Chapter 5

Topics covered:

Topology design. Network design algorithms. Terminal assignment. Concentrator location.
Traffic flow analysis and performance evaluation. Network reliability. Network simulation.

Topology design and analysis

5.1 Topology design

5.1.1 Centralized Network design

» Centralized network: is where all communication is to and from a single central site.

» The “central site” is capable of making routing decisions.
- Tree topology provides only one path through the center (For reliability, lines between

other sites can be included)

Center

/

Concentrator

Low speed lines

Terminal

Terminal

» Three different problems:

High speed lines

Concentrator

Terminal

Terminal

o Multipoint line topology: selection of links connecting terminals to

concentrators or directly to the center.

o Terminal assignment: association of terminals with specific concentrators.

o Concentrator location: deciding where to place concentrators, and whether or

not to use them at all.

5.1.2 Finding Trees in Graphs

» Used to design and analyze networks.

> Connect a number of nodes to a central node:

o Node: Hub, Switch, Router, etc.

o Central node: backbone

COE-444-041

Lecture Notes

71

» A tree is a graph with no loops, with only one path between any pair of nodes.

» Trees are minimal networks: provide connectivity without any unnecessary additional
links:

o Minimally reliable and robust

o Networks are more highly connected (but design starts with a tree)

5.1.2.1 Tree Traversals

» Visit all nodes in a tree: edges are traversed twice.
» First, identify a node as the root
» Assume the tree is directed (outward from the root)
» Two algorithms:
o BFS (Breadth First Search):
* Nodes closest to root are visited first
* Implemented using a queue (FIFO)
o DFS (Depth First Search):
» Visits an unvisited neighbor of the node just visited.

* Implemented using a stack (LIFO)

» Both traversals (BFS and DFS) can be preorder traversals (i.e., visit nodes then
successors) or post-order traversals (i.e., successors visited first).

» Traversal is generalized to undirected graphs by keeping track of which nodes were
visited, and not visiting them again.

» In a BFS or DFS traversal, edges visited form a tree (if the graph is connected) or a forest
(if the graph is not connected).

5.1.2.2 Minimum Spanning Trees (MSTs)

» Use DFS to find a spanning tree in a graph, if one exists
—> Arbitrary tree

> Useful to find the “best” tree

—> Minimum Spanning Tree (e.g., minimum total length. Where length is:
distance, cost, function(delay), function(reliability), etc.)

COE-444-041 Lecture Notes 72

> If the graph is not connected = minimum spanning forest
o For n nodes, ¢ components, and e edges, we have: n =c + e
o Foratree,c=1.

» DFS will not, in general, find the spanning tree with minimum total cost.

5.1.2.2.1 The Greedy Algorithm

At each stage, select the shortest edge possible.
May not find a feasible solution when one exists.
Efficient and simple to implement = widely used.

Basis of other more complex and effective algorithms.

YV VYV Vv VvV V¥V

In the case of MST, the greedy algorithm guarantees both optimality and reasonable
computational complexity.

o Start with empty solution s
o While elements exist

* Find e, the best element not yet considered
» Ifadding e to s is feasible, add it; if not, discard it.

5.1.2.2.2 Kruskal’s Algorithm

» A greedy algorithm for finding MSTs.

» Sort the edges, shortest first and then include all edges which do not form cycles with the
edges previously selected.

» n: number of nodes

» Algorithm:
1. Sort all edges in ascending order (least cost first)
2. Select among edges not yet selected, the one with the least cost.
3. Add it if it does not create a cycle.

4. If the number of edges selected < n-1, go to step (2), otherwise exit (tree
completed)

» Complexity:

O(m log m), m = number of edges

COE-444-041 Lecture Notes 73

5.1.2.2.3 Prim’s Algorithm

» A greedy algorithm for finding MSTs.
» Advantageous if the network is dense.
» Well suited to parallel implementation.
» Algorithm:
1. Start with one node (root node) in the tree
2. Find node i, not in the tree, which is the nearest to the tree.
3. Add node i to the tree and edge e connecting i to the tree.
» Complexity:
O(n?)
5.1.2.2.4 Comparison of the Complexity of Kruskal’s and Prim’s Algorithms
e Ifthe network is dense & m ~ O(n*) = Prim’s algorithm is faster

e If'the network is not dense = m ~ O(n) = Kruskal’ algorithm is faster

5.1.3 Constrained/Capacitated MST (CMST)

» The algorithms presented in the previous subsections are called “unconstrained MST
algorithms”
o No constraint on flow of information
o No constraint on the number of ports at each node.

» For the unconstrained spanning tree problem, all these algorithms produce a minimum
cost spanning tree.

» CMST Problem: Given a central node Ny and a set of other nodes (N, Ny, ..., Ny), as et
of weights (W, W», ..., Wy) for each node, the capacity of a link, Wy,,x, and a cost matrix
Cj; = Cost(i,)), find a set of trees T}, T», ..., Tk such that each N; belongs to exactly one T;
and each T; contains Nj.

COE-444-041 Lecture Notes 74

» Objective: Find a tree of minimum cost and which satisfies a number of constraints such

as:

o Flow over a link
o Number of ports

» Example:

o Assume we are allowed to use one type of links only that can accommodate a
maximum of 5 units of flow per unit time.

o Assume that the flow generated from each node to the central node (N;) is as
follows: =0, £,=2, £3=3, £4=2, fs=1 (in units/time_unit).

o Effect of constraint violation:

As a result, a queue will build up since node 3 can service only 5
units/time_unit. If node 3 does not have a large queue to accommodate all
coming units, some units will be lost. So, these units are retransmitted,
which may cause the network to collapse.

» The CSMT problem is NP-hard (i.e., cannot be solved in polynomial time)
- Resort to heuristics (approximate algorithms)

» These heuristics will attempt to find a good feasible solution, not necessarily the best,

that:

o Minimizes the cost
o Satisfies all the constraints

> Well-known heuristics:
o Kruskal

o Prim

o Esau-Williams

COE-444-041

Lecture Notes 75

5.1.3.1 Kruskal’s Algorithm for CMST

Algorithm:

1. Sort all edges in ascending order, e € 0.

2. Select edge with minimum cost (from edges not yet selected)

3. If it satisfies constraints (i.e., no cycles and no violation of flows on links)
o Then: add it to the tree,e € e + 1
o Else: go to step (2)

4. If (e=n-1) then exit, else go to step (2)

Example:
Given a network with five nodes, labelled 1 to 5, and characterized by the following cost
matrix:
1 2 3 4 5
1 - 3 3 5 10
2 3 - 6 4 8
3 3 6 - 3 5
4 5 4 3 - 7
5 10 | 8 5 7 -

Node 1 is the central backbone node.

fmax=5, f]ZO, f2:2, f3:3, f4:2, f5:1.

COE-444-041 Lecture Notes 76

5.1.3.2 Prim’s Algorithm for CMST

Algorithm:

1. Start with one node (root node) in the tree.
2. Find node i, not in the tree, which is the nearest to the tree

3. Add node i to the tree and edge e connecting i to the tree if it satisfies constraints (i.e.,
no violation of flows on links)

Example:

COE-444-041 Lecture Notes 77

5.1.3.3 Esau-Williams Algorithm for CMST

Node 1 is the central node.
ti: is the tradeoff of connecting i to j or 1 directly to the root.

> If (t < 0) = better to connect i to j
> If (tj > 0) = better to connect i directly to the root

Algorithm:
1. Compute tjj = c;;—ci; forall i, j # 1.
2. Select the link (m,n) such that: ty,, = min(t;)

3. If tmn <0, then go to step (4)
Else (i.e., tmy > 0 for all m,n), connect to node 1 all nodes not connected yet, and exit.

4. Verify constraints (e.g., does not exceed the maximum weight)
» If satisfied go to step (5)
» Else: tp, = o0 and ty, = o0, go to step (2)

5. Add link (m, n), remove link (m, 1) and update t;; to indicate that m is now connected
to n.
> topn = 00 and tyy, = 00
= if tmj # 00, tmj = Cmj — min(ci1) [k € Cm, where C;= component containing node i]

6. Goto step (2)

Example:
Given a network with five nodes, labelled 1 to 5, and characterized by the following cost
matrix:
1 2 3 4 5
1 - 3 3 5 10
2 3 - 6 4 8
3 3 6 - 3 5
4 5 4 3 - 7
5 10 | 8 5 7 -

Winax=5, W1=0, Wr=2, W3=3, W,;=2, Ws=1.

COE-444-041 Lecture Notes 78

COE-444-041

Lecture Notes

79

5.1.4 Terminal Assignment

5.1.4.1 Problem Statement

» Terminal Assignment: Association of terminals with specific concentrators.
T terminals (stations) 1=1,2,....T
C Concentrators (hubs/switches) j=1,2,...,C
Cij: cost of connecting terminal i to concentrator j
Wj: capacity of concentrator |
Assume that terminal i requires W; units of a concentrator capacity.
Assume that the cost of all concentrators is the same.
> X = 1; if terminal i is assigned to concentrator j.

> Xij = 0; otherwise.

Objective:

COE-444-041 Lecture Notes

5.1.4.2 Augmenting path algorithm

Based on the following observations:

1. Ideally, every terminal is assigned to the nearest concentrator.

2. Terminals on concentrators that are full are moved only to make room for another
terminal that would cause a higher overall cost if assigned to another concentrator.

3. An optimal partial solution with k+1 terminals can be found by finding the least
expensive way of adding the (k+1)™ terminal to the k terminal solution.

Assignment problem:

Given a cost matrix:
» One column per concentrator
» One row per terminal

Assume that:

» Weight of each terminal is 1 (i.e., each terminal consumes exactly one unit of
concentrator capacity)
» A concentrator has a capacity of W terminals (e.g., number of ports)

A feasible solution exists iff T< W * C

Algorithm:

1. Initially, try to associate each terminal to its nearest concentrator

2. If successful in assigning all terminals without violating capacity constraints, then

stop (i.e., an optimal solution is found)

3. Else,
* Repeat
i. Build a compressed auxiliary graph
ii. Find an optimal augmentation
» Until all terminals are assigned

COE-444-041 Lecture Notes

81

Building a compressed auxiliary graph:

U: set of unassociated terminals

T(Y): set of terminals associated with Y

A and A are the start and finish of all augmenting paths

cost, t
Y
cost, t
vi 7~ vz
cost, t, Y2
Y
cost,t, Y
COE-444-041

represents a fully loaded concentrator

Assign t to a fully loaded concentrator Y. (t € U)
cost = c(tY) = min c(xY) for x € U

Move t from a fully loaded concentrator Y1 to another fully
loaded concentrator Y2. (t € T(Y1))
cost =c(tY2) —c(tY1)=min (c(xY2) —c(xY1)) forx € t(Y1])

Move t from Y to a concentrator Y2 with spare capacity. (t € T(Y))
cost = c(tY2) — c(tY)=min (c(xY2) — c(xY)) for x € t(Y)

Assign t to a concentrator Y with spare capacity. (t € U)
cost =c(tY) =min c¢(xY) forx € U

Lecture Notes 82

Example:

COE-444-041

Lecture Notes

83

5.2 Traffic Flow Analysis and Performance Evaluation

5.2.1 Traffic Flow Analysis Objective

> Estimate:

@)
(@)

Delay
Utilization of resources (links)

» Traffic flow across a network depends on:

©)
(@)
©)

Topology
Routing
Traffic workload (from all traffic sources)

» Desirable topology and routing are associated with:

(@)
©)

Low delays
Reasonable link utilization (no bottlenecks)

» Assumptions:

O

O O O O O O

Topology is fixed and stable

Links and routers are 100% reliable

Processing time at the routers is negligible

Capacity of all links is given C = [C;] (in bps [bits per second])
Traffic workload is given I' = [y;] (in pps [packets per second])
Routing is given R = [rji]

Average packet size is 1/p bits.

5.2.2 Queuing Analysis

Projections of performance are made on the basis of either:
» The existing load information, or
» The estimated load for the new environment.

Approaches that could be used:

» Do an after-the-fact analysis based on actual values

» Make a simple projection from existing to expected environment

» Develop an analytic model based on queuing theory

» Program and run a simulation tool

COE-444-041

Lecture Notes

84

5.2.2.1 Queuing Models

» The notation X/Y/N is used for queuing models.
o X = distribution of the interarrival times
o Y = distribution of service times
o N = number of servers

» The most common distributions are:
o G = general independent arrivals or service times
o M =negative exponential distribution

o D = deterministic arrivals or fixed length service

» Example: M/M/1

» Single-server queues

Waiting line
. fquene) Dispatching i
Arrivals discipline Departures
_1 sIvel
> > Servel ‘+-—
% = arrival rate
| " " | Ty = service lime
w = lbems walting p = utilization
T, = waiting time
r = items resident in quening system

'f'.,- = residence (ime

Figure 5.1: Queuing System Structure and Parameters for Single-Server Queue
(Taken from “Queuing Analysis” by William Stallings)

Queue parameters:

A = arrival rate; mean number of arrivals per second

Ts = mean service time for each arrival; amount of time being served, not
counting time waiting in the queue

p = utilization; fraction of time facility (server or servers) is busy

r = mean number of items in system, waiting and being served (residence time)
Tr = mean time an item spends in system (residence time)

w = mean number of items waiting to be served

Tw = mean waiting time (including items that have to wait and items with waiting

time = 0)

COE-444-041 Lecture Notes 85

Basic Queuing relationship:

> p= A*Ts
> r=wtp
» Amax = 1/Ts

» r=»L*Tr (Little’s formula)
» w=MATw (Little’s formula)

> Tr=Tw+Ts

> r=p/(1-p)

» Multiserver queue
N = number of servers
p = utilization of each server

Np = utilization of all servers (= A*Ts)

5.2.2.2 M/M/1 Queues — Application to Networks

» Each link is seen as a service station servicing packets.
A = arrival rate (in pps); mean number of packets that arrive to link i in one second.

nC; = average service rate (in pps); mean number of packets that will get out of the
link 1 in one second. (= 1/ Ts)

> Utilization of link i is:

pi=

COE-444-041 Lecture Notes 86

» Stability condition of a network is:

» The external workload offered to the network is:
'Y =

Where:
v = total workload in packets per second
vjx = workload between source j and destination k&
N = total number of sources and destinations

» The internal workload on link 7 is:
Ai=
Where:
vjx = workload between source j and destination k&
IT; = path followed by packets to go from source j and destination k
» The total internal workload is:

x:

Where:
A = total load on all of the links in the network
Ai=load on link i
L = total number of links

» The average length for all paths is given by:

E[number of links in a path] = A/y

» The average number of items waiting and being served for link 1 is:

ri=

COE-444-041 Lecture Notes 87

» The number of packets waiting and being served in the network can be expressed
as:
7T =

Where:
T = average delay experienced by a packet through the network.

T=

» Ty is the residence time at each queue. If we assume that each queue can be treated
as an independent M/M/1 model (Jackson’s Theorem), then:

Tri =

Where: T is the service time for link i

= ;= data rate on the link (in bps)
= M = 1/p = average packet length in bits

Example:

COE-444-041 Lecture Notes 88

COE-444-041

Lecture Notes

&9

5.3 Network Reliability
5.3.1 Introduction
» A network model is a set of facilities. A facility could be a device or a link.

» A network must contain some slack to allow it to function even if some of its
facilities have failed.

» Any network facility is either:
* Working (p)
» Failing (q = 1-p)
» MTBF: Mean Time Between Failures (f).

» MTTR: Mean Time To Repair (r)

» For any facility i, we’ll know from measurements of f; and r;:
P; = Prob [facility i is working] =

Therefore:

» We assume that all facilities are independent:
P(ij) = Prob|facility i and facility j are working| =

P(ilj) = Prob|[facility i or facility j is working| =

» Simplest measure of network reliability:
P.(G) = Prob[Network is connected]
Where: ¢ stands for the connectivity of the network, and

G stands for the graph representing the network

COE-444-041 Lecture Notes

90

P.(G) = Prob[All nodes are working and there is a spanning tree of
working links]

P(G) =

» Since enumerating all trees in G requires an exponential amount of effort, P.(G) is very
difficult (if not impossible) to compute.

- We seek simpler measures of network reliability.

5.3.2 Reliability of Tree Networks

» A typical enterprise/campus network includes trees:

» Givenatree T:
P.(T) = Prob]A tree network, T, being connected|

= Prob[All components (nodes and links) are working]

P(T) =

» P(T) can also be computed recursively:

P(T) =

Where: T-i is the tree T without node i, and
j 1s the link between node i and the rest of the tree

COE-444-041 Lecture Notes 91

» Given a particular tree with root r:
P.(i) = Prob[node i can communicate with root r]
P.(i) =
Where: j is the link between nodes 1 and k, and
k is the predecessor of node i

Pe(r) =

» The expected number of nodes communicating with the root r is:

E(r)=

» This expression can be computed efficiently for any node as follows:

E(i) = the expected number of nodes communicating with the node 1

E() =

» Ifnodeiis a leaf, then:

E(i) =

Example:

COE-444-041 Lecture Notes

92

COE-444-041

Lecture Notes

93

» The expected number of node pairs communicating through the root r is:

EPR(r) =

Example:

5.4 References

1. “Telecommunications Network Design Algorithms” by Aaron Kershenbaum, 1993

2. “Queuing Analysis” by William Stalling, 2000

COE-444-041 Lecture Notes

94

