
Lab #13

4-Bit Binary Sequential Multiplier

Objectives
 To introduce concepts of large digital system design, i.e. data path and control path.
 To apply the above concepts to the design of a sequential multiplier.

Introduction: Design of Large Digital Systems
 Large and medium size digital systems are mostly sequential systems with large

number of registers and counters.
 It is not practical to design such systems using FSM design techniques since this

will result in a huge number of states (2n, with n being the # of FFs including FFs
used in all the registers and counters of the system).

 Generally, large digital systems are partitioned into two units:

1. Data Path: This is the data processing unit. It includes both combinational
and sequential modules of well-defined functions, e.g. registers, counters,
adders, multiplexers, decoders, etc.

2. Control Path: This is the control unit or simply “controller” which controls
the operations performed by the data path and the proper sequencing of these
operations. The controller is implemented as an FSM that may be designed in
the conventional manner.

 In this lab, you will design the data path and controller of a 4-bit sequential
multiplier.

 The design can be easily extended to an n-bit multiplier which uses the same
controller and the same data path configuration but sizes of data path components
(e.g., registers, adder) should be adjusted accordingly.

Design Specifications
Inputs:

 A: First 4-Bit operand (multiplier).
 B: Second 4-Bit operand (multiplicand).
 S: Start signal which initiates the multiplication operation
 Reset: Reset signal which puts the controller into the initial state.

Outputs:

 P: The 8-bit product result (P = A x B).

Display:

 P: Displayed using 7-segment display digits.
 Cnt: The current content of the count register on one of the 7-segment display

digits.
 Data Path Control Signals: Displayed using LED’s.

Approach:
The block diagram of the sequential multiplier is shown in Figure 1.

Data Path

Controller

4Multiplier
(A)

4Multiplicand
(B)

Start
(S)

Reset

Product
(P)8

Status
(Branching)
Information

Control
Signals

Figure 1: Block Diagram of Sequential Multiplier

As in hand multiplication (see Figure 2), we multiply the bits of the multiplier A
(a3a2a1a0) by the multiplicand (B) starting from the LSB (a0) to the MSB (a3). This forms
4 partial products a0B, a1B, a2B, and a3B. The resulting partial products are added with
each product shifted lefts by one bit position from its predecessor as shown in Figure 2.

a0b3 a0b2 a0b1 a0b0

a1b3 a1b2 a1b1 a1b0 …….

a2b3 a2b2 a2b1 a2b0 ……………..

a3b3 a3b2 a3b1 a3b0 ……………………...

1st. Partial Product
(a0B)

2nd. Partial
Product (a1B)

3rd. Partial Product
(a2B)

4th. Partial Product
(a3B)

P7 P6 P5 P4 P3 P2 P1 P0

Figure 2: Binary Multiplication

Multiplier Data Path

The data path for the sequential multiplier is shown in Figure 3. It consists of several

registers and an adder. The required registers include:

 B-Register: A 4-bit register which holds the multiplicand (B)

 P-Register: An 8-bit register which consists of two 4-bit registers PL (P-Low) and

PH (P-High).

o Initially the multiplier (A) is loaded in PL, while PH is cleared

o The final result (product) is stored in P = (PH, PL).

 E-Register: A 1-bit register, that is used to hold the carryout output of the adder

o Initially E is cleared

o It may be considered the 9th Bit of P, i.e. P8.

o In the final step, E will hold a 0 value.

 Cnt: A 2-bit down counter used to control the number of steps to be

performed (total of 4 steps). The counter counts from 3 down to 0.

4 -b it
A d d e r

S 0 :3

C o u t

4

44

E P H P L P 0

4

4

4

B -R e g is te r

4

C n t
2 -B it C o u n te r

Z e ro

0

Figure 3: Multiplier Data Path

The operation is stopped when the count reaches 0. This zero

condition (Zero) is detected by a NOR gate.

Notation:

 (E, PH) refers to the 5-bit register consisting of E as the MSB and PH.

 (E, PH, PL) refer to the 9-bit register consisting of E as the MSB, PH. and PL.

Computation Steps:

1. Initialize: i=0, PH ← 0, PL ← A, B-Reg ← B, Cnt ← n-1, where n = number of

operand bits.

2. (E,PH) ← PH + aiB = PH + P0B;

3. Shift (E, PH, PL) right by one bit; Cnt ← Cnt -1; and i=i+1.

4. IF Cnt = 0 then STOP else Loop back to step 2

Notes:

 The 1-bit register (E) may be considered as the MSB bit of the PH register. The

4-bit sum output of the adder are the parallel input of PH, while E is loaded

with the adder carry out output (Cout). This expanded 5-bit register will be

referred to as the (E, PH) register.

 After initializing the P-Reg, the partial products (aiB) are accumulated into the

PH -register one by one.

 Instead of shifting the partial products lefts before accumulating into P, the P-

register (E, PH, PL) is shifted rights and the partial products are then added to

it.

 In the shift right step, the three registers (E, PH, PL) are treated as one 9-bit

shift register (P). In this shift right step, a zero is shifted into E.

 Since PL is initially loaded with A, and P is shifted rights one bit per iteration,

then the LSB P0 will always equal to ai, i.e. P0 = ai ∀iteration steps.

 Important Note: Control signals are asserted in some state but ACTUAL

EXECUTION of corresponding operation doesn’t take place except AFTER

the NEXT ACTIVE CLOCK EDGE arrives.

Example: A=1011, B=1101, then n = 4.

1. Initialization: P = (PH, PL) = 0000_1011

 B = 1101

 Cnt = 3

 i = 0

2. E, PH ← PH + P0B = (0000) + (1101) = 01101 (E, PH, PL) = (0, 1101, 1011)

3. Shift P Right –-- P = (0110, 1101) , Cnt = 2, and i=1

4. E, PH ← PH + P0B = (0110) + (1101) = 10011 (E, PH, PL) = (1, 0011, 1101)

5. Shift P Right –-- P = (1001, 1110) , Cnt = 1, and i=2

6. E, PH ← PH + P0B = (1001) + (0000) = 01001 (E, PH, PL) = (0, 1001, 1110)

7. Shift P Right –-- P = (0100, 1111) , Cnt = 0, and i=3 (Note that Cnt becomes 0

only after the next clock not while being in state S2)

8. E, PH ← PH + P0B = (0100) + (1101) = 10001 (E, PH, PL) = (1, 0001, 1111)

9. Shift P Right –-- P = (1000, 1111) , Cnt = 0

10. STOP.

Controlling Data Path Registers

 Operations of the data path registers are controlled by the states of its control
signals. These control signals are produced by the controller.

 Again, it is important to stress that the control signals asserted in some state are
executed only AFTER the arrival of the NEXT ACTIVE CLOCK EDGE.

Following is a list of data path registers and the various control signals:

 B-Register: Requires a parallel load capability to load the multiplicand (B)

 PH-Register: Requires the following features:

o Synchronous clear for initialization (PH ←0)

o Parallel load to allow loading of the adder output sum bits.

o Shift right..

 PL-Register: Requires the following features:

o Parallel load to allow loading of the multiplier (A).

o Shift right.

 E-Register: Requires the following features:

o Parallel load to allow loading of the adder carryout output bit.

o Shift right capability with 0 serial input.

 Cnt: Requires the following features:

o Parallel load to allow initial loading of n-1.

o Decrement by 1.

Figure 4 shows the control signals of data path registers.

B-Register

4

LD_B

Cnt

2-Bit Counter

Zero

LD_Cnt

Dec_Cnt

E PH PL P0
0

4 4

LD_PH
LD_PL

Shft_Rt
Clr_PH

LD_E

Figure 4: Data path Register Control Signals

Multiplier Controller

The data path control signals are generated by the
controller in a proper sequence to compute the
required result (P = A x B). Controllers in general
need status information to decide on the next
proper actions. In the case of multiplier, the
controller uses the data path signal “Zero” to
determine when to stop the computation.

The state diagram of the controller is shown in
Figure 5. The controller FSM has 3 states (S0, S1,
and S2). The initial state is the reset state S0. The
state machine stays in the reset state until a Start
signal “S” is asserted high indicating the
availability of new input data. Thus, when S is
asserted high, the next clock edge moves the FSM
to the second state S1, loads multiplier input (A) into PL, clears PH, loads multiplicand
(B) into the B-register, and loads the value ‘n-1’ (= 3) in the down counter “Cnt”.

The FSM remains in the second state (S1), as long as the start signal S is high. If the start
signal is reset low the next clock will take the FSM to the next state S2 while asserting
the following data path control signals:

 LD_PH and LD_E, which load the adder sum and carry-out bits into the PH
and E registers.

S0

S1

S

S2

S

S
Clr_PH, LD_PL,
LD_B, LD_Cnt

 Zero
Shft_Rt,Dec_Cnt

Sh
ft_

Rt,
Dec

_C
nt

Ze
ro

Sh
ft_

Rt,
Dec

_C
nt

Ze
ro

S
LD_PH, LD_E

 Reset

Figure 5: Multiplier Controller

Cnt ≠ 0 indicates that there are more multiplier bits to be processed. In this case, the next
state of S2 is S1, otherwise the computation is done and controller returns back to state
S0. In either case, and the following data path control signals are asserted:

 Decrement the counter, Dec_Cnt.
 Shft_Rt, which causes a 1-bit right shift of the (E, PH, PL) register.

It should be noted that a “Reset” input will put the FSM in the initial state S0.

Generating Data Path Control Signal
The Boolean expressions of the various control signals can be easily derived from the
state diagram as follows:

 Clr_ PH = S0.S
 Ld_ PL = S0.S
 Ld_ B = S0.S
 Ld_ Cnt = S0.S
 Ld_ PH = S1. S’
 Ld_ E = S1. S’
 Shft_Rt = S2
 Dec_Cnt =S2

Implementation Issues

There are various choices available for implementing the counter. You can either use a
simple up counter to produce the flag zero when it reaches a value ‘3’ or you can use a
down counter and preload it with value ‘3’ in it. In the former case, you might need to
clear the counter instead of loading it with value (n-1) (=3) as well as change the zero
flag logic.

You may use the 4-bit adder available in the Spartan device library.

Similar to the adder, shift registers are also available in the library.

Inputs:

 A: First 4-Bit operand (multiplier)P: Use 4 Switches
 B: Second 4-Bit operand (multiplicand). : 4 Switches
 S: Start signal which initiates the multiplication operation: Push button
 Reset: Reset signal which puts the controller into the initial state: Push button
 Clock: Use one push button

Outputs:

 P: The 8-bit product result (P = A x B) where P = (PH, PL).

Display:

 Cnt: The current content of the count register to be displayed on the leftmost 7-
segment display digit.

 (E, PH, PL): Displayed using the remaining THREE 7-segment display digits.
Leftmost digit displays the contents of E, while the second & third digits display
P = (PH, PL).

 Data Path Control Signals: Displayed using LED’s in the following order from
left to right:

i. Ld_ PH
ii. Ld_ E
iii. Shft_Rt
iv. Dec_Cnt
v. Clr_ PH
vi. Ld_ PL
vii. Ld_ B
viii. Ld_ Cnt

You already have a good exposure utilizing the on-board seven-segment display digits. In
this lab, you need to use a seven-segment decoder that displays result in hex-format. The
format for the six hexadecimal digits is shown in Figure 6.

Figure 6: Hexadecimal Display

.

Pre-Lab
1. Study and understand the design strategy explained in this document.
2. On a worksheet, show how the product of A=1010 and B=1110 is computed

according to the above multiplier circuit.
3. Design the controller FSM using D-FFs and generate all data path control

signals.
4. Design the data path control signal logic.
5. Design/plan strategy for displaying the required information.

Before coming to the lab, make sure you have the complete design with you.

In-Lab
You need to complete the lab by breaking it to four stages.

 Design and verification of data path.

You need to design the data path and provide the control signals manually. Verify
your data path by simulating it through the embedded simulator.

 Design and verification of controller.
Design the controller using D-Flip-Flops. Verify that it is functionally correct by
giving the external signals and observing the data path control signals in the
embedded simulator.

 Design, verification and implementation of display decoder.
You need to design, verify and implement the seven-segment decoder required for
displaying the result of the multiplier. For this purpose, you can use the 8 switches
available on the board for producing a hex digit. For verification purposes, you
can use this hex digit for both the hex digits to be displayed.

 Complete the design.
Join the three components of the multiplier together. Verify its functioning in the
simulator and after downloading on the FPGA prototype board.

Hand-in
You have to hand in a lab report that contains the following:

 Section on the Pre-lab explaining the design of each block and the work sheet of the
multiplication example.

 Discussion of implementation results commenting on the time a control signal
becomes valid and the time it actually gets executed.

 Conclusions.

