
COE 205 Lab Manual  Experiment No10 
 

 1 

Experiment 10 

10 Interrupts 
 
 
Introduction 
 
An interrupt is a mechanism by which a program’s flow of control can be altered, in a 
way similar to that of a procedures call. Interrupts provide an efficient way to handle 
unanticipated events. The following table shows the differences between procedures 
and interrupts. 
 
 

Interrupts Procedures 

Initiated by both software and hardware Initiated by software only 

Handles anticipate, unanticipated internal 
and external events  

Handles anticipated events that are coded into 
the program 

Interrupt handlers (or ISR’s) are memory 
resident Loaded along with the program 

Use numbers to identify an interrupt service 
Use meaningful names to indicate their 
function 

FLAGS register is  saved automatically FLAGS register not automatically saved 

 
Table 10.1: Interrupts versus Procedures 

 
There exist two main types of events commonly known as interrupts: hardware and 
software interrupts. Software interrupts are the ones that have been used so far. In this 
experiment we will describe each of these forms and discuss their support on the 
80x86 CPU’s and PC compatible machines. We will also describe Interrupt Service 
Routines (ISR) and Terminate and Stay Resident (TSR) programs.  
 
  
Objectives 
 

1- Install, use and uninstall an Interrupt Service Routine (ISR). 
2- Install- interrupt service procedures (hooks) as TSR software. 
3- Install a TSR interrupt hook that uses the clock tick interrupt 

(INT 8). 
4- Install a TSR interrupt hook that intercepts the keyboard and 

responds to a particular key code or ho t-key. 
 

10.1 A Taxonomy of Interrupts 
 
An interrupt causes transfer of control to an interrupt service routine (ISR) or 
interrupt handler. When the ISR is completed, by an IRET instruction, the original 
program resumes execution. An interrupt service routine is a procedure written 



COE 205 Lab Manual  Experiment No10 
 

 2 

specifically to handle a trap, exception, or interrupt. Although different phenomenon 
cause traps exceptions and interrupts, the structure of an ISR, is approximately the 
same for each of these.  
 
There are in fact three common types of interrupts: Software, Hardware and 
Exceptions. Exceptions handle instructions faults such as divide overflow fault.  
 

 
 

Figure 10.1: A Taxonomy of Pentium Interrupts 
 
 
Although the terms trap and exception are often used synonymously, we will use the 
term trap to denote a programmer initiated and expected transfer of control to a 
special handler routine.  
 

10.1.1 Traps 
 
Traps, or software interrupts, are specialized subroutine calls invoked by a software- 
interrupt. The int instruction is the main instruction for executing a trap. Since traps 
execute via an explicit instruction, it is easy to determine exactly which instructions in 
a program will invoke a trap handling routine. The main purpose of a trap is to 
provide a fixed subroutine that various programs can call without having to actually 
know the run-time address (e.g. INT 21h).  
 
By patching an interrupt vector to point at a subroutine within the resident code, other 
programs that run after the resident program terminates can call the resident 
subroutines by executing the appropriate INT instruction. 
 
Most resident programs do not use a separate interrupt vector entry for each function 
they provide. Instead, they usually use a single interrupt vector and transfer control to 
an appropriate routine through a function number that the caller passes in a register, 
usually and conventionally the AH register. A typical trap handler would execute a 
case statement on the value in the AH register and transfer control to the appropriate 
handler function. 



COE 205 Lab Manual  Experiment No10 
 

 3 

10.1.2 Faults 
 
A fault is an automatically generated trap, forced rather than requested, that occurs in 
response to some exceptional condition. Generally, there is no specific instruction 
associated with an exception. An exception occurs in response to some erroneous 
behavior of the program. Examples of conditions that may cause an faults include:  
 

- executing a division instruction with a zero divisor,  
- executing an illegal opcode, and  
- a memory protection fault.  

 
 
Whenever such a condition occurs, the CPU immediately suspends execution of the 
current instruction and transfers control to an exception handler routine. This routine 
can decide how to handle the exceptional condition; it can attempt to rectify the 
problem or abort the program and print an appropriate error message.  
 
Faults occur when an abnormal condition occurs during execution. There are fewer 
than eight possible exceptions on machines running in real mode. Protected mode 
execution provides many others. Although exception handlers are user defined, the 
80x86 hardware defines the exceptions that can occur. The 80x86 also assigns a fixed 
interrupt number to each of the exceptions (Table 10. 2). 
 
In general, an exception handler preserves all registers. However, there are several 
special cases where you may want to tweak a register value before returning. 
Nevertheless, you should not arbitrarily modify registers in an exception handling 
routine unless you intend to immediately abort the execution of your program. 
 

10.1.3 Hardware interrupts 
 
Hardware interrupts, or simply interrupts, are program control interruptions based on 
an external hardware event. These interrupts generally have nothing at all to do with 
the instructions currently executing; instead, some event, such as pressing a key on 
the keyboard or a time out on a timer chip, informs the CPU that a device needs some 
attention. The CPU interrupts the currently executing program, services the device, 
and then returns control back to the program. 
 
On the PC, interrupts come from many different sources. The primary sources of 
interrupts, however, are the timer chip, keyboard, serial ports, parallel ports, disk 
drives, CMOS real-time clock, mouse, sound cards, and other peripheral devices. 
These devices connect to an Intel 8259A programmable interrupt controller (PIC) that 
prioritizes the interrupts and interfaces with the 80x86 CPU. The 8259A chip adds 
considerable complexity to the software that processes interrupts. 
 
 
 
 



COE 205 Lab Manual  Experiment No10 
 

 4 

 

INT # 
Exception 
Function 

Description 

INT 0 Divide Error  

Occurs whenever an attempt to divide a value by zero or the 
quotient does not fit in the destination register when using the DIV 
or IDIV instructions.  

The FPU's FDIV and FDIVR instructions do not raise this 
exception. 

INT 1 Single Step (Trace)  
Occurs after every instruction if the trace bit in the flag register is 
set.  

Debuggers often set this flag to trace the execution of a program. 

INT 3 Breakpoint  

This exception is actually a trap, not an exception. It occurs when 
the CPU executes an INT3 instruction. However, it is considered as 
an exception since programmers rarely put INT 3 instructions 
directly into their programs. Instead, a debugger like CodeView 
often manages the placement and removal of INT 3 instructions. 

INT 4 

INTO 
Overflow  

Like INT 3, this exception is technically a trap. It is raised when an 
INTO instruction is executed and the overflow flag is set. If the 
overflow flag is clear, the INTO instruction is a NOP. If the 
overflow flag is set, INTO behaves like an INT 4 instruction. An 
INTO instruction can be inserted after an integer computation to 
check for an arithmetic overflow. 

INT 6 Invalid Opcode  

The 80286 and later processors raise this exception if an attempt to 
execute an opcode that does not correspond to a legal 80x86 
instruction is made. These processors also raise this exception if 
you attempt to execute a bound, LDS, LES, LIDT, or other 
instruction that requires a memory operand but you specify a 
register operand in the mod/rm field of the mod/reg/rm byte. 

INT 7 
Coprocessor Not 
Available 

The 80286 and later processors raise this exception if an FPU (or 
other coprocessor) instruction is attempted to execute without 
having the coprocessor installed. This exception can be used to 
simulate the coprocessor in software. 

 
Table 10. 2:  Exceptions 

 

Instruction Effect 

INT XX Call interrupt service routine associated with interrupt XX 

INTO 
INT 4 

Interrupt on overflow. The interrupt is implicit and handler is invoked conditionally 
only when overflow flag is set. 

 
Table 10. 3:  Interrupt Instructions 



COE 205 Lab Manual  Experiment No10 
 

 5 

10.2 Interrupt Structure 
 
The 80x86 allow up to 256 vectored interrupts. This means that up to 256 different 
sources can exist for an interrupt and the 80x86 will directly call the service routine 
for that interrupt without any software processing. Non-vectored interrupts transfer 
control directly to a single interrupt service routine, regardless of the interrupt source. 
 
The 80x86 provides a 256 entry interrupt vector table beginning at address 0000:0000 
in memory. This is a 1Kbyte table containing 256 4-byte entries. Each entry in this 
table contains a segmented address that points at the interrupt service routine in 
memory. Generally, we will refer to interrupts by their index into this table, so the 
address (vector) of interrupt n is at memory location 0000:n*4. Interrupt zero's vector 
is at address 0000:0000, interrupt one's vector is at address 0000:0004, etc. 
 
When an interrupt occurs, regardless of its source, the 80x86 does the following: 
 

1. The CPU pushes the flags register onto the stack. 
2. The CPU pushes a far return address (Segment:Offset) onto the 

stack, segment value first. 
3. The CPU determines the cause of the interrupt, i.e., the interrupt 

number, and fetches the four byte interrupt vector from address 
0000:vector*4. 

4. The CPU transfers control to the routine specified by the interrupt 
vector table entry. 

 
After completion of these steps, the ISR takes control. When the ISR wants to return 
control, it must execute an IRET (interrupt return) instruction. The interrupt return 
pops the far return address and the flags off the stack. Note that executing a far return 
is insufficient since that would leave the flags on the stack. 
 
Hardware interrupts are processed differently than other software interrupts. Upon 
entry into the hardware ISR, the 80x86 disables further hardware interrupts by 
clearing the interrupt flag. Traps and exceptions do not do this. If further hardware 
interrupts are to be disabled within a trap or exception handler, one must explicitly 
clear the interrupt flag with a clear interrupt flag instruction (CLI). Conversely, if 
interrupts are to be enabled within a hardware ISR, one must explicitly turn them back 
on with a Set Interrupt instruction (STI). Note that the 80x86's interrupt disable flag 
only affects hardware interrupts. Clearing the interrupt flag will not prevent the 
execution of a trap or an exception.  
 
ISRs are written like almost any other assembly language procedure except that they 
return with an IRET instruction rather than ret. Although the distance of the ISR 
procedure (near vs. far) is usually of no significance, you should make all ISRs far 
procedures. This will make programming easier if you decide to call an ISR directly 
rather than using the normal interrupt handling mechanism. 
 
Exceptions and hardware interrupts ISRs have a very special restriction: they must 
preserve all registers they modify.  
 



COE 205 Lab Manual  Experiment No10 
 

 6 

10.3  TSR Programs 
 
A TSR is a program that remains in memory after execution. The purpose of a TSR is 
to install an interrupt hook. . In most cases, either an INT 8 clock tick, or a hot-key 
sequence activates a TSR program. A TSR program consists of two parts an 
installation section and a service routine. The service routine may consist of more 
than one ISR. The installation section is executed only at load time. The  ISR is 
executed each time the interrupt is invoked. An ISR must end with a IRET instruction 
or a FAR JMP to another ISR. 
 

10.3.1 Installing an ISR 
 
The installation section prepares the TSR program’s service routine to be used by 
other programs or to service a hardware interrupt. The installation uses INT 21H 
Function 25H. 
 
The following code is a typical installation section: 
 
  MOV AX, CS 
  MOV DS, AX 
  MOV DX, Offset Pgm_ISR 
  MOV AH, 25H 
  MOV AL, Int_Number 
  INT 21H 
 

10.3.2 Make an ISR a TSR 
  
This procedure uses INT 21H Function 31H. DX contains the number of paragraphs 
to be kept in memory. The following code makes the installed ISR a TSR routine. 
   

MOV DX, Number_Of_Paragraphs  
  MOV AL, Return_Code  
  MOV AH, 31H 
  INT 21H 
 
Function Effect Input Output 

25H Set Interrupt Vector DS:DX = Segment 
Offset Address  

31H Make ISR as TSR 
DX= number of 
paragraphs to be kept 
in memory 

 

35H 

Get Interrupt 
Vector for  
a Specified 
Interrupt. 

AL = Interrupt number ES:BX = Segment 
Offset Address 

 
Table 10. 1: ISR Function Manipulation 



COE 205 Lab Manual  Experiment No10 
 

 7 

Notes: 
 
1 - The code for an installation routine of a TSR should come after the service section, 
to ensure that it is freed by INT 21H Function 31H, which return control to DOS. 
Therefore, such a procedure does not need to have a RET instruction. 
 
2 - The number of paragraphs to be kept resident in memory is found by dividing the 
number of bytes to be kept resident by 16. The following code performs such an 
operation: 
  MOV DX, Offset Installation_Routine 
  MOV CL, 04 
  SHR DX, CL    ; Divide by 16 
  INC DX    ; to take care of truncation if any 

 

 
 

Figure 10 1: Memory Structure after a TSR program is installed 
 
 

10.3.3 User Defined TSR's 
 
The software vectors from 60H through 67H and those from 0F1H through 0FFH in 
the Interrupt Vector Table are undefined and available for user defined ISRs. Program 
9.1 installs an ISR at INT 60H. From the time the ISR is installed until either the 
system is powered down or INT60H is re-vectored to address some other routine, any 
program that contains the sequence: 
    

   MOV AX, Operand  
INT 60H 

 
will display the message “Welcome To The Interesting World Of TSR Routines'. 
 

Installation_Routine ENDP

.  .  .  .  .

Installation_Routine PROC

Service Section
Number_Of_Paragraphs

=
Offset Installation_Routine/

16

CS



COE 205 Lab Manual  Experiment No10 
 

 8 

If we change the body of program 9.1, in the following way: 
 
DECIMAL_DISPLAY  PROC FAR 

XOR SI, SI 
    MOV BX, 10 

DIV_LOOP:  MOV AX, Operand 
DIV BX 

    MOV CS:ARRAY[SI], DL 
    INC SI 
    CMP AX,  0000 
    JNZ DIV_LOOP 
 DISPLAY_LOOP: DEC SI 
    MOV AH, 02H 
    MOV DL, CS:ARRAY[SI] 
    OR DL, 30H 
    INT 21H 
    CMP SI, 00 
    JNZ DISPLAY_LOOP 
    POP SI 
    POP BX 
    POP AX 
    IRET 
DECIMAL_DISPLAY  ENDP 
  
In this case a call to INT 60H will display the contents of AX register (operand) on 
the console screen in decimal notation.  
 
Another program, which displays a number passed through DX in a different 
numbering system, is given in the lab. The numbering system is passed through the 
AH register. 

10.3.4 Redifinition of an existing ISR 
 
An existing system ISR can be redefined by replacing its vector by the vector of a 
user defined ISR. If execution is to resume at the redefined ISR, DOS function 35H is 
used to retrieve the segment:Offset address of the interrupt to be redefined. This 
address is then stored in a double-word variable (VAR). The address is then used by 
the new ISR to return control to the redefined ISR by executing the FAR jump:  
JMP CS:VAR 
If control is not to resume at the redefined ISR, the new ISR ends with an IRET 
instruction. INT 21H Function 25H returns the 32-bit vector address of a specified 
interrupt vector in ES:BX (Table 10. 14). The following code retrieves the vector 
address of INT 09H: 
  
  MOV AH, 35H   ;Get Int. Vector 
  MOV AL, 09H   ;For INT 09H 
  INT 21H 
  MOV WORD PTR VAR,BX  ;Store Offset Address 
  MOV WORD PTR VAR+2,BX ;Store Segment Number 
 
When an existing system interrupt is being redefined, all maskable interrupts should 
be disabled. Hardware interrupts may occur at any time, therefore interrupts should be 



COE 205 Lab Manual  Experiment No10 
 

 9 

disabled while making changes in the vector table, in order to avoid the risk of an 
interrupt taking place while there is no valid address for a service routine. The CLI 
and STI instructions are used for this purpose (Table 10. 2).  
 

Instruction Meaning Flags Affected 

CLI Clear Interrupt Flag;  
Disable Maskable Interrupts IF = 0 

STI Set Interrupt Flag;  
Re-enable Maskable Interrupts IF = 1 

 
Table 10. 2: Interrupt Flag Set and Clear Instructions 

 

10.4 Typical Case, Interception of the Keyboard Interrupt 
 
The Keyboard Port 
 
When a key is pressed, the keyboard controller sends an 8-bit scan code to to port 
60H. The key stroke triggers a hardware interrupt, which prompts the CPU to cal INT 
09H. This interrupt inputs then the scan code from the port. 
 
The DOS Keyboard Status Flag 
 
The keyboard status flag is located at 0040:0017H. The function of each bit is as 
shown in Figure 10.6 
 
 
 
 
 
 
 
 
 
Reading the status flag can be done either by: 
 

1 – Using BIOS INT 16H, function 02H: 

   MOV AH, 02H 
   INT 16H 
   ;Status flag returne d in AL register 

or: 
2 – Directly reading segment 40H: 
 
  MOV AX, 0040H 
  MOV ES, AX 
  MOV DI, 0017H 
  MOV AL, ES:[DI] 

7 6 5 4 3 2 1 0 
 
Bit 0: Right Shift Key Down  Bit 4:Insert On 
Bit 1: Left Shift Key Down Bit 5: Caps Lock On 
Bit 2: Ctrl Key Down   Bit 6: num Lock On 
Bit 3: Alt Key Down   Bit 7: Scrol Lock On 

 
Figure 10. 2: Keyboard Status Register 



COE 205 Lab Manual  Experiment No10 
 

 10 

To test for the status of a bit use the TEST instruction. 
TEST AL, 00100000B  ; Test Num Lock  

 
Program 10.4 is a TSR that beeps the speaker once when the numeric keypad is used, 
provided that the Num Lock is on. Note that the scan codes of the keys in the numeric 
keypad area are from 71 to 83. 
 
Important Note: 
 
All ISR or TSR programs are COM files which are smaller in size than  EXE files. To 
generate a COM file, use one of the following options: 
  

- assemble as COM in the PWB environment,  
- or using the command: ML /at,  
- or use the tiny model. 

 
References: 
 
1. Barry B. Brey, “Programming the 80286, 80386, 80486, and Pentium- Based 

Personal Computer”, Prentice Hall, (1996). 
 
2. Randall Hyde, “The Art of Assembly Language Programming”,  

http://webster.cs.ucr.edu/Page_asm/ArtofAssembly/ArtofAsm.html 
 



COE 205 Lab Manual  Experiment No10 
 

 11 

Lab  
Pre Lab Work : 
 

1- Write, assemble link and run program 10.1. Use the command 
ML /AT to generate a COM file.  

2- Write, assemble link and run program 10.2. 
3- Change Program 10.1 using the code given to display a number 

in AX in decimal format. 
4- Write a program that displays a number in decimal format 

using INT 60H.  
5- Bring your work to the lab.  

 
Lab Work: 
 

1- Show programs 10.1 and 10.2 to your lab instructor. 
2- Write a Program that checks for the validity of your password, 

and beeps the speaker once if the password is right, and twice if 
not.  

Guidelines: 
- First use the program already developed in previous experiment 

to check for password validity. 
- Second use macros as much as you can. 
- Third make the password checking routine as a TSR program. 

Call it INT 60H. When invoked this procedure checks for 
password validity and returns AL = 00H if the password is 
correct, and AL = 0FFH is the password is incorrect. 

 



COE 205 Lab Manual  Experiment No10 
 

 12 

TITLE ‘Program 10.1’ 
;This program installs an ISR at INT 60H. Whenever invoked, as in ;Program 10.2, INT 60H 
displays the message 'Welcome To The  
;Interesting World Of TSR Routines' 
 
.MODEL TINY 
.CODE 
.STARTUP 

        JMP INSTALL 
ISR_60H PROC FAR 

        PUSH AX 
        PUSH DX 
        PUSH DS 
        MOV  AX,  CS 
        MOV  DS,  AX 
        MOV  DX,  OFFSET MSG 
        MOV  AH,  09H 
        INT  21H 
        POP  DS 
        POP  DX 
        POP  AX 
        IRET 

ISR_60H ENDP 
 
MSG  DB 'Welcome To The Interesting World Of TSR Routines',0DH,0AH,'$' 
 
INSTALL PROC 

        MOV  AX,  CS 
        MOV  DS,  AX 
        MOV  AH,  25H 
        MOV  AL,  60H 
        MOV  DX,  OFFSET ISR_60H 
        INT  21H 
        MOV  AH,  31H 
        MOV  AL,  00H 
        MOV  DX,  OFFSET INSTALL     
        MOV  CL, 04 
        SHR  DX,  CL 
        INC  DX 
        INT  21H 

INSTALL ENDP 
END 
 
TITLE ‘Program 10.2’ 
; This program uses the newly installed INT 60H 
.MODEL TINY 
.CODE 
.STARTUP 

 MOV  CX, 5  ; Loop 5 times 
L1:  INT  60H  ; Display the message  
     LOOP L1 

.EXIT 
END 
 
 



COE 205 Lab Manual  Experiment No10 
 

 13 

 
TITLE ‘Program 10.3’ 
;The following code redefines an existing ISR 
 
VAR DD ?    ;Used to store the Old Interrupt Vector 
... 
INSTALLATION_ROUTINE PROC 
  CLI      ;Clear IF to prevent Hardware Interrupt 
  ;GET OLD INTERRUPT VECTOR 
  MOV AH, 35H 
  MOV AL, INTERRUPT_NUMBER 
  INT 21H 
   

;SAVE THE INTERRUPT VECTOR 
  MOV WORD PTR VAR,BX  ;Store Offset Address 
  MOV WORD PTR VAR+2,ES   ;Store Segment Number 
   

;INSTALL NEW INTERRUPT VECTOR 
  MOV AX, CS 
  MOV DS, AX 
  MOV AH, 25H 
  MOV AL, INTERRUPT_NUMBER 

MOV DX, OFFSET NEW_ISR 
INT 21H 

   
  ;TERMINATE AND STA Y RESIDENT 
  MOV AH, 31H 
  MOV AL, 00H 
  STI     ; Set IF to enable Hardware Interrupt 
  INT 21H 
INSTALLATION_ROUTINE ENDP 
 
 
TITLE ‘Program 10.4’ 
 
.MODEL TINY 
.CODE 
.STARTUP 
        JMP INSTALL 
NEW_09H_ISR PROC FAR 
         PUSHF 

PUSH AX 
PUSH ES 

         PUSH DI 
         PUSH DX 

;Point ES:DI to the keyboard flag byte 
MOV  AX,  40H 
MOV  ES,  AX 

          MOV  DI,  17h 
MOV  AL,  ES:[DI] 
TEST AL, 00100000B ;NUM LOCK STATE ? 
JZ LAST 
IN AL, 60H 
CMP AL, 71H 
JL LAST 

  CMP AL, 83H 
  JG LAST 
  MOV AH, 02H 
  MOV DL, 07H  



COE 205 Lab Manual  Experiment No10 
 

 14 

INT  21H 
LAST:  POP  DI 
  POP  ES 

POP  AX 
  POPF 

IRET 
  JMP CS:OLD_09H_VECTOR 
NEW_09H_ISR ENDP 
 
 
OLD_09H_VECTOR DD ? 
INSTALL  PROC 

 MOV  AH,  35H 
          MOV  AL,  09H 
  INT 21H 
  ;SAVE OLD VECTOR 
  MOV WORD PTR OLD_09H_VECTOR, BX 
  MOV WORD PTR OLD_09H_VECTOR + 2, ES 
  ;INSTALL NEW INT. VECTOR 
  MOV AX, CS 
  MOV DS, AX 
  MOV AH, 25H 
  MOV AL, 09H 
  MOV DX, OFFSET NEW_09H_ISR 
  INT 21H 
  MOV AX, 3100H 

MOV  DX,  OFFSET INSTALL     
         MOV  CL,  04 
         SHR  DX,  CL 
         INC  DX 
         INT  21H 

INSTALL ENDP 
END 



COE 205 Lab Manual  Experiment No10 
 

 15 

Appendix-A- 
 
 
DOS Memory Usage and TSRs 
 
When DOS is first booted, the memory layout will look something like Figure A.  
DOS maintains a free memory pointer that points to the beginning of the block of free 
memory. 

Figure A.1: DOS Memory with no active application 
 
When an application program is run, DOS loads this application starting at the address 
the free memory pointer contains. Since DOS runs only a single application at a time, 
all the memory, starting from the free memory pointer to the end of RAM (0BFFFFh), 
is available for the application’s use. When the program terminates normally, via 
DOS function 4CH, MS-DOS reclaims the memory in use by the application and 
resets the free memory pointer to just above DOS in low memory.  
 

 
Figure A.2: DOS Memory with no active application 

 
MS-DOS provides a second termination call which is identical to the terminate call e 
except that it does not reset the free memory pointer to reclaim all the memory in use 
by the application. Instead, this terminate-and-stay-resident call frees all but a 
specified block of memory. The TSR call (AH = 31H) requires two parameters, a 
process termination code in the AL register (usually zero) and DX must contain the 



COE 205 Lab Manual  Experiment No10 
 

 16 

size of the memory block in paragraphs to protect. When DOS executes this code, it 
adjusts the free memory pointer so that it points at a location DX*16 bytes above the 
program’s PSP. This leaves memory looking like this:  

 
Figure A.3: DOS Memory Organization for a Resident Program 

 
When the user executes a new application, DOS loads it into memory at the new free 
memory pointer address, protecting the resident program in memory: 

 

 
Figure A.4: DOS Memory with a Resident Application 


