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Chapter 5 Topology design and analysis 
 
Topics covered: 
Topology design. Network design algorithms. Terminal assignment. Concentrator location. 
Traffic flow analysis and performance evaluation. Network reliability. Network simulation. 
 

5.1 Topology design 

5.1.1 Centralized Network design 
 

 Centralized network: is where all communication is to and from a single central site. 
 

 The “central site” is capable of making routing decisions. 
 Tree topology provides only one path through the center (For reliability, lines between 

other sites can be included) 
 
 
 
 
 
 
 
 
 
 

 Three different problems: 
 

o Multipoint line topology: selection of links connecting terminals to 
concentrators or directly to the center. 

 
o Terminal assignment: association of terminals with specific concentrators. 

 
o Concentrator location: deciding where to place concentrators, and whether or 

not to use them at all. 
 

5.1.2 Finding Trees in Graphs 
 

 Used to design and analyze networks. 
 

 Connect a number of nodes to a central node: 
 

o Node: Hub, Switch, Router, etc. 
 
o Central node: backbone 
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 A tree is a graph with no loops, with only one path between any pair of nodes. 

 
 Trees are minimal networks: provide connectivity without any unnecessary additional 

links: 
 

o Minimally reliable and robust 
 
o Networks are more highly connected (but design starts with a tree) 

 

5.1.2.1 Tree Traversals 
 

 Visit all nodes in a tree: edges are traversed twice. 
 

 First, identify a node as the root 
 

 Assume the tree is directed (outward from the root) 
 

 Two algorithms: 
 

o BFS (Breadth First Search): 
• Nodes closest to root are visited first 
• Implemented using a queue (FIFO) 

 
 
 
 
 
 
 
 
 

o DFS (Depth First Search): 
• Visits an unvisited neighbor of the node just visited. 
• Implemented using a stack (LIFO) 

 
 
 
 
 
 
 
 
 

 Both traversals (BFS and DFS) can be preorder traversals (i.e., visit nodes then 
successors) or post-order traversals (i.e., successors visited first). 

 



COE-444-031 Lecture Notes 71 

 Traversal is generalized to undirected graphs by keeping track of which nodes were 
visited, and not visiting them again. 

 
 
 
 
 

 In a BFS or DFS traversal, edges visited form a tree (if the graph is connected) or a forest 
(if the graph is not connected). 

 
 
 
 

5.1.2.2 Minimum Spanning Trees (MSTs) 
 

 Use DFS to find a spanning tree in a graph, if one exists 
 Arbitrary tree 

 
 Useful to find the “best” tree 

 Minimum Spanning Tree (e.g., minimum total length. Where length is: 
distance, cost, function(delay), function(reliability), etc.) 
 

 If the graph is not connected  minimum spanning forest 
o For n nodes, c components, and e edges, we have: n = c + e 
o For a tree, c = 1. 
 

 DFS will not, in general, find the spanning tree with minimum total cost. 
 

5.1.2.2.1 The Greedy Algorithm 
 

 At each stage, select the shortest edge possible. 
 

 May not find a feasible solution when one exists. 
 

 Efficient and simple to implement  widely used. 
 

 Basis of other more complex and effective algorithms. 
 

 In the case of MST, the greedy algorithm guarantees both optimality and reasonable 
computational complexity. 

 
o Start with empty solution s 
o While elements exist 

• Find e, the best element not yet considered 
• If adding e to s is feasible, add it; if not, discard it. 
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5.1.2.2.2 Kruskal’s Algorithm 
 

 A greedy algorithm for finding MSTs. 
 

 Sort the edges, shortest first and then include all edges which do not form cycles with the 
edges previously selected. 

 
 n: number of nodes 

 
 Algorithm: 

 
1. Sort all edges in ascending order (least cost first) 
 
2. Select among edges not yet selected, the one with the least cost. 

 
3. Add it if it does not create a cycle. 

 
4. If the number of edges selected < n-1, go to step (2), otherwise exit (tree 

completed) 
 

 Complexity: 
 
 
 

 Example: 
 

Given a network with five nodes, labelled A to E, and characterized by the following cost 
matrix: 

 A B C D E
A - 3 3 5 10 
B 3 - 6 4 8 
C 3 6 - 3 5 
D 5 4 3 - 7 
E 10 8 5 7 - 
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5.1.2.2.3 Prim’s Algorithm 
 

 A greedy algorithm for finding MSTs. 
 

 Advantageous if the network is dense. 
 

 Well suited to parallel implementation. 
 

 Algorithm: 
 

1. Start with one node (root node) in the tree 
 
2. Find node i, not in the tree, which is the nearest to the tree. 

 
3. Add node i to the tree and edge e connecting i to the tree. 

 
 Complexity: 

 
 
 

 Example: 
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5.1.3 Constrained/Capacitated MST (CMST) 
 

 The algorithms presented in the previous subsections are called “unconstrained MST 
algorithms” 

o No constraint on flow of information 
o No constraint on the number of ports at each node. 
 

 For the unconstrained spanning tree problem, all these algorithms produce a minimum 
cost spanning tree. 

 
 CMST Problem: Given a central node N0 and a set of other nodes (N1, N2, …, Nn), as et 

of weights (W1, W2, …, Wn) for each node, the capacity of a link, Wmax, and a cost matrix 
Cij = Cost(i,j), find a set of trees T1, T2, …, Tk such that each Ni belongs to exactly one Tj 
and each Tj contains N0. 

 
 
 
 
 
 

 Objective: Find a tree of minimum cost and which satisfies a number of constraints such 
as: 

o Flow over a link 
o Number of ports 

 
 Example: 

o Assume we are allowed to use one type of links only that can accommodate a 
maximum of 5 units of flow per unit time. 

 
o Assume that the flow generated from each node to the central node (a1) is as 

follows: a1=0, a2=2, a3=3, a4=2, a5=2 (in units/time_unit). 
 
 
 
 
 
 
 
 
 
 

o Effect of constraint violation: 
• As a result, a queue will build up since node 3 can service only 5 

units/time_unit. If node 3 does not have a large queue to accommodate all 
coming units, some units will be lost. So, these units are retransmitted, 
which may cause the network to collapse. 
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 The CSMT problem is NP-hard (i.e., cannot be solved in polynomial time) 
 Resort to heuristics (approximate algorithms) 

 
 These heuristics will attempt to find a good feasible solution, not necessarily the best, 

that: 
o Minimizes the cost 
o Satisfies all the constraints 

 
 Well-known heuristics: 

o Kruskal 
o Prim 
o Esau-Williams 

5.1.3.1 Kruskal’s Algorithm for CMST 
 

 Sort all edges in ascending order, e  0. 
 
1. Select edge with minimum cost (from edges not yet selected) 

 
2. If it satisfies constraints (i.e., no cycles and no violation of flows on links) 

 
o Then: add it to the tree, e  e + 1 

 Else: go to step (2) 
 

 If (e = n – 1) then exit, else go to step (2) 
 
Example: 
 

Given a network with five nodes, labelled A to E, and characterized by the following cost 
matrix: 

 A B C D E
A - 3 3 5 10 
B 3 - 6 4 8 
C 3 6 - 3 5 
D 5 4 3 - 7 
E 10 8 5 7 - 
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5.1.3.2 Prim’s Algorithm for CMST 
 

1. Start with one node (root node) in the tree. 
 
2. Find node i, not in the tree, which is the nearest to the tree 

 
3. Add node i to the tree and edge e connecting i to the tree if it satisfies constraints (i.e., 

no cycles and no violation of flows on links) 
 
 

Example: 
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5.1.3.3 Esau-Williams Algorithm for CMST 
 

Node 1 is the central node. 
 

1. Compute tij = cij – ci1 for all i, j. 
tij: is the tradeoff of connecting i to j or i directly to the root. 

 If (tij < 0)  connect i to j  
 If (tij ≥ 0)  connect i directly to the root 

 
2. Select the link (m,n) such that: tmn = min(tij) 
 
3. If tmn < 0, then go to step (4) 

Else, connect all the nodes not connected yet to the node 1, and exit. 
 
4. Verify constraints (e.g., exceeds the maximum weight) 

 If satisfied go to step (5) 
 Else: tmn = ∞, go to step (2) 

 
5. Add link (m,n) and update tij to indicate that m is now connected to n. 

 tmn = ∞, 
 tij = cij – min(ck1) [k ∈ Ci] if tij ≠ ∞. 

 
6. If tree has (n-1) links then exit, 

Else, go to step (2) 
 

Example: 
 

Given a network with five nodes, labelled A to E, and characterized by the following cost 
matrix: 

 A B C D E
A - 3 3 5 10 
B 3 - 6 4 8 
C 3 6 - 3 5 
D 5 4 3 - 7 
E 10 8 5 7 - 
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5.1.4 Terminal Assignment 

5.1.4.1 Problem Statement 
 

 Terminal Assignment: Association of terminals with specific concentrators. 
 

Given: 
 

• T terminals (stations)    i = 1, 2, …, T 
 

• C Concentrators (hubs/switches) j = 1, 2, …, C 
 

• Cij: cost of connecting terminal i to concentrator j 
 

• Wj: capacity of concentrator j 
 
Assume that terminal i requires Wi units of a concentrator capacity. 
 
Assume that the cost of all concentrators is the same. 
 

 xij = 1; if terminal i is assigned to concentrator j. 
 

 xij = 0; otherwise. 
 
 

Objective: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



COE-444-031 Lecture Notes 80 

5.1.4.2 Augmenting path algorithm 
 
Based on the following observations: 
 
1. Ideally, every terminal is assigned to the nearest concentrator. 
 
2. Terminals on concentrators that are full are moved only to make room for another 

terminal that would cause a higher overall cost if assigned to another concentrator. 
 

3. An optimal partial solution with k+1 terminals can be found by finding the least 
expensive way of adding the (k+1)th terminal to the k terminal solution. 

 
 

Assignment problem: 
 
Given a cost matrix: 

 One column per concentrator 
 One row per terminal 

 
 
 
 
 
 
 
 
 
 
Assume that: 

 Weight of each terminal is 1 (i.e., each terminal consumes exactly one unit of 
concentrator capacity) 

 A concentrator has a capacity of W terminals (e.g., number of ports) 
 

A feasible solution exists iff T ≤ W * C 
 
 
Algorithm: 
 

1. Initially, try to associate each terminal to its nearest concentrator 
 
2. If successful in assigning all terminals without violating capacity constraints, then 

stop (i.e., an optimal solution is found) 
 

3. Else, 
• Repeat 

i. Build a compressed auxiliary graph 
ii. Find an optimal augmentation 

• Until all terminals are assigned 
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Building a compressed auxiliary graph: 
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Example: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


