
COE 205 Lab Manual Experiment No 1

COE Department KFUPM (2000) 1

Experiment No 1

Introduction to Assembly Language Programming

Introduction:

The aim of this experiment is to introduce the student to assembly language
programming, and the use of the tools that he will need throughout the lab
experiments. This first experiment let the student use the DOS Debugger and the
Microsoft Macro Assembler (MASM). MASM related tools are introduced; these
include the Programmer’s WorkBench (PWB) and CodeView (CV). Such tools are
interactive means for writing linking, and debugging assembly language programs.

Objectives:

1- Use of the Dos Debugger program
2- Introduction to the Microsoft Macro Assembler (MASM)
3- Use of the PWB, and Code View (CV).
4- General structure of an assembly language program
5- Introducing Data representation in assembly

Overview:

In general, programming of a microprocessor usually takes several iterations before
the right sequence of machine code instructions is written. The process, however, is
facilitated using a special program called an “Assembler”. The Assemble r allows the
user to write alphanumeric instructions, or mnemonics, called Assembly Language
instructions. The Assembler, in turn, generates the desired machine instructions from
the Assembly Language instructions.

Assembly Language programming consists of the following steps:

 STEP PRODUCES
1 Editing Source File
2 Assembling Object File
3 Linking Executable File
4 Executing Results

Table 1.1: Assembly Language Programming Phases

COE 205 Lab Manual Experiment No 1

COE Department KFUPM (2000) 2

Assembling the program:

The assembler is used to convert the assembly language instructions to machine code.
It is used immediately after writing the Assembly Language program. The assembler
starts by checking the syntax, or validity of the structure, of each instruction in the
source file. If any errors are found, the assembler displays a report on these errors
along with a brief explanation of their nature. However, if the program does not
contain any errors, the assembler produces an object file that has the same name as the
original file but with the “obj” extension.

Linking the program:

The linker is used to convert the object file to an executable file. The executable file is
the final set of machine code instructions that can directly be executed by the
microprocessor. It is different than the object file in the sense that it is self -contained
and re-locatable. An object file may represent one segment of a long program. This
segment can not operate by itself, and must be integrated with other object files
representing the rest of the program, in order to produce the final self -contained
executable file.

In addition to the executable file, the linker can also generate a special file called the
“map” file. This file contains information about the start, end, and the length of the
stack, code, and data segments. It a lso lists the entry point of the program.

Executing the program

The executable file contains the machine language code. It can be loaded in the RAM
and be executed by the microprocessor simply by typing, from the DOS prompt, the
name of the file followed by the Carriage Return Key (Enter Key). If the program
produces an output on the screen, or a sequence of control signals to control a piece of
hardware, the effect should be noticed almost immediately. However, if the program
manipulates data in memory, nothing would seem to have happened as a result of
executing the program.

Debugging the program

The Debugger can also be used to find logical errors in the program. Even if a
program does not contain syntax errors it may not produce the desired results after
execution. Logical errors may be found by tracing the action of the program. Once
found, the source file should be reedited to fix the problem, then re -assembled and re-
linked. A special program called the “Debugger” is designed for that purpose.

The debugger allows the user to trace the action of the program, by single stepping
through the program or executing the program up to a desired point, called break
point. It also allows the user to inspect or change the contents of the microprocessor
internal registers or the contents of any memory location.

COE 205 Lab Manual Experiment No 1

COE Department KFUPM (2000) 3

The DOS-Debugger:

The DOS “Debug” program is an example of a simple debugger that comes with MS-
DOS. Hence, it is available on any PC. It was initially designed to give the user the
capability to trace logical errors in executable files. It allows the user to take an
existing executable file and unassemble it, i.e. convert it to assembly language. Also,
it allows the user to write assembly language instructions directly, and then convert
them to machine language. The program is simple and easy to use, but offers limited
capabilities, which make it unsuitable for serious Assembly language programming.

Below, are summarized the basic DOS-Debugger commands.

COMMAND SYNTAX
Assemble A [address]
Compare C range address
Dump D [range]
Enter E address [list]
Fill F range list
Go G [=address] [addresses]
Hex H value1 value2
Input I port
Load L [address] [drive] [first sector] [number]
Move M range address
Name N [pathname] [argument list]
Output O port byte
Proceed P [=address] [number]
Quit Q
Register R [register]
Search S range list
Trace T [=address] [value]
Unassemble U [range]
Write W [address] [drive] [first sector] [number]

Table 1.2: Common DOS-Debug commands

MS-MASM:

Microsoft’s Macro Assembler (MASM) is an integrated software package written by
Microsoft Corporation for professional software developers. It consists of an editor,
an assembler, a linker and a debugger (CodeView). The programmer’s workbench
combines these four parts into a user-friendly programming environment with built in
on line help.

COE 205 Lab Manual Experiment No 1

COE Department KFUPM (2000) 4

The following are the steps used if you are to run MASM from DOS.

 COMMAND FILE NAME
1 Edit, any editor will do Name.asm
2 Masm Filename Name.obj
3 Link Filename Name.exe
4 Filename
 Note: Steps 2 and 3 may be done in one

single command: ML filename.asm
Name.asm and
Name.obj

Table 1.3: Assembly Language Programming Phases

MS-PWB:

The PWB allows the user to define a project that may contain one or more files. Then,
the user may select and save all the necessary assembling, linking, and debugging
options for that project. Once these options are set, the user need not set them again
for that project. The PWB allows the user to edit, assemble, run, or debug his program
without leaving the PWB environment. It also allows the user to get help on any
keyword by pointing to the keyword and pressing the F1 key.

Notes on the use of MS-MASM:

MASM may be run under DOS environment, or through PWB.

Running MASM and CodeView Debugger from the MSDOS prompt:

If you don't like the integrated PWB, you might run just the necessary programs from
the MSDOS prompt. Here are the steps, assuming that your program is called "proj":

1. Open a DOS window.
2. Set the PATH so that the MASM programs are available

The MASM programs are on the E drive; set the path so that DOS can find
them. This only needs to be done once each time you open a MSDOS prompt.
 set PATH=%PATH%;E:\masm611\bin; E:\masm611\binr

3. Use a Text Editor to Edit the .ASM File
Create your file using one of the following programs:
 notepad proj.asm
 wordpad proj.asm
 edit proj.asm

Make sure it has a .ASM ending. Also, be sure you are doing your work on the
A: drive, or on the D:\WORKAREA, and not in the C:\WINDOWS directory,
or other drives.

4. Run the Compiler/Linker to generate an .EXE file from the .ASM file
ml /Fl /Zi proj.asm

COE 205 Lab Manual Experiment No 1

COE Department KFUPM (2000) 5

Make sure you use the two switches: /Fl creates a listing (.LST) file (the
letter to the right of the F is a lower-case L); /Zi makes the finished product
compatible with the CodeView debugger.
You'll be notified of any errors with your program, and error statements
should be placed in your .LST file (proj.lst in this case).

5. Run the Program
Your final program (if there were no errors in the previous step) will have a
.EXE ending. To just run it, type:
 proj

If you want to use the CodeView debugger to examine the instructions,
registers, etc.:
 cv proj
This brings up the regular full-screen version of CodeView.

Running MASM and CodeView PWB:

The basic steps for creating, building, and debugging an assembly language program
are given below. The examples given in this first session are very simple; their main
purpose is to show how o uses the PWB environment.
A project is a complete set of files needed to define and build an assembly language
program. The source language files for your programs are, of course, part of this
project, but also there are listing files, and symbol table files for debugging, and files
giving directions for building your program.
It is best to create a separate folder to contain the project files for each programming
assignment. You should copy this folder on a floppy disk for later use.

1. Create a folder for your new project. For the first assignment, the folder name
could be lab1.

2. Copy any files that are needed from your floppy disk into your folder.
3. Run PWB.EXE by double clicking on the file or its shortcut in the

C:\MASM611\BIN folder. The shortcut may be copied and the copy moved to
the desktop to make it easier to find the PWB.

4. Once the PWB is running (and the DOS window appears), you may create a
new project using the project menu. Type the correct path to the new project
folder with project name and press the set project template button. Select
Runtime support: None , Project Templates: DOS:EXE , and press OK.

5. You don't have any program files to add to the project yet, so click save list
when the add file window appears.

6. Under the Options menu, select build options . Select Use Debug Options.
Select OK.

7. Using the Options menu:language options:MASM, select Set Debug
Options. Check the boxes that will create a listing file with source, machine
language, and symbol table: Generate Listing File, List Generated
Instructions, Include all Source Lines, CodeView Debugger. Press OK.

8. Using the Options menu:link options, select CodeView debugger, debug
options . Press the additional debug options "button" and select Full map
output. This will give you a link map that tells where each program component
will be loaded. Select OK.

COE 205 Lab Manual Experiment No 1

COE Department KFUPM (2000) 6

9. Select new under the file menu to get an editor window for your program.
Enter the program. Save your program naming it with a .ASM suffix, e.g. :
P11.ASM

10. Select edit project from the project menu, and add your new assembly
program into the project list. Save the list.

11. Start the debugger, running your program, by selecting debug from the Run
menu. It will ask you to build your project. That is a good idea, select Rebuild
All. The Assembler will assemble your code, the linker will be called, and if
there are no errors, the debugger window will appear. You can then start
debugging.

12. If there were any errors, select View Results , then click next error under the
project menu. It will show you the line containing the error in your source
program, and you can correct it at this point.

13. Continue asking to see the next error until you run out of errors.
14. Select debug from the project window to have another try.
15. Repeat this procedure until you finally get the debugger.
16. Now you can run your program. You may step through your program one line

at a time by using F8 and F10, or you may select go (F5) and run it without
interruption.

17. In order to watch the contents of memory change, you need to select the
memory window options in the options menu (of the debugger). Check the
box which requests that the memory window be continually re-evaluated. If
you don't check this box, the memory window will continue to reflect memory
contents just before your program started running.

18. Breakpoints may be inserted at any line of code using the set breakpoint item
in the Data menu, or press F9 . If go (or F5) is selected, the program will stop
on any line encountered with a breakpoint that is set.

19. Selecting source window options from the window menu allows you to have
mixed source lines and object code. This will allow you to compare the
instructions that are actually running with the lines of source code that you
provided.

20. F10 will single step through your code, but will not single step through any
called subroutines (It will "step-over" the subroutine call.) The subroutine will
be called correctly; it will simply not be debugged. This is handy when you
are using a subroutine that has already been debugged, or when a system
routine is called.

21. F8 will single "step-into" a subroutine that is called, allowing you to debug the
subroutine itself.

22. You may execute down to a given instruction by right clicking on the source
line, moving the cursor to the source line, and then pressing the F7 key.

23. Taking the time to add comments to your code while first entering it will save
much time in the long run. It is very hard to figure out what an undocumented
assembly language program is doing after even a brief intermission.
Comments help you to quickly locate desired sections of code.

24. Note: On the machines at the lab, it is frequently necessary to make sure the
path is set correctly for the PWB to run. Right mouse-click on the PWB
shortcut icon. Select Properties, and then select the Program tab. Under
Batch file , type C:\MASM611\BIN\NEW-VARS. In the lab, only the
network administrator can do this procedure.

COE 205 Lab Manual Experiment No 1

COE Department KFUPM (2000) 7

Pre Lab Work :

In this experiment you will practice editing, assembling, and linking an Assembly
language program. First you will type a short program, using DOS Edit, then
assemble and link the program using the MASM Assembler and Linker. Second you
will practice the DOS-Debugger, and compare it to MASM’s CodeView. Finally, you
will use MS-PWB to develop a project around your short program and practice some
of the advantages of PWB.

1- Study the material given in part I of this manual.
2- Review the material related to data representation.
3- Write the attached programs and bring them on a floppy disk to the lab.

Use the DOS editor or the Windows notepad. If you use a word processor,
make sure that you chose the option Save As Text while saving

Note:

The Exit function:
The following instructions terminate the pr ogram and exit to DOS.

 MOV AH, 4CH
 INT 21H

Lab Work:

1- Assemble, Link and Run program 1.
2- Use the Debugger to run your program.
3- Notice the values given by the assembler to the numbers you used in your

program. Draw a table and write each value with its corresponding
representation. What do you conclude?

4- Repeat the same procedure using PWB and CodeView. What do you
conclude?

6- Dress a table and write the values assigned by the assembler to the values
you wrote in the editor. Explain that.

5- Assemble, Link and Run program 2.
6- What value do you find in DX register?
7- Repeat the same procedure using PWB and CodeView.
8- Change the line:

MULT1 EQU 25
 By: MULT1 EQU 25H,

 and run the program again. What do you notice?
9- Can you explain what the pr ogram does?

COE 205 Lab Manual Experiment No 1

COE Department KFUPM (2000) 8

The first two lines, starting with a semi colon (;) are just comments, they may be
omitted, they are however very useful.

; COE 205: Lab Exp. # 1 Program # 1
; Student Name: Student ID: Section:

TITLE “A simple program”
.MODEL SMALL
.STACK 32
.CODE
 MOV AX, 2000
 MOV BX, 2000H
 MOV CX, 10100110B
 MOV DX, -4567
 MOV AL, 'A'
 MOV AH, 'a'

 MOV AX, 4C00H
 INT 21H
END

; COE 205: Lab Exp. # 1 Program # 2
; Student Name: Student ID: Section:

TITLE "Our second program"
.MODEL SMALL
.STACK 32
.DATA

 MULT1 EQU 25
 MULT2 DW 5
.CODE

 MOV AX,@DATA
 MOV DS,AX

 MOV AX,00
 MOV BX,MULT1
 MOV CX,MULT2
MULT: ADD AX,BX
 DEC CX
 JNZ MULT
 MOV DX,AX

 MOV AX,4C00H
 INT 21H
END

