
COE 205 Lab Manual Experiment No 1

 1

Experiment No 1

1 Introduction to Assembly Language Programming

Introduction:

This experiment introduces the student to assembly language programming. In order
to illustrate the basic concepts of assembly language programming a new environment
(MASM) is used as a tool to develop assembly programs.

The following tools will be used:

- Microsoft Macro Assembler (MASM)
- CodeView (CV).
- Programmer’s Work Bench (PWB)

Objectives:

In this experiment you will learn:

a. MASM tool and Code View (CV).
b. General structure of an assembly language program
c. Basic assembly instructions: MOV, INT
d. Use of the PWB environment

1.1 Program Writing

The process of writing an assembly language program is facilitated through the use of
an Assembler. The Assembler allows the user to write alphanumeric instructions, or
mnemonics called instructions and then generate the machine code from the
Assembly Language instructions.

Assembly Language programming consists of the following steps:

a. Edit
b. Assemble
c. Link
d. Execute

1.1.1 Assembling

The assembler is used to convert the assembly language instructions into machine
code. It is used immediately after writing the Assembly Language program. The
assembler starts by checking the syntax, or validity of the structure, of each
instruction in the source file. If any errors are found, the assembler displays a report
on these errors along with a brief explanation of their nature. However, if the program
does not contain any errors, the assembler produces an object file that has the same
name as the original file but with the “obj” extension.

COE 205 Lab Manual Experiment No 1

 2

1.1.2 Linking

The linker is used to convert the object file to an executable file. The executable file is
the final set of machine code instructions that can directly be executed by the
microprocessor. It is different than the object file in the sense that it is self-contained
and re- locatable. An object file may represent one segment of a long program. This
segment can not operate by itself, and must be integrated with other object files
representing the rest of the program, in order to produce the final self-contained
executable file.

In addition to the executable file, the linker can also generate a special file called the
map file. This file contains information about the start, end, and the length of the
stack, code, and data segments. It also lists the entry point of the program.

1.1.3 Executing

The executable file contains the machine language code. It can be loaded in the RAM
and be executed by the microprocessor simply by typing, from the DOS prompt, the
name of the file followed by the Carriage Return Key (Enter Key). If the program
produces an output on the screen, or a sequence of control signals to control a piece of
hardware, the effect should be noticed almost instantly. However, if the program
manipulates data in memory, nothing would seem to have happened as a result of
executing the program.

1.2 Micro Soft Assembler

The assembler being used in this lab is called MS-MASM. MASM is an interactive
means for assembling linking and debugging assembly language programs.
Microsoft’s Macro Assembler (MASM) is an integrated software package written by
Microsoft Corporation for professional software developers. It consists of an editor,
an assembler, a linker and a debugger (CodeView). The programmer’s workbench
(PWB) combines these four parts into a user- friendly programming environment with
built- in on- line help.

The following table summarizes all the steps and commands used to edit, assemble
link and run a program using MASM.

 Step Command Produces File Name
1 Editing Edit, use any editor Source File Filename.asm
2 Assembling Masm Filename Object File Filename.obj
3 Linking Link Filename Executable File Filename.exe (or *.com)
4 Executing Filename Program output -

Table 1.1: Assembly Language Programming Phases

Note:
Steps 2 and 3 may be done in one single command: ML filename.asm to produce
both Name.obj and Name.exe files.

COE 205 Lab Manual Experiment No 1

 3

1.2.1 MS-PWB:

The PWB is an environment that allows the user to define a project that may contain
one or more files. Then, the user may select all the necessary assembling, linking, and
debugging options for that project. Once these options are set, the user need not set
them again for that project. The PWB allows the user to edit, assemble, run, or debug
his program without leaving the PWB environment. It also allows the user to get help
on any keyword by pointing to the keyword and pressing the F1 key.

1.3 CodeView

The CodeView (CV) is a useful utility that allows program tracing and monitoring the
processor status while running a program. In this section we are going to learn how to
use MASM and code view.

Before you start the steps below, write the program that appears in Figure 1.1 using a
text editor and save it as prog1.asm in the directory you created in the last lab.

; The following lines are just comments, they may be omitted,
; However, they are very useful.

; COE 205: Lab Exp. # 1 Program # 1
; Student Name: Student ID: Section:

TITLE “A simple program”
.MODEL SMALL
.STACK 32
.CODE
 MOV AX, 2000
 MOV BX, 2000H
 MOV CX, 10100110B
 MOV DX, -4567
 MOV AL, 'A'
 MOV AH, 'a'

 MOV AX, 4C00H
 INT 21H
END

Figure 1.1: First Program

After the program is saved, assemble it then link it. You should get and *.exe file in
your directory.
To assemble the program, at the DOS prompt type:

D:worakrea\> MASM prog1

You should get the following output on your screen

COE 205 Lab Manual Experiment No 1

 4

Microsoft (R) MASM Compatibility Driver
Copyright (C) Microsoft Corp 1993. All rights reserved.
 Invoking: ML.EXE /I. /Zm /c prog1.asm
Microsoft (R) Macro Assembler Version 6.11
Copyright (C) Microsoft Corp 1981-1993. All rights reserved.
 Assembling: prog1.asm

Figure 1.2: Screen Output after Assembly Phase

A prog1.obj file is now created. Link your program now, the following appears on
the screen.

Microsoft (R) Segmented Executable Linker Version 5.31.009 Jul 13 1992
Copyright (C) Microsoft Corp 1984-1992. All rights reserved.
Run File [prog1.exe]:
List File [nul.map]: prog1
Libraries [.lib]:
Definitions File [nul.def]:
LINK : warning L4038: program has no starting address

Figure 1.3: Screen Output after Link Phase

A prog1.exe file is now created. Notice, that because a name was given in front of the
map file, a prog1.map file has also been created.

1.3.1 The MAP file

The Map file contains useful information about the executable program, the prog1.exe
file. More details will be given concerning the MAP file in the coming labs.

 Start Stop Length Name Class
 00000H 00014H 00015H _TEXT CODE
 00016H 00016H 00000H _DATA DATA
 00020H 0003FH 00020H STACK STACK
 Origin Group
 0001:0 DGROUP

Figure 1.4: MAP File

1.3.2 Using CodeView

You can run your program by typing the following at the DOS prompt:

D:worakrea\> MASM prog1

Since the program does not give any output, nothing is displayed on the screen. To
debug our program and see its effect while running, another tool is used, the code
view.

COE 205 Lab Manual Experiment No 1

 5

1. From the start menu, select Programs> Masm 611> Masm Prompt. You will
get to the DOS screen.

2. Change the directory to the directory where your program resides

Z:\> cd COE205\LAB2\

3. Use the following command to run code view: cv prog1.exe then press
Enter.

4. You will get the following screen (Figure 1.2).

Figure 1.2: CodeView Main Screen.

Note:
The hexadecimal values and addresses in the code view windows may change when
you run CV on different machines; this is due to the operating system memory
management.

1.3.3 Instruction Address

The first two columns in the CV window show the address of each instruction of the
program. The address is divided into two parts, a segment number and an offset. The
whole address has the following format:

Segment Number : Offset

The segment number in this case represents the code segment (CS).

The instruction

0A24:0009 BA29EE MOV DX, EE29

is saved in the code segment number 0A24 at offset, or address, 0009. The offset
indicates a specific location within the segment.

COE 205 Lab Manual Experiment No 1

 6

Memory is divided into segments of size 64KByte each. Therefore, the number of bits
required to address any location in memory is 16-bit (2 bytes).

The above instruction starts at address 0A24:0009 and occupies 3 bytes. Hence, it
ends at address 0A24:000B. The following instruction starts at address 0A24:000C.
All the instructions of a program are within the same segment.

1.3.4 Machine Code

The next column shows the machine code of each instruction. This is how the
effectively instructions are saved inside the system memory. Generally, the first few
bits or byte of the instruction correspond to the opcode, which indicates the operation
type (e.g. MOV, ADD) and the addressing mode.

Example:

Machine Code Assembly Code
B8D007 MOV AX, 07D0

B8004C MOV AX, 4C00

Since both instructions have the effect of moving an immediate value into a word
register, the high bytes in both instructions are identical (B8). The lower bytes carry
the value to be loaded into the register. Notice that the values to be moved are written
in reverse order.

Different instructions may have different lengths. To see that, compare the following
two instructions.

Machine Code Assembly Code Instruction size (Bytes)

B8D007 MOV AX, 07D0 3

CD21 INT 21 2

1.3.5 Source Code

The last column on the main window shows the assembly language program source.
Each instruction appears on one line. The instruction that is black-highlighted is the
instruction that is going to be executed next. In figure 1.1 the instruction “MOV AX,
07D0” is the next instruction to be executed.

Recall from the first experiment, that an assembly language instruction may have
zero, one or two operands. In case of a two-operand instruction, the right-hand
operand is the source and the left-hand operand is the destination. In the instruction

MOV AX, 07D0

the value 07D0 is the source, the register AX is the destination.

COE 205 Lab Manual Experiment No 1

 7

1.3.6 Register Window

The registers window may be viewed from the option Windows and Registers, or by
simultaneously clicking the keys Alt and 7. This window shows the current values of
the 14 internal registers. The default view is the 16-bit option for the 8086. To switch
to the 32-bit register view, click the Options menu and select the 32-bit Registers
option.

Figure 1.3: Registers Window

1.3.7 Flag Register Window

The lower part of the window contains the flags that indicate the status of the CPU
after executing the last instruction. They are arranged as shown in Fig 6.

Value
Flag

0 1

Overflow NV: no overflow OV: overflow

Direction UP: up DN: down

Interrupt EI: Enable interrupt DI: Disable Interrupts

Sign NG: Negative PL: positive

Zero ZR: Zero NZ: No zero

Auxiliary AC: Auxiliary carry NA: No Auxiliary carry

Parity PE: Parity even PO: Parity odd

Carry CY: Carry NC: No carry

Table 1.2: Flags and Their Values

COE 205 Lab Manual Experiment No 1

 8

1.4 Program Debugging

A program may be run as explained in section 1.1.3. The same can be done at this
level using Code View. However, code view, in a way similar to the DOS debugger,
can run the program in as a whole or one instruction at a time. This latter mode is
used for debugging since it allows the user to see registers and memory contents while
the program is running.

1.4.1 Running the Program

The whole program may be run as a whole by pressing F5 (the option GO). However,
the program should have a sequence of instructions to force it to stop, such as the one
shown below, or a breakpoint (next section) inserted at a given instruction to force
the program halt execution.

Note on the Exit function:
The following sequence of instructions has the effect of terminating the program and
exiting to DOS.

 MOV AH, 4CH
 INT 21H

They should appear at the end of most, if not all, programs you will write.

1.4.2 Single Step through the Program

In order to run the program step by step both keys F8 and F10 may be used. To
execute the next instruction press F8 or F10. The cursor will move one position down.
Any change in register content is highlighted on the register window.

In the program above, the first instruction moves the value 07D0h into the register
AX. After executing this instruction, the value of AX, initially equal to 0000h will
change to 07D0h. It can be noticed that any value that changes is highlighted. After
executing the previous instruction, notice that besides AX other registers have also
been highlighted, namely IP and FL.

1.4.3 Breakpoints

A breakpoint is a point in the program, inserted by the programmer at debug time, to
force the processor halt execution. To insert a break point, do the following:

1. Move the mouse at the point where you the breakpoint is to be inserted
2. From the Data menu select Set Breakpoint
3. or double click the instruction that you would like to stop at
4. Press F5 to run the program until the breakpoint

To reset the program, go to Run menu and select Restart.

COE 205 Lab Manual Experiment No 1

 9

1.5 Pre Lab Work

1. Review the material related to introduction to assembly language programming

and data representation
2. Write the source code given in figure 1.1 using the notepad or wordpad, then

assemble and link the program using the MASM and Link commands.
3. Write the attached programs and bring them to the lab. Use the DOS editor or the

Windows notepad. If you use a word processor, make sure that you chose the
option Save As Text while saving

1.6 Lab Work

1.6.1 Part I

1- Assemble, Link and Run program 1.
2- Use code view to run your program.
3- Notice the values given by the assembler to the numbers you used in

your program. Draw a table and write each value with its
corresponding representation. What do you conclude?

4. Dress a table and write the values assigned by the assembler to the
values you wrote in the editor. Write your conclusions.

5. Single step through the program and notice all the registers that are
highlighted in the register window, meaning that the contents of those
registers have changed. Pay more attention to registers IP and FL.
What do you think the cause for that?

1.6.2 Part I

1. Now write a program that moves two 16-bit values in AX and BX

registers. Chose the values so that their most significant bit is 1. Add
the two registers and make the destination the AX register.

2. Link and Run your program.
3. What value do you find in AX register?
4. What are the values of the Carry flag, Overflow flag and sign flag.

Write your conclusions.
Use table 1.2 to see the different values of the flags.

COE 205 Lab Manual Experiment No 1

 10

; The following lines are just comments, they may be omitted,
; However, they are very useful.

; COE 205: Lab Exp. # 1 Program # 1
; Student Name: Student ID: Section:

TITLE “A simple program”
.MODEL SMALL
.STACK 32
.CODE
 MOV AX, 2000
 MOV BX, 2000H
 MOV CX, 10100110B
 MOV DX, -4567
 MOV AL, 'A'
 MOV AH, 'a'

 MOV AX, 4C00H
 INT 21H
END

; COE 205: Lab Exp. # 1 Program # 2
; Student Name: Student ID: Section:

TITLE "Our second program"
.MODEL SMALL
.STACK 32
.DATA

 MULT1 EQU 25
 MULT2 DW 5
.CODE

 MOV AX, @DATA
 MOV DS, AX

 MOV AX, 00
 MOV BX, MULT1
 MOV CX, MULT2
MULT: ADD AX, BX
 DEC CX
 JNZ MULT
 MOV DX, AX

 MOV AX, 4C00H
 INT 21H
END

