
COE 205 Lab Manual Experiment No 5

Experiment No 5
Arithmetic and Logical Instructions

Introduction:
In this experiment, you will be introduced to the logic instructions of the 8086 family of
processors. You will also deal with the conversion of numbers from one radix to another.
Objectives:

1- Logic Instructions
2- Base conversion

References:
• Textbook:
• Lecture notes.

Arithmetic Instructions:
The following table (Table 5. 1) summarizes the arithmetic instructions used with the
8086 microprocessor. It also shows the effect of each instruction, a brief example, and the
flags affected by the instruction. The “*” in the table means that the corresponding flag
may change as a result of executing the instruction. The “-“ means that the corresponding
flag is not affected by the instruction, whereas the “?” means that the flag is undefined
after executing the instruction.

Flags Affected
Type

Instr
uctio
n

Example Meaning O
F

S
F

Z
F

A
F

P
F

C
F

ADD ADD AX,7BH AX ← AX + 7B * * * * * *
ADC ADC AX,7BH AX ← AX + 7B +CF * * * * * *
INC INC [BX] [BX]←[BX]+1 * * * * * -

Addition

DAA DAA ? * * * * *
SUB SUB CL,AH CL ← CL – AH * * * * * *
SBB SBB CL,AH CL ← CL – AH – CF * * * * * *
DEC DEC DAT [DAT] ← [DAT] – 1 * * * * * -
DAS DAS ? * * * * *

Subtraction

NEG NEG CX CX ← 0 – CX * * * * * *
MUL MUL CL

MUL CX
AX ← AL * CL
(DX,AX) ← AX* CX

* ? ? ? ? *Multiplication

IMU
L

IMUL BYTE PTR X
IMUL WORD PTR
X

AX ← AL * [X]
(DX,AX) ← AX* [X]

* ? ? ? ? *

DIV DIV WORD PTR X AX ← Q(([DX,AX])/[X])
DX ←R(([DX,AX])/[X])

? ? ? ? ? ? Division
IDIV IDIV BH AL ← Q(AX/BH)

AH ←R(AX/BH)
? ? ? ? ? ?

CBW CBW AH ← MSB(AL) - - - - - - Sign
Extension CWD CWD DX ← MSB(AX) - - - - - -

Table 5. 1:: Summary of Arithmetic Instructions of the 8086
microprocessor

COE 205 Lab Manual Experiment No 5

Notes:

The DAA (Decimal Adjust after Addition) instruction allows addition of numbers
represented in 8-bit packed BCD code. It is used immediately after normal addition
instruction operating on BCD codes. This instruction assumes the AL register as the
source and the destination, and hence it requires no operand. The effect of DAS (Decimal
Adjust after Subtraction) instruction is similar to that of DAA, except the fact that it is
used after performing a subtraction.

CBW and CWD are two instructions used to facilitate division of 8 and 16 bit signed
numbers. Since division requires a double-width dividend, CBW converts an 8-bit signed
number (in AL), to a word, where the MSB of AL register is copied to AH register.
Similarly, CWD converts a 16-bit signed number to a 32-bit signed number (DX,AX).

Logical Instructions:

Logic shift and rotate instructions are called bit manipulation operations. These
operations are designed for low-level operations, and are commonly used for low-level
control of input/output devices. The list of the logic operations of the 8086 is given in
Table 5.1, along with examples, and the effect of these operations on the flags. The “*” in
the table means that the corresponding flag may change as a result of executing the
instruction. The “-” means that the corresponding flag is not affected by the instruction,
whereas the “?” means that the flag is undefined after executing the instruction.

Flags
Instruction Example Meaning

OF SF ZF AF PF

AND AND AX, FFDFH AX ← AX AND FFDFH 0 * * ? *
OR OR AL, 20H AL ← AL OR 20H 0 * * ? *
XOR XOR NUM1, FF00 [NUM1]←[NUM1]XOR FF00 0 * * ? *
NOT NOT NUM2 _______

[NUM2]←[NUM2]
- - - - -

Table 5.2: Summary of the Logic Instructions of the 8086 Microprocessor

The logic operations are the software analogy of logic gates. They are commonly used to
separate a bit or a group of bits in a register or in a memory location, for the purpose of
testing, resetting or complementing. For example, if b is the value of a certain bit in a
number. The related effects of the basic operations on a single bit are indicated in Table
5.3:

COE 205 Lab Manual Experiment No 5

Operation Effect
b AND 0 = 0 Reset the bit
b OR 1 = 1 Set the bit
b XOR 1 = b Complement the bit
b XOR 0 = b -

Table 5.3: Effects on bits of the basic logic instructions

Byte manipulations for reading and displaying purposes:

1 / To put two decimal digits into the same byte use the following:

 MOV AH, 01H

INT 21H
SUB AL, 30H
MOV CH, AL ; Read high digit e.g. 8

MOV AH, 01H
INT 21H
SUB AL, 30H
MOV CL, AL ; Read low digit e.g. 3

 MOV AL, 10000B ; Use MUL by 10000B to shift left by 4 bits
 MUL CH ; Shift AL 4 bits to the left
 XOR AH, AH ; Clear AH

OR AL, CL ; Result in AL � 83

If we want to perform addition:

; If AL contains the first number in BCD format

 ; and CL contains the second number in BCD format
 ADD AL, CL
 DAA ; Decimal adjust
 ; New result in AL in BCD format
 MOV CL, AL
 ; Number in CL register. See next how to display it as decimal number.

COE 205 Lab Manual Experiment No 5

2 / To display a number in BCD format use the following:

 ; The number is in the CL register:
 MOV AL, CL ; Move CL to AL

XOR AH, AH ; Clear AH
 MOV BL, 10000B
 DIV BL ; Shift AX 4 bits to the right
 AND AL, 0FH ; Clear 4 high nibbles of AL
 ADD AL, 30H ; Convert to character

; Now Display AL as high digit first
 MOV AL, CL ; Read number again

AND AL, 0FH ; Clear 4 high nibbles of AL
 ADD AL, 30H ; Convert to character
 ; Now Display AL as low digit second

Displaying Data in any Number Base r:

The basic idea behind displaying data in any number base is division. If a binary number
is divided by 10, and the remainder of the division is saved as a significant digit in the
result, the remainder must be a number between zero and nine. On the other hand, if a
number is divided by the radix r, the remainder must be a number between zero and (r-1).
Because of this, the resultant remainder will be a different number base than the input
which is base 2. To convert from binary to any other base, use the following algorithm.

Algorithm:

1. Divide the number to be converted by the desired radix (number base r).
2. Save the remainder as a significant digit of the result.
3. Repeat steps 1 and 2 until the resulting quotient is zero.
4. Display the remainders as digits of the result.

Note that the first remainder is the least significant digit, while the last
remainder is the most significant one.

COE 205 Lab Manual Experiment No 5

Pre Lab Work:

1. Study program 5.2, and explain how base conversion is performed?
2. Write, assemble and link program 5.1. You will run it in the lab using

CodeView.
3. Write, assemble, link and run program 5.2.
4. Modify the program so that it prompts the user for the RADIX and the

number NUM to be converted. Call the new program prog-5.3.
5. Write a program that converts from decimal to hexadecimal. Name it

Prog-5.4.
6. Bring your work to the lab.

Lab Work:

1- Use CodeView to trace program 5.1. Fill in table 5.3. Notice any changes in
the status flags, and explain them.

2- Run program 5.2, and see what value is displayed.
3- Change the value of the variable NUM and see the output value.
4- Now change the value of RADIX and see the value displayed.
5- Write a program that prompts the user to enter two numbers of 4 digits each.

Converts these numbers to hexadecimal. Then calculates the sum, the
difference of the two numbers, and finally displays the result in decimal
format. Name it program 5.5.

6- Show all your work to the instructor.
7- Submit all your work at the end of the lab session.

Lab Assignment:

Write a program that reads two binary numbers of 8 digits each, stores them inside the
internal registers. Multiply the two numbers using a simple MUL operation, and display
the result in decimal format.

To ease bit manipulation and shifting, use division and multiplication by 2, to perform
right shift and left shift.

COE 205 Lab Manual Experiment No 5

TITLE “Program 5.1: Logic Instructions”
; This program shows the effect of the logic instructions

.MODEL SMALL
.STACK 200
.DATA

NUM1 DW 0FA62H
 NUM2 DB 94H
.CODE
.STARTUP

 MOV AX, NUM1 ;load AX with number NUM1

AND AX, 0FFDFH ;Reset 6th bit of AX
OR AL, 20H ;Set 6th bit of AL

 XOR NUM1, 0FF00H ;Complement the high order byte of
 ; NUM1
 NOT NUM2 ;Complement NUM2
 XOR AX, AX ;Clear AX
 MOV AX, NUM1
 AND AX, 0008H ; Isolate bit 4 of NUM1
 XOR AX, 0080H ;Complement 4th bit of AX
.EXIT
END

Fill in table 5.3 while running the above program using CodeView.

Destination Content Status Flags
Statement

 Before After O
F

D
F

I
F

S
F

Z
F

A
F

P
F

C
F

1. MOV AX, NUM1
2. AND AX, 0FFDFH
3. OR AL, 20H
4. XOR NUM1, 0FF00H
5. NOT NUM2
6. XOR AX, AX
7. MOV AX, NUM1
8. AND AX, 0008H
9. XOR AX, 0080H

Table 5.4: Effects of Executing Program 5.1

COE 205 Lab Manual Experiment No 5

TITLE “Lab Exp. # 5 Program # 5.2”
; This program converts a number NUM from Hexadecimal,
; to a new numbering base (RADIX).

.MODEL SMALL
.STACK 200
.DATA

RADIX DB 10 ;radix: 10 for decimal
NUM DW 0EFE4H ;the number to be converted
 ;put here any other number.

 ;Note that: 0EFE4H = 6141210
TEMP DB 10 DUP(?) ;Used to simulate a stack

.CODE
.STARTUP

MOV AX, NUM ;load AX with number NUM
;display AX in decimal

 MOV CX, 0 ;clear digit counter
 XOR BH, BH ;clear BH
 MOV BL, RADIX ;set for decimal
 XOR SI, SI ;Clear SI register
DISPX1:
 MOV DX, 0000 ;clear DX
 DIV BX ;divide DX:AX by 10
 MOV TEMP[SI], DL ;save remainder
 INC SI
 INC CX ;count remainder
 OR AX, AX ;test for quotient of zero
 JNZ DISPX1 ;if quotient is not zero
 DEC SI

DISPX2:
 MOV DL, TEMP[SI] ;get remainder
 MOV AH, 06H ;select function 06H
 ADD DL, 30H ;convert to ASCII
 INT 21H ;display digit
 DEC SI
 DEC CX ;repeat for all digits
 JNZ DISPX2
.EXIT ;exit to dos
END

	Experiment No 5
	Arithmetic and Logical Instructions
	
	
	
	
	
	Type
	
	Instruction

