5.2 Traffic Flow Analysis and Performance Evaluation

5.2.1 Traffic Flow Analysis Objective

- ➢ Estimate:
 - o Delay
 - Utilization of resources (links)
- > Traffic flow across a network depends on:
 - o Topology
 - Routing
 - Traffic workload (from all traffic sources)
- > Desirable topology and routing are associated with:
 - Low delays
 - Reasonable link utilization (no bottlenecks)
- > Assumptions:
 - Topology is fixed and stable
 - Links and routers are 100% reliable
 - Processing time at the routers is negligible
 - Capacity of all links is given $C = [C_i]$ (in bps [bits per second])
 - Traffic workload is given $\Gamma = [\gamma_{ik}]$ (in pps [packets per second])
 - Routing is given $R = [r_{ik}]$
 - Average packet size is $1/\mu$ bits.

5.2.2 Queuing Analysis

Projections of performance are made on the basis of either:

- ➤ The existing load information, or
- > The estimated load for the new environment.

Approaches that could be used:

- Do an after-the-fact analysis based on actual values
- > Make a simple projection from existing to expected environment
- > Develop an analytic model based on queuing theory
- Program and run a simulation tool

5.2.2.1 Queuing Models

> The notation X/Y/N is used for queuing models.

- \circ X = distribution of the interarrival times
- \circ Y = distribution of service times
- \circ N = number of servers
- > The most common distributions are:
 - \circ G = general independent arrivals or service times
 - \circ M = negative exponential distribution
 - \circ D = deterministic arrivals or fixed length service
- ► Example: M/M/1

➢ Single-server queues

Queue parameters:

 λ = arrival rate; mean number of arrivals per second

 T_s = mean service time for each arrival; amount of time being served, not counting time waiting in the queue

 ρ = utilization; fraction of time facility (server or servers) is busy

 \mathbf{r} = mean number of items in system, waiting and being served (residence time)

Tr = mean time an item spends in system (residence time)

 \mathbf{w} = mean number of items waiting to be served

 T_w = mean waiting time (including items that have to wait and items with waiting time = 0)

Basic Queuing relationship:

- $> \rho = \lambda * T_s$
- \succ r = w+ ρ
- $\succ \lambda_{max} = 1/T_s$
- > $r = \lambda^* Tr$ (Little's formula)
- \succ w = λ*T_w (Little's formula)
- \succ Tr = Tw +Ts
- \succ r = $\rho/(1-\rho)$

> Multiserver queue

- N = number of servers
- ρ = utilization of each server

 $N\rho$ = utilization of all servers (= $\lambda * T_s$)

5.2.2.2 M/M/1 Queues – Application to Networks

Each link is seen as a service station servicing packets.

 λ_i = arrival rate (in pps); mean number of packets that arrive to link i in one second.

 μC_i = average service rate (in pps); mean number of packets that will get out of the link i in one second. (= $1/T_s$)

➢ Utilization of link i is:

 $\rho_i =$

Stability condition of a network is:

> The external workload offered to the network is:

 $\gamma =$

Where:

 γ = total workload in packets per second γ_{jk} = workload between source *j* and destination *k N* = total number of sources and destinations

> The internal workload on link i is:

 $\lambda_i =$

Where:

 γ_{jk} = workload between source *j* and destination *k* Π_{jk} = path followed by packets to go from source *j* and destination *k*

The total internal workload is:

λ=

Where:

 λ = total load on all of the links in the network

 $\lambda_i = \text{load on link } i$

L =total number of links

> The average length for all paths is given by:

E[number of links in a path] = λ/γ

> The average number of items waiting and being served for link i is:

 $\mathbf{r}_i =$

The number of packets waiting and being served in the network can be expressed as:

γ*T =

Where:

T = average delay experienced by a packet through the network.

T =

> T_{ri} is the residence time at each queue. If we assume that each queue can be treated as an independent M/M/1 model (Jackson's Theorem), then:

 $T_{ri} =$

Where: T_{si} is the service time for link i

$T_{si} =$

Where:

- C_i = data rate on the link (in bps)
- $M = 1/\mu$ = average packet length in bits

Example:

5.3 Network Reliability

5.3.1 Introduction

- > A network model is a set of facilities. A facility could be a device or a link.
- A network must contain some slack to allow it to function even if some of its facilities have failed.
- > Any network facility is either:
 - Working (**p**)
 - Failing (q = **1**-**p**)
- ➢ MTBF: Mean Time Between Failures (f).
- MTTR: Mean Time To Repair (r)

> For any facility i, we'll know from measurements of f_i and r_i :

P_i = Prob [facility i is working] =

Therefore:

> We assume that all facilities are independent:

P(ij) = Prob[facility i and facility j are working] =

P(i|j) = Prob[facility i or facility j is working] =

Simplest measure of network reliability:

P_c(G) = Prob[Network is connected]

Where: **c** stands for the connectivity of the network, and **G** stands for the graph representing the network

P_c(G) = **Prob**[All nodes are working and there is a spanning tree of working links]

$$P_c(G) =$$

Since enumerating all trees in G requires an exponential amount of effort, P_c(G) is very difficult (if not impossible) to compute.

 \rightarrow We seek simpler measures of network reliability.

5.3.2 Reliability of Tree Networks

> A typical enterprise/campus network includes trees:

 \triangleright Given a tree T:

P_c(T) = Prob[A tree network, T, being connected] = Prob[All components (nodes and links) are working]

 $P_c(T) =$

- \triangleright **P**_c(**T**) can also be computed recursively:
 - $P_c(T) =$

Where:	T-i is the tree T without node i, and
	j is the link between node i and the rest of the tree

➢ Given a particular tree with root r:

P_c(i) = Prob[node i can communicate with root r]

 $P_c(i) =$

Where: **j** is the link between nodes i and k, and **k** is the predecessor of node i

 $P_c(r) =$

> The expected number of nodes communicating with the root r is:

E(r) =

> This expression can be computed efficiently for any node as follows:

E(i) = the expected number of nodes communicating with the node i

E(i) =

> If node i is a leaf, then:

E(i) =

Example:

> The expected number of node pairs communicating through the root r is:

EPR(r) =

Example:

The expected number of node pairs able to communicate in a tree via the shortest path: EP(r)

Where:

EP(i) = Expected number of pairs communicating in the tree rooted at i

EP(i) =

5.4 References

- 1. "Telecommunications Network Design Algorithms" by Aaron Kershenbaum, 1993
- 2. "Queuing Analysis" by William Stalling, 2000