
 1

Experiment 2

2 Assembly Language Structure and Data
Representation

Introduction

In this experiment, students are exposed to the general structure of an assembly language
program, and deal with data representation of in a computer system.

Objectives:

• Assembly language program structure
• Instructions and Directives
• Data representation: Variable declaration and Constant definition
• Some basic assembly instructions

2.1 Structure of an Assembly Language Program

An assembly language program is a sequence of instructions and directives. Only one
statement is written per line. An assembly language program has the structure shown in
the following table:

TITLE “Optional: Write here the Title of your program”
 .MODEL SMALL

This directive defines the memory model used in the program.

.STACK

This directive specifies the memory space reserved for the stack

.DATA

Assembler directive that reserves a memory space for constants and variables

.CODE

Assembler directive that defines the program instructions

END

Assembler directive that finishes the assembler program

Table 2.1: Assembly Language Program Structure

2.1.1 Program Statement

A line of a program is generally known as a statement. A statement contains the fields as
shown in the syntax below. Some of the fields are optiona l.

Name Operation operand(s) ;comment

 2

2.2 Instructions and Directives

There exist two types of statements used in assembly language programming: Instructions
and Directives.

2.2.1 Instruction

An instruction is meant for the processor. The format of an assembly instruction closely
mirrors the structure of a machine instruction. The assembler translates this instruction
into machine code

Example

 label_1 MOV AX, BX ; Load AX to prepare for multiplication
 ADD AX, MEM16 ; AX = AX + MEM16

2.2.2 Directive

Pseudo-instructions or assembler directives are instructions that are directed to the
assembler. They will affect the machine code generated by the assembler and are not be
translated into machine code. Directives are used to declare variables, constants,
segments, macros, and procedures as well as supporting conditional assembly

Model Directive

The model directive determines the size of the code, stack and data segments of the
program. Each of the segments is called a logical segment. Depending on the model used,
the code and data segments may be in the same or in different physical segments as
shown in table 2.2.

In most programs, the model small is sufficient. The tiny model is usually used to
generate command files (files with extension .com). This type of files is smaller in size
than the executable files with extension .exe.

Stack Directive

The stack directive is used to declare the stack segment. The stack is used to temporarily
save registers or variable contents. The value after the stack directive tells the program
how many bytes are initially reserved for the stack. The stack directive should be used
even if the program itself does not use the stack, as the latter is needed for subroutine
calling (return address) and possibly passing parameters. More details will be given on
the stack when considering procedures and interrupts.

Data Directive

At this level, all variables must be declared and constants must be defined. Variables are
declared using: DB, DW ,… etc, while constants are defined using: the directive equ.

 3

Size of Code and Data

Memory
Model

Code Data Note

TINY = 64KB = 64KB Code + Data = 64KB

SMALL = 64KB = 64KB

MEDIUM may be = 64KB = 64KB

COMPACT = 64KB may be = 64KB

LARGE may be = 64KB may be = 64KB no array = 64KB

HUGE may be = 64KB may be = 64KB arrays can be = 64KB

Table 2.2: Memory Models

Code Directive

The directive .code is used to declare the code segment. Any program code resides at this
level.

End of Program Directive

The Directive End is used to tell the assembler that this is the end of the program source
file. One has to make sure that no more instructions appear after this directive.

STARTUP and EXIT Directives

The following sequence of instructions is always used at the beginning of a program to
force the system assume the right data segment:

 MOV AX, @DATA
 MOV DS, AX

This sequence may be replaced by the .STARTUP directive which assigns the right
DATA segment and hence the assembler will issue no warning. However, it should be
noted that your code will start at address CS:0017H. The Startup directive occupies the
bytes CS:0000 to CS:0017H.

Identically, the sequence used to terminate and exit to DOS:

 MOV AH, 4CH
 INT 21H
can be replaced by the .EXIT directive.

 4

2.3 Data Representation

Two main types of data commonly used in programming: numbers and characters.

Numbers: Three numbering systems are used in assembly programming: binary, decimal
and hexadecimal. Signed numbers are represented using 2’s complement notation

Legal number representations Illegal number representations

Number Type Number Reason for being illegal

11011B binary 1,234 contains a non-digit character

11011 decimal 1B4D hex number not ending with H

64223 decimal FFFFH hex number not beginning with a digit
-21843D decimal 11_90 contains a non-digit character

1B4DH hexadecimal number 119A decimal with a non-digit character

0FFFFH hexadecimal number 0A,34H contains a non-digit character

Table 2.3: Number Representation

Characters: A character, or string of characters, must be enclosed in single or double
quotes: e.g. “Hello”, ‘Hello’, “A”, ‘B’. Characters are encoded using ASCII code.

Examples:

• ‘A’ has ASCII code 41H
• ‘a’ has ASCII code 61H
• ‘0’ has ASCII code 30H
• Line feed has ASCII code 0AH
• Carriage Return has ASCII code 0DH
• Back Space has ASCII code 08H
• Horizontal tab has ASCII code 09H

Note:

The value of a variable, the content of registers or memory is based on the programmer
interpretation:

AL = FFH
represents the unsigned number 255
represents the signed number -1 (in 2’s complement)

AH = 30H
represents the decimal number 48
represents the character ‘0’

BL = 80H
represents the unsigned number +128
represents the signed number -128

 5

2.4 Variable Declaration

Each variable has a type. Based on its definition, a variable is assigned a memory
location. The location is defined by its address and number of bytes. Different data
definition directives are used for different data types and variable sizes.

Directive Effect
DB define byte
DW define word
DD define double word (two consecutive words)
DQ define quad word (four consecutive words)
DT define ten bytes (five consecutive words)

Table 2.4: Data Declaration Directives

Each pseudo-op can be used to define one or more data items of given type. DQ and DT
are mostly used to declare variables in floating point format.

2.4.1 Byte Variables

The following directive defines a variable of size byte:

Var_nameDB initial_value

a question mark (?) instead of ‘initial_value’ leaves the variable non- initialized. However,
the assembler will assume the default value in memory, and will not generate a “non
initialized variable” warning as in high level languages.

Examples

a. I DB 4 ; define variable I with initial value 4
b. J DB ? ; define variable J with no initial value
c. Name DB “Course” ; allocate 6 bytes for the variable Name
d. K DB 5, 3, -1 ; allocates 3 bytes, as shown in the table

2.4.2 Word Variables

The following directive defines a variable of size word:

Var_name DW initial value

K è 05

 03

 FF

04 I DW 4

I è
00
FE J DW -2

J è

FF
BC K DW 1ABCH

K è

1A
31 L DW “01”

L è

30

 6

2.4.3 Double Word Variables

The following directive defines a variable of size double word:

Var_name DD initial value

2.5 Constant Definition:

The use of constants makes assembly language programs easier to understand. The EQU
directive is used to assign a name to a constant :

Cst_name EQU Cst_Value

No memory is allocated for constants defined using the EQU directive. However, the
constant will be replaced by its value during assembly time.

Examples

Declaration: LF EQU 0AH
Instruction: MOV DL, LF
Code View: MOV DL, 0AH

Declaration: PROMPT EQU “Type your name”
Directive: MSG DB PROMPT

20
AB
E2

I DD 1FE2AB20H

I è

1F
FE
FF
FF

J DD -4

J è

FF

 7

2.6 ASCII Table
The ASCII table is a double entry table, which contains all alphanumeric characters and
symbols. The hexadecimal ASCII code of a given character is found by concatenating the
column number with the row number. The row number is the least significant digit. For
the same code to be expressed in decimal, the row number is added to the column
number.

binary MSN 0000 0001 0010 0011 0100 0101 0110 0111

LSN hex 0 1 2 3 4 5 6 7

0000 0 NUL DLE SP 0 @ P ` p

0001 1 SOH XON ! 1 A Q a q

0010 2 STX DC2 " 2 B R b r

0011 3 ETX XOFF # 3 C S c s

0100 4 EOT DC4 $ 4 D T d t

0101 5 ENQ NAK % 5 E U e u

0110 6 ACK SYN & 6 F V f v

0111 7 BEL ETB ' 7 G W g w

1000 8 BS CAN (8 H X h x

1001 9 HT EM) 9 I Y i y

1010 A LF SUB * : J Z j z

1011 B VT ESC + ; K [k {

1100 C FF FS , < L \ l |

1101 D CR GS - = M] m }

1110 E SO RS . > N ^ n ~

1111 F SI US / ? O _ o DEL

Table 2.4: The ASCII table

Example on the use of the ASCII table

Code Character Column # Row #
Hex binary

a 6 1 61H 0110 0001B
A 4 1 41H 0100 0001B
β E 1 E1H 1110 0001B
% 2 5 25H 0010 0101B

Table 2.5: Using the ASCII table

 8

2.7 Some Basic Assembly Instructions
In this experiment and the next one, a number of basic instructions will be introduced.
The aim of which is to provide the student with a set of basic tools that allows him write
basic programs.

2.7.1 ADD & SUB instructions
In this experiment, only ADD and SUB instructions are introduced. In the following table
(Table 2.5) basic arithmetic instructions are summarized. The effect of each instruction on
the flags is also shown together with a brief example. The “*” symbol indicates that the
corresponding flag may change as a result of executing the instruction. The “-”indicates
that the corresponding flag is not affected by the instruction, whereas the “?”means that
the flag is undefined after the instruction is executed.

Flags Affected
Type Inst. Example Meaning

O
F

S
F

Z
F

A
F

P
F

C
F

ADD ADD AX, 7BH AX ← AX + 7Bh * * * * * *

ADC ADC AX, 7BH AX ← AX + 7Bh + CF * * * * * *

INC INC BX BX ← BX + 1 * * * * * -

Addition

DAA DAA Decimal Adjust after ADD ? * * * * *

SUB SUB CL,AH CL ← CL – AH * * * * * *

SBB SBB CL,AH CL ← CL – AH – CF * * * * * *

DEC DEC DAT [DAT] ← [DAT] – 1 * * * * * -

DAS DAS Decimal Adjust after SUB ? * * * * *

Subtraction

NEG NEG CX CX ← 0 – CX * * * * * *

Table 2. 6: Summary of basic arithemtic instructions

2.8 The Binary Coded Decimal system

The Binary Coded Decimal system or BCD is used to represent the binary equivalent of
the decimal system. In BCD, the binary patterns 1010 through 1111 do not represent valid
BCD numbers, and cannot be used.

Conversion from Decimal to BCD

Thousands Hundreds Tens Units
5 3 1 9

00000101 00000011 00000001 00001001

Table 2. 7: Unpacked BCD

 9

Since computer storage requires minimum of 1 byte, the upper nibble of each BCD
number is wasted. But BCD is a weighted position number system so you may perform
mathematics, but we must use special techniques in order to obtain a correct answer.

2.8.1 Packed BCD

To eliminate wasted storage BCD numbers are represented in packed format. In a packed
BCD number, each nibble has a weighted position starting from the decimal point.
Therefore, instead of requiring 4 bytes to store the BCD number 5319, we would require
2 bytes. The upper nibble of the upper byte of our number would store the thousands
value while the lower nibble of the upper byte would store the hundreds value. Likewise,
the lower byte would store the tens value in the upper nibble and the units digit in the
lower nibble. Therefore, our previous example would be:

Thousands-Hundreds Tens -Units
53 1 9

00000101 00000011 00000001 00001001

Table 2. 8: Packed BCD

2.8.2 Decimal After Add and Subtract

The DAA (Decimal Adjust after Addition) instruction, used immediately after normal
addition instruction, allows addition of numbers represented in 8-bit packed BCD code.
The sum in AL is adjusted to packed BCD format. The AL register is the source and the
destination and hence no operand is required. The effect of DAS (Decimal Adjust after
Subtraction) instruction is similar to that of DAA, except that it is used after a subtraction
operation. For more details on BCD, refer to your class notes or the COE 200 course. You
can also refer to the Appendix to this experiment.

 10

2.9 Lab Work
Part 1:

1- Study the attached programs and review the material related to data
representation arithmetic instructions, and BCD code.

2- Write both programs and see how program 2.1 manipulates the variables in
internal registers, and how program 2.2 uses memory for the same purpose.

3- Modify program 2.1 so that it adds two numbers of two digits each. Use only
registers, and make sure to take care of the carry when adding the two most
significant digits. Call this program 2.3.
Note: In this case try to understand how the program reads the numbers and
how it manipulates them. This will help you in writing your program. As a
hint, one should know that numbers are given in decimal to the program.

Program 1:

1. Write the following program and use the CV to answer the following questions?
2. What is the starting address of the memory where the code of this program is stored?
3. What is the starting address of the data segment?
4. What is the equivalent binary code for the instruction#3? What is its size?
5. How much memory is required to store the program?

TITLE "programB2"
.MODEL SMALL
.STACK 100
.DATA

NUM1 DB 9
NUM2 DB 8
X DB 'A'

.CODE

MOV AX,@DATA ; 1
MOV DS,AX ; 2
MOV AL,NUM1 ; 3
ADD NUM2,AL ; 4
MOV BL,X ; 5
MOV AX,4C00H ; 6
INT 21H ; 7

END

6. By looking at the binary code, what type of instruction do you think the opcode "B8"

refers to?
7. What is the address of the location storing the variables NUM1 & NUM2?
8. What is the value stored in the memory location of NUM2 before and after executing

instruction #4?

 11

Before:

After:

9. Write the status of the flags and their meanings after executing instruction #4?

Overflow Direction Interrupt Sign

Zero Auxiliary Parity Carry

10. Run the program step-by-step and write the values of the source and destination

before and after each instruction.

 Source Destination
Instruction Before After Before After
MOV AX, @DATA

MOV DS, AX

MOV AL, NUM1

ADD NUM2 ,AL

MOV BL ,C

MOV AX, 4C00H

INT 21H

Program 2

.Model Small
.STACK 200
.DATA
 NUM1 DB 235

NUM2 DB 0AFH
RES DB ?

.CODE

.STARTUP
 MOV NUM1, AL ; save num1
 MOV NUM2, AL ; save num2
 ADD AL, NUM1 ; perform addition
 MOV RES, AL ; save result in RES

 MOV DL, RES ; retrieve RES from memory
.EXIT
END

 12

Appendix

Packed BCD Arithmetic

If the addition of any two digits results in a binary number between 1010 and 1111, which
are not valid BCD digits, or there is a carry into the next digit, then 6 (0110) is to be
added to the current digit.

• Case 1
Carry from previous digit è 0 0
 7 0111
 + 6 + 0110

 13 1101
 110 ç Add 6 because 1101 is not a valid

Carry to next digit è 1 0011 BCD digit

• Case 2

Carry from previous digit è 1 1
 9 1001
 + 9 + 1001

 19 1 0011
 110 ç Add 6 because of carry to next digit

Carry to next digit è 1 1001

Essentially, the rule is needed to "skip over" the six bit combinations that are unused by
the BCD format whenever such a skip is warranted.

