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Chapter 5 Topology design and analysis 
 
Topics covered: 
Topology design. Network design algorithms. Terminal assignment. Concentrator location. 
Traffic flow analysis and performance evaluation. Network reliability. Network simulation. 
 

5.1 Topology design 

5.1.1 Centralized Network design 
 

 Centralized network: is where all communication is to and from a single central site. 
 

 The “central site” is capable of making routing decisions. 
 Tree topology provides only one path through the center (For reliability, lines between 

other sites can be included) 
 
 
 
 
 
 
 
 
 
 

 Three different problems: 
 

o Multipoint line topology: selection of links connecting terminals to 
concentrators or directly to the center. 

 
o Terminal assignment: association of terminals with specific concentrators. 

 
o Concentrator location: deciding where to place concentrators, and whether or 

not to use them at all. 
 

5.1.2 Finding Trees in Graphs 
 

 Used to design and analyze networks. 
 

 Connect a number of nodes to a central node: 
 

o Node: Hub, Switch, Router, etc. 
 
o Central node: backbone 

 

Center 

Concentrator Concentrator 

Terminal Terminal Terminal Terminal 

High speed lines 

Low speed lines 
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 A tree is a graph with no loops, with only one path between any pair of nodes. 

 
 Trees are minimal networks: provide connectivity without any unnecessary additional 

links: 
 

o Minimally reliable and robust 
 
o Networks are more highly connected (but design starts with a tree) 

 

5.1.2.1 Tree Traversals 
 

 Visit all nodes in a tree: edges are traversed twice. 
 

 First, identify a node as the root 
 

 Assume the tree is directed (outward from the root) 
 

 Two algorithms: 
 

o BFS (Breadth First Search): 
• Nodes closest to root are visited first 
• Implemented using a queue (FIFO) 

 
o DFS (Depth First Search): 

• Visits an unvisited neighbor of the node just visited. 
• Implemented using a stack (LIFO) 

 
 Both traversals (BFS and DFS) can be preorder traversals (i.e., visit nodes then 

successors) or post-order traversals (i.e., successors visited first). 
 

 Traversal is generalized to undirected graphs by keeping track of which nodes were 
visited, and not visiting them again. 

 
 In a BFS or DFS traversal, edges visited form a tree (if the graph is connected) or a forest 

(if the graph is not connected). 
 

5.1.2.2 Minimum Spanning Trees (MSTs) 
 

 Use DFS to find a spanning tree in a graph, if one exists 
 Arbitrary tree 

 
 Useful to find the “best” tree 

 Minimum Spanning Tree (e.g., minimum total length. Where length is: 
distance, cost, function(delay), function(reliability), etc.) 
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 If the graph is not connected  minimum spanning forest 
o For n nodes, c components, and e edges, we have: n = c + e 
o For a tree, c = 1. 
 

 DFS will not, in general, find the spanning tree with minimum total cost. 
 

5.1.2.2.1 The Greedy Algorithm 
 

 At each stage, select the shortest edge possible. 
 

 May not find a feasible solution when one exists. 
 

 Efficient and simple to implement  widely used. 
 

 Basis of other more complex and effective algorithms. 
 

 In the case of MST, the greedy algorithm guarantees both optimality and reasonable 
computational complexity. 

 
o Start with empty solution s 
o While elements exist 

• Find e, the best element not yet considered 
• If adding e to s is feasible, add it; if not, discard it. 

5.1.2.2.2 Kruskal’s Algorithm 
 

 A greedy algorithm for finding MSTs. 
 

 Sort the edges, shortest first and then include all edges which do not form cycles with the 
edges previously selected. 

 
 n: number of nodes 

 
 Algorithm: 

 
1. Sort all edges in ascending order (least cost first) 
 
2. Select among edges not yet selected, the one with the least cost. 

 
3. Add it if it does not create a cycle. 

 
4. If the number of edges selected < n-1, go to step (2), otherwise exit (tree 

completed) 
 

 Complexity: 
 
O(m log m), m = number of edges 
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5.1.2.2.3 Prim’s Algorithm 
 

 A greedy algorithm for finding MSTs. 
 

 Advantageous if the network is dense. 
 

 Well suited to parallel implementation. 
 

 Algorithm: 
 

1. Start with one node (root node) in the tree 
 
2. Find node i, not in the tree, which is the nearest to the tree. 

 
3. Add node i to the tree and edge e connecting i to the tree. 

 
 Complexity: 

 
O(n2) 

5.1.2.2.4 Comparison of the Complexity of Kruskal’s and Prim’s Algorithms 
 

• If the network is dense  m ~ O(n2)  Prim’s algorithm is faster 
 
• If the network is not dense  m ~ O(n)  Kruskal’ algorithm is faster 

 

5.1.3 Constrained/Capacitated MST (CMST) 
 

 The algorithms presented in the previous subsections are called “unconstrained MST 
algorithms” 

o No constraint on flow of information 
o No constraint on the number of ports at each node. 
 

 For the unconstrained spanning tree problem, all these algorithms produce a minimum 
cost spanning tree. 

 
 CMST Problem: Given a central node N0 and a set of other nodes (N1, N2, …, Nn), as et 

of weights (W1, W2, …, Wn) for each node, the capacity of a link, Wmax, and a cost matrix 
Cij = Cost(i,j), find a set of trees T1, T2, …, Tk such that each Ni belongs to exactly one Tj 
and each Tj contains N0. 
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 Objective: Find a tree of minimum cost and which satisfies a number of constraints such 

as: 
o Flow over a link 
o Number of ports 

 
 

 Example: 
o Assume we are allowed to use one type of links only that can accommodate a 

maximum of 5 units of flow per unit time. 
 
o Assume that the flow generated from each node to the central node (N1) is as 

follows: f1=0, f2=2, f3=3, f4=2, f5=1 (in units/time_unit). 
 
 
 
 
 
 
 
 
 
 
 
 

o Effect of constraint violation: 
• As a result, a queue will build up since node 3 can service only 5 

units/time_unit. If node 3 does not have a large queue to accommodate all 
coming units, some units will be lost. So, these units are retransmitted, 
which may cause the network to collapse. 

 
 

 The CSMT problem is NP-hard (i.e., cannot be solved in polynomial time) 
 Resort to heuristics (approximate algorithms) 

 
 

 These heuristics will attempt to find a good feasible solution, not necessarily the best, 
that: 

o Minimizes the cost 
o Satisfies all the constraints 

 
 

 Well-known heuristics: 
o Kruskal 
o Prim 
o Esau-Williams 
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5.1.3.1 Kruskal’s Algorithm for CMST 
 
Algorithm: 
 
1. Sort all edges in ascending order, e  0. 
2. Select edge with minimum cost (from edges not yet selected) 
3. If it satisfies constraints (i.e., no cycles and no violation of flows on links) 

o Then: add it to the tree, e  e + 1 
o Else: go to step (2) 

4. If (e = n – 1) then exit, else go to step (2) 
 

Example: 
 

Given a network with five nodes, labelled 1 to 5, and characterized by the following cost 
matrix: 

 1 2 3 4 5 
1 - 3 3 5 10 
2 3 - 6 4 8 
3 3 6 - 3 5 
4 5 4 3 - 7 
5 10 8 5 7 - 

 
Node 1 is the central backbone node. 
 
fmax=5, f1=0, f2=2, f3=3, f4=2, f5=1. 
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5.1.3.2 Prim’s Algorithm for CMST 
 
Algorithm: 
 
1. Start with one node (root node) in the tree. 
 
2. Find node i, not in the tree, which is the nearest to the tree 

 
3. Add node i to the tree and edge e connecting i to the tree if it satisfies constraints (i.e., 

no violation of flows on links) 
 
 

Example: 
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5.1.3.3 Esau-Williams Algorithm for CMST 
 

Node 1 is the central node. 
 
tij: is the tradeoff of connecting i to j or i directly to the root. 

 If (tij < 0)  better to connect i to j 
 If (tij ≥ 0)  better to connect i directly to the root 

 
Algorithm: 
 
1. Compute tij = cij – ci1 for all i, j ≠ 1. 

 
2. Select the link (m,n) such that: tmn = min(tij) 
 
3. If tmn < 0, then go to step (4) 

Else (i.e., tmn ≥ 0 for all m,n), connect to node 1 all nodes not connected yet, and exit. 
 
4. Verify constraints (e.g., does not exceed the maximum weight) 

 If satisfied go to step (5) 
 Else: tmn = ∞ and tnm = ∞, go to step (2) 

 
5. Add link (m, n), remove link (m, 1) and update tij to indicate that m is now connected 

to n. 
 tmn = ∞ and tnm = ∞ 
 if tmj ≠ ∞, tmj = cmj – min(ck1) [k ∈ Cm, where Ci = component containing node i] 
 

6. Go to step (2) 
 

Example: 
 

Given a network with five nodes, labelled 1 to 5, and characterized by the following cost 
matrix: 

 1 2 3 4 5 
1 - 3 3 5 10 
2 3 - 6 4 8 
3 3 6 - 3 5 
4 5 4 3 - 7 
5 10 8 5 7 - 

 
Wmax=5, W1=0, W2=2, W3=3, W4=2, W5=1. 
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5.1.4 Terminal Assignment 

5.1.4.1 Problem Statement 
 

 Terminal Assignment: Association of terminals with specific concentrators. 
 

Given: 
 

T terminals (stations)    i = 1, 2, …, T 
 

C Concentrators (hubs/switches) j = 1, 2, …, C 
 

Cij: cost of connecting terminal i to concentrator j 
 

Wj: capacity of concentrator j 
 

Assume that terminal i requires Wi units of a concentrator capacity. 
 
Assume that the cost of all concentrators is the same. 
 

 xij = 1; if terminal i is assigned to concentrator j. 
 

 xij = 0; otherwise. 
 
 

Objective: 
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5.1.4.2 Augmenting path algorithm 
 
Based on the following observations: 
 
1. Ideally, every terminal is assigned to the nearest concentrator. 
 
2. Terminals on concentrators that are full are moved only to make room for another 

terminal that would cause a higher overall cost if assigned to another concentrator. 
 

3. An optimal partial solution with k+1 terminals can be found by finding the least 
expensive way of adding the (k+1)th terminal to the k terminal solution. 

 
 

Assignment problem: 
 
Given a cost matrix: 

 One column per concentrator 
 One row per terminal 

 
 
 
 
 
 
 
 
 
 
Assume that: 

 Weight of each terminal is 1 (i.e., each terminal consumes exactly one unit of 
concentrator capacity) 

 A concentrator has a capacity of W terminals (e.g., number of ports) 
 

A feasible solution exists iff T ≤ W * C 
 
 
Algorithm: 
 

1. Initially, try to associate each terminal to its nearest concentrator 
 
2. If successful in assigning all terminals without violating capacity constraints, then 

stop (i.e., an optimal solution is found) 
 

3. Else, 
• Repeat 

i. Build a compressed auxiliary graph 
ii. Find an optimal augmentation 

• Until all terminals are assigned 
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Building a compressed auxiliary graph: 
 

  
 
 
 

S F and are the start and finish of all augmenting paths 

represents a fully loaded concentrator 

U: set of unassociated terminals 
 
T(Y): set of terminals associated with Y 

S Y 
cost, t 

Assign t to a fully loaded concentrator Y. (t Є U) 
cost = c(tY) = min c(xY) for x Є U 

cost, t 
Move t from a fully loaded concentrator Y1 to another fully 
loaded concentrator Y2. (t Є T(Y1)) 
cost = c(tY2) – c(tY1)= min (c(xY2) – c(xY1)) for x Є t(Y1) 

Y1 Y2 

cost, t, Y2 
Move t from Y to a concentrator Y2 with spare capacity. (t Є T(Y))
cost = c(tY2) – c(tY)= min (c(xY2) – c(xY)) for x Є t(Y) 

Y F 

S Assign t to a concentrator Y with spare capacity. (t Є U) 
cost = c(tY) = min c(xY) for x Є U 

F 

cost, t, Y 
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Example: 
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5.2 Traffic Flow Analysis and Performance Evaluation 
 

5.2.1 Traffic Flow Analysis Objective 
 

 Estimate: 
o Delay 
o Utilization of resources (links) 

 
 Traffic flow across a network depends on: 

o Topology 
o Routing 
o Traffic workload (from all traffic sources) 

 
 Desirable topology and routing are associated with: 

o Low delays 
o Reasonable link utilization (no bottlenecks) 
 

 Assumptions: 
o Topology is fixed and stable 
o Links and routers are 100% reliable 
o Processing time at the routers is negligible 
o Capacity of all links is given C = [Ci] (in bps [bits per second]) 
o Traffic workload is given Г = [γjk] (in pps [packets per second]) 
o Routing is given R = [rjk] 
o Average packet size is 1/µ bits. 

 

5.2.2 Queuing Analysis 
 

Projections of performance are made on the basis of either: 
 The existing load information, or 
 The estimated load for the new environment. 

 
Approaches that could be used: 
 

 Do an after-the-fact analysis based on actual values 
 
 

 Make a simple projection from existing to expected environment 
 
 

 Develop an analytic model based on queuing theory 
 
 

 Program and run a simulation tool 
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5.2.2.1 Queuing Models 
 

 The notation X/Y/N is used for queuing models. 
o X = distribution of the interarrival times 
o Y = distribution of service times 
o N = number of servers 

 
 The most common distributions are: 

o G = general independent arrivals or service times 
o M = negative exponential distribution 
o D = deterministic arrivals or fixed length service 

 
 Example: M/M/1 

 
 

 Single-server queues 

 
Figure 5.1: Queuing System Structure and Parameters for Single-Server Queue 

(Taken from “Queuing Analysis” by William Stallings) 
 

Queue parameters: 
 

λ = arrival rate; mean number of arrivals per second 
 

Ts = mean service time for each arrival; amount of time being served, not 
counting time waiting in the queue 

 
ρ = utilization; fraction of time facility (server or servers) is busy 

 
r = mean number of items in system, waiting and being served (residence time) 

 
Tr = mean time an item spends in system (residence time) 

 
w = mean number of items waiting to be served 

 
Tw = mean waiting time (including items that have to wait and items with waiting 
time = 0) 
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Basic Queuing relationship: 

 
 ρ = λ*Ts 

 
 r = w+ρ 

 
 λmax = 1/Ts 

 
 r = λ*Tr  (Little’s formula) 

 
 w = λ*Tw  (Little’s formula) 

 
 Tr  = Tw +Ts  

 
 r = ρ/(1-ρ) 

 
 

 Multiserver queue 
 

N = number of servers 
 
ρ = utilization of each server 
 
Nρ = utilization of all servers (= λ*Ts) 
 

5.2.2.2 M/M/1 Queues – Application to Networks 
 

 Each link is seen as a service station servicing packets. 
 

λi = arrival rate (in pps); mean number of packets that arrive to link i in one second. 
 

µCi = average service rate (in pps); mean number of packets that will get out of the 
link i in one second. (= 1/ Ts) 

 
 
 
 
 
 
 
 

 Utilization of link i is: 
 

ρi =  
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 Stability condition of a network is: 
 
 
 
 
 
 
 

 The external workload offered to the network is:  
 
γ =  
 

Where: 
γ = total workload in packets per second 
γjk = workload between source j and destination k 
N = total number of sources and destinations 
 
 

 The internal workload on link i is:  
 

λi =   
Where: 

γjk = workload between source j and destination k 
Πjk = path followed by packets to go from source j and destination k 

 
 

 The total internal workload is: 
 

λ = 
 

Where: 
λ = total load on all of the links in the network 
λi = load on link i 
L = total number of links 
 
 

 The average length for all paths is given by: 
 

E[number of links in a path] = λ/γ 
 

 
 

 The average number of items waiting and being served for link i is: 
 

ri =  
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 The number of packets waiting and being served in the network can be expressed 
as: 

γ*T =  
 
Where: 

Τ = average delay experienced by a packet through the network. 
 

T = 
  

 Tri is the residence time at each queue. If we assume that each queue can be treated 
as an independent M/M/1 model (Jackson’s Theorem), then: 

 
Tri = 

 
Where: Tsi is the service time for link i 

 
 

Tsi = 
 
Where: 

 Ci = data rate on the link (in bps) 
 M = 1/µ = average packet length in bits 

 
 
 
 

Example: 
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5.3 Network Reliability 

5.3.1 Introduction 
 

 A network model is a set of facilities. A facility could be a device or a link. 
 

 A network must contain some slack to allow it to function even if some of its 
facilities have failed. 

 
 Any network facility is either: 

 
• Working (p) 

 
• Failing (q = 1-p) 

 
 MTBF: Mean Time Between Failures (f). 

 
 MTTR: Mean Time To Repair (r) 

 
 
 
 
 
 
 
 
 
 

 For any facility i, we’ll know from measurements of fi and ri: 
 

Pi = Prob [facility i is working] =  
 

Therefore: 
 

 
 We assume that all facilities are independent: 

 
P(ij) = Prob[facility i and facility j are working] =  

 
P(i|j) = Prob[facility i or facility j is working] =  
 
 

 Simplest measure of network reliability: 
 

Pc(G) = Prob[Network is connected] 
 
Where:   c stands for the connectivity of the network, and 

G stands for the graph representing the network 
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Pc(G) = Prob[All nodes are working and there is a spanning tree of 
working links] 
 
 
Pc(G) = 
 
 

 Since enumerating all trees in G requires an exponential amount of effort, Pc(G) is very 
difficult (if not impossible) to compute. 

 
 We seek simpler measures of network reliability. 

 

5.3.2 Reliability of Tree Networks 
 

 A typical enterprise/campus network includes trees: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Given a tree T: 
 

Pc(T) = Prob[A tree network, T, being connected] 
= Prob[All components (nodes and links) are working] 
 
 

Pc(T) = 
 

 
 

 Pc(T) can also be computed recursively: 
 
 

Pc(T) = 
 
 

Where:  T-i is the tree T without node i, and 
j is the link between node i and the rest of the tree 
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 Given a particular tree with root r: 
 

Pc(i) = Prob[node i can communicate with root r] 
 
 

Pc(i) = 
 

Where: j is the link between nodes i and k, and 
k is the predecessor of node i 
 

 Pc(r) = 
 
 

 The expected number of nodes communicating with the root r is: 
 

E(r) = 
 
 

 This expression can be computed efficiently for any node as follows: 
 

E(i) = the expected number of nodes communicating with the node i 
 
 
 
 
 
 

E(i) =  
 
 

 If node i is a leaf, then: 
 

E(i) = 
 
 

Example: 
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 The expected number of node pairs communicating through the root r is: 
 
 
 

EPR(r) = 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Example: 
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