity without any unnecessary additional links:
 - Minimally reliable and robust
 - Networks are more highly connected (but design starts with a tree)

5.1.2.1 Tree Traversals

- ➢ Visit all nodes in a tree: edges are traversed twice.
- First, identify a node as the root
- Assume the tree is directed (outward from the root)
- ➤ Two algorithms:
 - BFS (Breadth First Search):
 - Nodes closest to root are visited first
 - Implemented using a queue (FIFO)
 - DFS (Depth First Search):
 - Visits an unvisited neighbor of the node just visited.
 - Implemented using a stack (LIFO)
- Both traversals (BFS and DFS) can be preorder traversals (i.e., visit nodes then successors) or post-order traversals (i.e., successors visited first).
- Traversal is generalized to undirected graphs by keeping track of which nodes were visited, and not visiting them again.
- In a BFS or DFS traversal, edges visited form a tree (if the graph is connected) or a forest (if the graph is not connected).

5.1.2.2 Minimum Spanning Trees (MSTs)

- Use DFS to find a spanning tree in a graph, if one exists
 Arbitrary tree
- ➤ Useful to find the "best" tree
 → Minimum Spanning Tree (e.g., minimum total length. Where length is: distance, cost, function(delay), function(reliability), etc.)

- > If the graph is not connected \rightarrow minimum spanning forest
 - For *n* nodes, *c* components, and *e* edges, we have: n = c + e
 - For a tree, c = 1.
- > DFS will not, in general, find the spanning tree with minimum total cost.

5.1.2.2.1 The Greedy Algorithm

- > At each stage, select the shortest edge possible.
- > May not find a feasible solution when one exists.
- > Efficient and simple to implement \rightarrow widely used.
- > Basis of other more complex and effective algorithms.
- In the case of MST, the greedy algorithm guarantees both optimality and reasonable computational complexity.
 - Start with empty solution *s*
 - While elements exist
 - Find *e*, the best element not yet considered
 - If adding *e* to *s* is feasible, add it; if not, discard it.

5.1.2.2.2 Kruskal's Algorithm

- ➤ A greedy algorithm for finding MSTs.
- Sort the edges, shortest first and then include all edges which do not form cycles with the edges previously selected.
- ➢ n: number of nodes

> <u>Algorithm:</u>

- 1. Sort all edges in ascending order (least cost first)
- 2. Select among edges not yet selected, the one with the least cost.
- 3. Add it if it does not create a cycle.
- 4. If the number of edges selected < *n*-1, go to step (2), otherwise exit (tree completed)

> <u>Complexity:</u>

 $O(m \log m), m = number of edges$

5.1.2.2.3 Prim's Algorithm

- ➤ A greedy algorithm for finding MSTs.
- > Advantageous if the network is dense.
- ▶ Well suited to parallel implementation.

> <u>Algorithm:</u>

- 1. Start with one node (root node) in the tree
- 2. Find node *i*, not in the tree, which is the nearest to the tree.
- 3. Add node *i* to the tree and edge *e* connecting *i* to the tree.

➢ <u>Complexity:</u>

 $O(n^2)$

5.1.2.2.4 Comparison of the Complexity of Kruskal's and Prim's Algorithms

- If the network is dense \rightarrow m ~ O(n²) \rightarrow Prim's algorithm is faster
- If the network is not dense $\rightarrow m \sim O(n) \rightarrow Kruskal'$ algorithm is faster

5.1.3 Constrained/Capacitated MST (CMST)

- The algorithms presented in the previous subsections are called "unconstrained MST algorithms"
 - No constraint on flow of information
 - No constraint on the number of ports at each node.
- For the unconstrained spanning tree problem, all these algorithms produce a minimum cost spanning tree.
- ➤ <u>**CMST Problem:**</u> Given a central node N_0 and a set of other nodes $(N_1, N_2, ..., N_n)$, as et of weights $(W_1, W_2, ..., W_n)$ for each node, the capacity of a link, W_{max} , and a cost matrix $C_{ij} = Cost(i,j)$, find a set of trees $T_1, T_2, ..., T_k$ such that each N_i belongs to exactly one T_j and each T_j contains N_0 .

- Objective: Find a tree of minimum cost and which satisfies a number of constraints such as:
 - Flow over a link
 - Number of ports

> <u>Example:</u>

- Assume we are allowed to use one type of links only that can accommodate a maximum of 5 units of flow per unit time.
- Assume that the flow generated from each node to the central node (N_1) is as follows: $f_1=0$, $f_2=2$, $f_3=3$, $f_4=2$, $f_5=1$ (in units/time_unit).

• Effect of constraint violation:

- As a result, a queue will build up since node 3 can service only 5 units/time_unit. If node 3 does not have a large queue to accommodate all coming units, some units will be lost. So, these units are retransmitted, which may cause the network to collapse.
- The CSMT problem is NP-hard (i.e., cannot be solved in polynomial time)
 Resort to heuristics (approximate algorithms)
- These heuristics will attempt to find a good feasible solution, not necessarily the best, that:
 - Minimizes the cost
 - Satisfies all the constraints
- Well-known heuristics:
 - o Kruskal
 - o Prim
 - Esau-Williams

5.1.3.1 Kruskal's Algorithm for CMST

Algorithm:

- 1. Sort all edges in ascending order, $e \leftarrow 0$.
- 2. Select edge with minimum cost (from edges not yet selected)
- 3. If it satisfies constraints (i.e., no cycles and no violation of flows on links)
 - Then: add it to the tree, $e \leftarrow e+1$
 - Else: go to step (2)
- 4. If (e = n 1) then exit, else go to step (2)

Example:

Given a network with five nodes, labelled 1 to 5, and characterized by the following cost matrix:

	1	2	3	4	5
1	-	3	3	5	10
2	3	-	6	4	8
3	3	6	-	3	5
4	5	4	3	-	7
5	10	8	5	7	-

Node 1 is the central backbone node.

f_{max}=5, f₁=0, f₂=2, f₃=3, f₄=2, f₅=1.

5.1.3.2 Prim's Algorithm for CMST

Algorithm:

- 1. Start with one node (root node) in the tree.
- 2. Find node *i*, not in the tree, which is the nearest to the tree
- 3. Add node *i* to the tree and edge *e* connecting *i* to the tree if it satisfies constraints (i.e., no violation of flows on links)

Example:

5.1.3.3 Esau-Williams Algorithm for CMST

Node 1 is the central node.

- t_{ij} : is the tradeoff of connecting i to j or i directly to the root.
 - > If $(t_{ij} < 0)$ → better to connect i to j
 - ▶ If $(t_{ij} \ge 0)$ → better to connect i directly to the root

<u>Algorithm:</u>

- 1. Compute $t_{ij} = c_{ij} c_{i1}$ for all $i, j \neq 1$.
- 2. Select the link (m,n) such that: $t_{mn} = min(t_{ij})$
- 3. If $t_{mn} < 0$, then go to step (4) Else (i.e., $t_{mn} \ge 0$ for all m,n), connect to node 1 all nodes not connected yet, and <u>exit</u>.
- 4. Verify constraints (e.g., does not exceed the maximum weight)
 - If satisfied go to step (5)
 - Else: $t_{mn} = \infty$ and $t_{nm} = \infty$, go to step (2)
- 5. Add link (m, n), remove link (m, 1) and update t_{ij} to indicate that **m** is now connected to **n**.
 - → $t_{mn} = \infty$ and $t_{nm} = \infty$ → if $t_{mj} \neq \infty$, $t_{mj} = c_{mj} - min(c_{k1})$ [k ∈ C_m, where C_i = component containing node i]
- 6. Go to step (2)

Example:

Given a network with five nodes, labelled 1 to 5, and characterized by the following cost matrix:

	1	2	3	4	5
1	-	3	3	5	10
2	3	-	6	4	8
3	3	6	-	3	5
4	5	4	3	-	7
5	10	8	5	7	-

W_{max}=5, W₁=0, W₂=2, W₃=3, W₄=2, W₅=1.

5.1.4 Terminal Assignment

5.1.4.1 Problem Statement

> Terminal Assignment: Association of terminals with specific concentrators.

Given:

C Concentrators (hubs/switches) j = 1, 2, ..., C

 C_{ij} : cost of connecting terminal i to concentrator j

W_j: capacity of concentrator j

Assume that terminal i requires W_i units of a concentrator capacity.

Assume that the cost of all concentrators is the same.

> $x_{ij} = 1$; if terminal i is assigned to concentrator j.

> $x_{ij} = 0$; otherwise.

Objective:

5.1.4.2 Augmenting path algorithm

Based on the following observations:

- 1. Ideally, every terminal is assigned to the nearest concentrator.
- 2. Terminals on concentrators that are full are moved only to make room for another terminal that would cause a higher overall cost if assigned to another concentrator.
- 3. An optimal partial solution with k+1 terminals can be found by finding the least expensive way of adding the (k+1)th terminal to the k terminal solution.

Assignment problem:

Given a cost matrix:

- One column per concentrator
- ➢ One row per terminal

Assume that:

- Weight of each terminal is 1 (i.e., each terminal consumes exactly one unit of concentrator capacity)
- A concentrator has a capacity of W terminals (e.g., number of ports)

A feasible solution exists $\underline{iff} T \leq W * C$

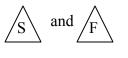
Algorithm:

- 1. Initially, try to associate each terminal to its nearest concentrator
- 2. If successful in assigning all terminals without violating capacity constraints, then stop (i.e., an optimal solution is found)
- 3. Else,
- Repeat
 - i. Build a compressed auxiliary graph
 - ii. Find an optimal augmentation
- Until all terminals are assigned

Building a compressed auxiliary graph:

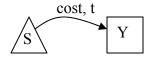
U: set of unassociated terminals

T(Y): set of terminals associated with Y

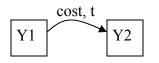


are the start and finish of all augmenting paths

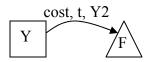
represents a fully loaded concentrator



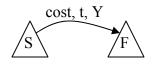
Assign t to a fully loaded concentrator Y. (t \in U) cost = c(tY) = min c(xY) for x \in U



Move t from a fully loaded concentrator Y1 to another fully loaded concentrator Y2. (t \in T(Y1)) cost = c(tY2) - c(tY1)= min (c(xY2) - c(xY1)) for x \in t(Y1)



Move t from Y to a concentrator Y2 with spare capacity. (t \in T(Y)) cost = c(tY2) - c(tY)= min (c(xY2) - c(xY)) for x \in t(Y)



Assign t to a concentrator Y with spare capacity. (t \in U) cost = c(tY) = min c(xY) for x \in U

Example:

5.2 Traffic Flow Analysis and Performance Evaluation

5.2.1 Traffic Flow Analysis Objective

- ➢ Estimate:
 - o Delay
 - Utilization of resources (links)
- > Traffic flow across a network depends on:
 - o Topology
 - Routing
 - Traffic workload (from all traffic sources)
- > Desirable topology and routing are associated with:
 - Low delays
 - Reasonable link utilization (no bottlenecks)
- > Assumptions:
 - Topology is fixed and stable
 - Links and routers are 100% reliable
 - Processing time at the routers is negligible
 - Capacity of all links is given $C = [C_i]$ (in bps [bits per second])
 - Traffic workload is given $\Gamma = [\gamma_{ik}]$ (in pps [packets per second])
 - Routing is given $R = [r_{ik}]$
 - Average packet size is $1/\mu$ bits.

5.2.2 Queuing Analysis

Projections of performance are made on the basis of either:

- ➤ The existing load information, or
- > The estimated load for the new environment.

Approaches that could be used:

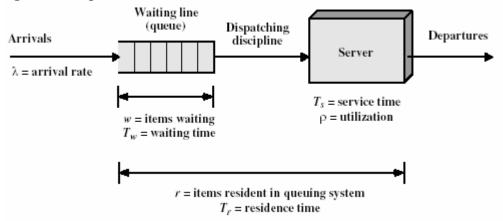
- Do an after-the-fact analysis based on actual values
- > Make a simple projection from existing to expected environment
- > Develop an analytic model based on queuing theory
- Program and run a simulation tool

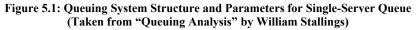
5.2.2.1 Queuing Models

> The notation X/Y/N is used for queuing models.

- \circ X = distribution of the interarrival times
- \circ Y = distribution of service times
- \circ N = number of servers
- > The most common distributions are:
 - \circ G = general independent arrivals or service times
 - \circ M = negative exponential distribution
 - \circ D = deterministic arrivals or fixed length service
- ► Example: M/M/1

➢ Single-server queues





Queue parameters:

 λ = arrival rate; mean number of arrivals per second

 T_s = mean service time for each arrival; amount of time being served, not counting time waiting in the queue

 ρ = utilization; fraction of time facility (server or servers) is busy

 \mathbf{r} = mean number of items in system, waiting and being served (residence time)

Tr = mean time an item spends in system (residence time)

 \mathbf{w} = mean number of items waiting to be served

 T_w = mean waiting time (including items that have to wait and items with waiting time = 0)

Basic Queuing relationship:

- $> \rho = \lambda * T_s$
- \succ r = w+ ρ
- $\succ \lambda_{max} = 1/T_s$
- > $r = \lambda^* Tr$ (Little's formula)
- \succ w = λ*T_w (Little's formula)
- \succ Tr = Tw +Ts
- \succ r = $\rho/(1-\rho)$

> Multiserver queue

- N = number of servers
- ρ = utilization of each server

 $N\rho$ = utilization of all servers (= $\lambda * T_s$)

5.2.2.2 M/M/1 Queues – Application to Networks

Each link is seen as a service station servicing packets.

 λ_i = arrival rate (in pps); mean number of packets that arrive to link i in one second.

 μC_i = average service rate (in pps); mean number of packets that will get out of the link i in one second. (= $1/T_s$)

➢ Utilization of link i is:

 $\rho_i =$

Stability condition of a network is:

> The external workload offered to the network is:

Where:

 γ = total workload in packets per second γ_{jk} = workload between source *j* and destination *k N* = total number of sources and destinations

> The internal workload on link i is:

 $\lambda_i =$

Where:

 γ_{jk} = workload between source *j* and destination *k* Π_{jk} = path followed by packets to go from source *j* and destination *k*

The total internal workload is:

Where:

 λ = total load on all of the links in the network

 $\lambda_i = \text{load on link } i$

L =total number of links

> The average length for all paths is given by:

E[number of links in a path] = λ/γ

> The average number of items waiting and being served for link i is:

 $\mathbf{r}_i =$

The number of packets waiting and being served in the network can be expressed as:

γ*T =

Where:

T = average delay experienced by a packet through the network.

T =

> T_{ri} is the residence time at each queue. If we assume that each queue can be treated as an independent M/M/1 model (Jackson's Theorem), then:

 $T_{ri} =$

Where: T_{si} is the service time for link i

$T_{si} =$

Where:

- C_i = data rate on the link (in bps)
- $M = 1/\mu$ = average packet length in bits

Example:

5.3 Network Reliability

5.3.1 Introduction

- > A network model is a set of facilities. A facility could be a device or a link.
- A network must contain some slack to allow it to function even if some of its facilities have failed.
- > Any network facility is either:
 - Working (**p**)
 - Failing (q = **1**-**p**)
- ➢ MTBF: Mean Time Between Failures (f).
- MTTR: Mean Time To Repair (r)

> For any facility i, we'll know from measurements of f_i and r_i :

P_i = Prob [facility i is working] =

Therefore:

> We assume that all facilities are independent:

P(ij) = Prob[facility i and facility j are working] =

P(i|j) = Prob[facility i or facility j is working] =

Simplest measure of network reliability:

P_c(G) = Prob[Network is connected]

Where: **c** stands for the connectivity of the network, and **G** stands for the graph representing the network

P_c(G) = **Prob**[All nodes are working and there is a spanning tree of working links]

$$P_c(G) =$$

Since enumerating all trees in G requires an exponential amount of effort, P_c(G) is very difficult (if not impossible) to compute.

 \rightarrow We seek simpler measures of network reliability.

5.3.2 Reliability of Tree Networks

> A typical enterprise/campus network includes trees:

 \triangleright Given a tree T:

P_c(T) = Prob[A tree network, T, being connected] = Prob[All components (nodes and links) are working]

 $P_c(T) =$

- \triangleright **P**_c(**T**) can also be computed recursively:
 - $P_c(T) =$

Where:	T-i is the tree T without node i, and
	j is the link between node i and the rest of the tree

➢ Given a particular tree with root r:

P_c(i) = Prob[node i can communicate with root r]

 $P_c(i) =$

Where: **j** is the link between nodes i and k, and **k** is the predecessor of node i

 $P_c(r) =$

> The expected number of nodes communicating with the root r is:

E(r) =

> This expression can be computed efficiently for any node as follows:

E(i) = the expected number of nodes communicating with the node i

E(i) =

> If node i is a leaf, then:

E(i) =

Example:

> The expected number of node pairs communicating through the root r is:

EPR(r) =

Example:

5.4 References

- 1. "Telecommunications Network Design Algorithms" by Aaron Kershenbaum, 1993
- 2. "Queuing Analysis" by William Stalling, 2000