
COE 205 Lab Manual Experiment No 8

Experiment No 8

String Handling Instructions

Introduction:

In this experiment you will deal with string handling instructions, such as reading a
string, moving a string from one memory location to another, and comparing two
strings.

You will need some of the programs developed in previous experiments to rewrite
them in a more structured way.

Objectives:

1- More on Macros, Subroutine Calls and Stack operation.
2- String Handling Instructions.
3- Introduction to the video display.

References:

- Lecture notes.

String Handling Instructions:

String handling instructions are very powerful because they allow the
programmer to manipulate large blocks of data with relative ease. Block data
manipulation occurs with the string instructions indicated in Table 8. 3, Table 8. 4 and
Table 8. 4. Each of the string instructions indicated in Table 8. 2 define an operation
for one element of a string only. Thus, these operations must be repeated to handle a
string of more than one element. For repeating prefixes, see Table 8. 4.

String handling instructions use the direction flag, SI and DI registers. The

Direction Flag (DF) selects auto-increment or auto-decrement operation for the DI
and SI registers during string operations. Whenever a string instruction transfers a
byte, the contents of SI and/or DI increment or decrement by 1. If a word is
transferred, the contents of SI and/or DI increment or decrement by 2.

Format Operation Mode Effect
CLD Clear DF; (DF)

� 0
Auto Increment SI � SI + 1; DI � DI

+1
STD Set DF; (DF)

� 1
Auto Decrement SI � SI - 1; DI � DI -

1

Table 8. 1: Auto- incrementing and decrementing in string instructions

COE 205 Lab Manual Experiment No 8

The LODS Instruction:

LODS loads AL or AX with data stored at the data-segment offset address indexed by
the SI register. The LODSB causes a byte to be loaded into AL, and the LODSW
causes a word to be loaded into AX.

The STOS Instruction:

The STOS instruction stores AL or AX at the extra-segment memory location
addressed by the DI register, (in fact ES:DI). The STOSB stores a byte in AL at the
extra-segment memory indicated by DI. The STOSW stores a word in AX at the
extra-segment memory indicated by DI. Program 8.1 gives an example on the use of
STOS instruction to clear the video memory.

The MOVS Instruction:

The MOVS instruction transfers data from one memory location to another. This is
the only memory-to-memory transfer allowed in the Intel family of Microprocessors.
The MOVS instruction transfers a byte or a word from the data-segment location
addressed by SI to the extra-segment location addressed by DI. The pointers then
increment or decrement as indicated by the direction flag (Table 8. 2).

Mnemonics Meaning Format Operation
As per Direction Flag

Flags
affected

LODS Load
string

LODSB
LODSW

(AL or AX) � ((DS)0+(SI))
(SI) � (SI) ± 1 or 2

None

STOS Store
string

STOSB
STOSW

((ES)0 + (DI)) � (AL or AX))
(DI) � (DI) ± 1 or 2

None

MOVS
Move
string

MOVSB
MOVSW

((ES)0 + (DI)) � ((DS)0+(SI))
(SI) � (SI) ± 1 or 2
(DI) � (DI) ± 1 or 2

None

Note: B stands for Byte and W for Word.

Table 8. 2: Basic String Handling Instructions

Example of a move string:

Below is an example of the MOVS instruction. The same example is repeated later
but with the use of the REP prefix.

 MOV AX, @DATA
 MOV DS, AX
 MOV ES, AX ; Make ES = DS
 LEA SI, BLK1 ; Source address for block1
 LEA DI, BLK2 ; Destination address for block2

MOV CX, N ; N = number of bytes to move
CLD ; Set Auto-Increment mode

NEXT: MOVSB ; Move one byte at a time
 LOOP NEXT

COE 205 Lab Manual Experiment No 8

String Comparisons:

In order to allow a section of memory to be compared against a constant or another
section of memory, the String Scan instruction SCAS (Table 8. 3) is used. The SCAS
instruction compares the content of the AL register with a byte block of memory, or
the AX register with a word block of memory. The opcode used for byte comparison
is SCASB and for word comparison is SCASW (Table 8. 3).

The Compare Strings Instruction (CMPS) compares two sections of memory data as
bytes (CMPSB), or words (CMPSW). The contents of the data-segment memory
indicated by SI are compared with the contents of the data-segment memory indicated
by DI. The CMPS instruction increment both SI and DI if the direction flag (DF) is
zero, or decrements both of them if DF is set to one.

The CMPS instruction is normally used with either the REPE or REPNE prefix.
Alternates to these prefixes are REPZ (repeat while zero) and REPNZ (repeat while
not zero), though REPE and REPNE are more common (Table 8. 4).

Mnemonics Meaning Format Operation Flags

affected
CMPS Compare

strings

CMPS
B
CMPS
W

Set flags as per:
((ES)0 + (SI)) – ((ES)0+(DI))
(SI) � (SI) ± 1 or 2
(DI) � (DI) ± 1 or 2

CF,PF,AF,
ZF,SF,OF

SCAS Scan
string

SCASB
SCAS
W

Set flags as per:
(AL or AX) – ((ES)0+(DI))
(DI) � (DI) ± 1 or 2

CF,PF,AF,
ZF,SF,OF

Note: B stands for Byte and W for Word.

Table 8. 3: String Compare Instructions

Repeat Prefixes:

Table 8. 4 summarizes the repeat prefixes to be used with the string instructions given
in Table 8. 2 and Table 8. 3.

The REP prefix:

The REP prefix is added to any data transfer or compare instruction, except the LODS
instruction. The REP prefix causes the CX register to decrement by 1 each time the
string instruction executes. If CX reaches 0, the instruction terminates and the
program continues with the next sequential instruction. The following example
illustrates the of a move string using the REP prefix:

 MOV AX, @DATA
 MOV DS, AX
 MOV ES, AX ; Make ES = DS
 CLD ; Set Auto-Increment mode
 MOV CX, 20H
 MOV SI, OFFSET DATA1

COE 205 Lab Manual Experiment No 8

 MOV DI, OFFSET DATA2
 REP MOVSB

Prefix

Used with

Meaning

REP MOVS
STOS

Repeat while not end of string
CX ≠ 0

REPE
REPZ

CMPS
SCAS

Repeat while not end of string and strings are
equal
CX ≠ 0 and ZF = 1

REPNE
REPNZ

CMPS
SCAS

Repeat while not end of string
And strings are not equal
CX ≠ 0 and ZF = 0

Note: B stands for Byte and W for Word.

Table 8. 4: Prefixes fo use with basic string instructions

Examples on the use of the SCAS and CMPS instructions:

The following example shows how to search a memory section of 100 bytes in length
and starting at location BLOCK. The program searches if any location contains the
value 45H.

 MOV DI, OFFSET BLOCK ;address data
 CLD ;auto-increment
 MOV CX, 100 ;load counter
 MOV AL, 45H ;AL = 45H
 REPNE SCASB ;search

The next example illustrates a short procedure that compares two sections of memory
searching for a match. The CMPSB instruction is prefixed with a REPE. This causes
the search to continue as long as an equal condition exists. When the CX register
becomes 0, or an unequal condition exists, the CMPSB instruction stops execution.
After the CMPSB instruction ends, the CX register is zero or the flags indicate an
equal condition when the two strings match. If CX is not zero or the flags indicate a
not-equal condition, the strings do not match.

 MATCH PROC FAR

MOV SI, OFFSET LINE
MOV DI, OFFSET TABLE
CLD
MOV CX, 10
REPE CMPSB
RET

MATCH ENDP

COE 205 Lab Manual Experiment No 8

Pre Lab Work:

1. Read the manual and understand how the string instructions work.
2. Write programs 8.1, 8.2 and 8.3 and check their functionality.
3. Bring your work to the lab.

Lab Work:

1- Show programs 8.1, 8.2 and 8.3 to your lab instructor.
2- Clear the screen using program 8.2 and write the word BUG somewhere

on the display. Run program 8.3 and check that it really detects the word
BUG on the screen. Clear the screen with program 8.2 and check again
with program 8.3.

3- Modify program 8.3 so that it looks for the word MOV on the display, and
counts the number of times it occurs. Call it program 8.4.

4- Edit one of your assembly language programs on the screen using the
following:

TYPE program.asm

5- Check with program 8.4, how many times you have the word
MOV on the screen.

Lab Assignment:

Rewrite the program that reads a password without echo from the keyboard in a more
structured way, using Macros and Procedures. To check for password validity use the
string handling instructions CMPSB or SCASB.

COE 205 Lab Manual Experiment No 8

TITLE “Program 8.1”
;This program clears the video text display
.MODEL TINY
.CODE
.STARTUP

 CLD ;select increment mode
 MOV AX,0B800H ;address segment B800H
 MOV ES,AX
 ;Video Text Memory = B800:0000
 MOV DI,0000 ;address offset 0000
 MOV CX,25*80 ;load count: 25 lines per 80 columns
 MOV AX,0720H ;load data AH= 07H = color: white text on black

;background. AL = 20H = space

 REP STOSW ;clear the screen

.EXIT ;exit to DOS
END ;end of file

;---

TITLE “Program 8.2”
;This program scrolls the display one line up

.MODEL TINY ;select TINY model
.CODE ;indicate start of CODE segment
.STARTUP ;indicate start of program

CLD ;select increment

 MOV AX,0B800H ;load ES and DS with B800
 MOV ES, AX
 MOV DS, AX

 MOV SI,160 ;address line 1: 160 = 2 * 80
 MOV DI,0 ;address line 0
 MOV CX,24*80 ;load count
 REP MOVSW ;scroll screen

 MOV DI,24*80*2 ;clear bottom line
 MOV CX,80
 MOV AX,0720H
 REP STOSW
.EXIT ;exit to DOS
END ;end of file

COE 205 Lab Manual Experiment No 8

TITLE “Program 8.3”
;This program tests the video display for the word BUG
;if BUG appears anywhere on the display the program display Y
;if BUG does not appear, the program displays N
;
 .MODEL SMALL ;select model SMALL
 .DATA ;indicate start of DATA segment
DATA1 DB 'BUG' ;define BUG
 .CODE ;indicate start of CODE segment
 .STARTUP ;indicate start of program
 MOV AX,0B800H ;address segment B800 with ES
 MOV ES,AX
 MOV CX,25*80 ;set count
 CLD ;select increment
 MOV DI,0 ;address first display position
L1:
 MOV SI,OFFSET DATA1 ;address BUG
 PUSH DI ;save display address
 CMPSB ;test for B
 JNE L2 ;if display is not B
 INC DI ;address next display position
 CMPSB ;test for U
 JNE L2 ;if display is not U
 INC DI ;address next display position
 CMPSB ;test for G
 MOV DL,'Y' ;load Y for possible BUG
 JE L3 ;if BUG is found
L2:
 POP DI ;restore display address
 ADD DI,2 ;point to next display position
 LOOP L1 ;repeat until entire screen is tested
 PUSH DI ;save display address
 MOV DL,'N' ;indicate N if BUG not found
L3:
 POP DI ;clear stack
 MOV AH,2 ;display DL function
 INT 21H ;display ASCII from DL
 .EXIT ;exit to DOS
 END ;end of file

	Experiment No 8
	String Handling Instructions
	
	
	LODS loads AL or AX with data stored at the data-segment offset address indexed by the SI register. The LODSB causes a byte to be loaded into AL, and the LODSW causes a word to be loaded into AX.
	
	
	Meaning

