
Lab #13 
 

4-Bit Binary Sequential Multiplier 
 

Objectives 
 To introduce concepts of large digital system design, i.e. data path and control path. 
 To apply the above concepts to the design of a sequential multiplier. 

Introduction: Design of Large Digital Systems 
 Large and medium size digital systems are mostly sequential systems with large 

number of registers and counters.  
 It is not practical to design such systems using FSM design techniques since this 

will result in a huge number of states (2n, with n  being the # of FFs including FFs 
used in all the registers and counters of the system). 

 Generally, large digital systems are partitioned into two units: 
 

1. Data Path: This is the data processing unit. It includes both combinational 
and sequential modules of well-defined functions, e.g. registers, counters, 
adders, multiplexers, decoders, etc. 

 

2. Control Path: This is the control unit or simply “controller” which controls 
the operations performed by the data path and the proper sequencing of these 
operations. The controller is implemented as an FSM that may be designed in 
the conventional manner. 

 

 In this lab, you will design the data path and controller of a 4-bit sequential 
multiplier. 

 The design can be easily extended to an n-bit multiplier which uses the same 
controller and the same data path configuration but sizes of data path components  
(e.g., registers, adder) should be adjusted accordingly. 

Design Specifications 
Inputs: 

 A: First 4-Bit operand (multiplier). 
 B: Second 4-Bit operand (multiplicand). 
 S: Start signal which initiates the multiplication operation 
 Reset: Reset signal which puts the controller into the initial state. 

 
Outputs: 

 P: The 8-bit product result (P = A x B). 
 
Display: 

 P: Displayed using 7-segment display digits. 
 Cnt: The current content of the count register on one of the 7-segment display 

digits. 
 Data Path Control Signals: Displayed using LED’s. 



Approach: 
The block diagram of the sequential multiplier is shown in Figure 1. 
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Figure 1: Block Diagram of Sequential Multiplier 

 
As in hand multiplication (see Figure 2), we multiply the bits of the multiplier A 
(a3a2a1a0) by the multiplicand (B) starting from the LSB (a0) to the MSB (a3). This forms 
4 partial products a0B, a1B, a2B, and a3B. The resulting partial products are added with 
each product shifted lefts by one bit position from its predecessor as shown in Figure 2.  
 
 

a0b3     a0b2     a0b1     a0b0

a1b3     a1b2     a1b1     a1b0    …….

a2b3     a2b2     a2b1     a2b0    ……………..

a3b3     a3b2     a3b1     a3b0    ……………………...

1st. Partial Product
(a0B)

2nd. Partial
Product (a1B)

3rd. Partial Product
(a2B)

4th. Partial Product
(a3B)
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Figure 2: Binary Multiplication 



Multiplier Data Path 
 

 
 

The data path for the sequential multiplier is shown in Figure 3. It consists of several 

registers and an adder. The required registers include:  

 B-Register: A 4-bit register which holds the multiplicand (B) 

 P-Register: An 8-bit register which consists of two 4-bit registers PL (P-Low) and 

PH (P-High).  

o Initially the multiplier (A) is loaded in PL, while PH is cleared 

o The final result (product) is stored in P = (PH, PL). 

 E-Register: A 1-bit register, that is used to hold the carryout output of the adder 

o Initially E is cleared 

o It may be considered the 9th Bit of P, i.e. P8. 

o In the final step, E will hold a 0 value. 

 Cnt:         A 2-bit down counter used to control the number of steps to be 

performed (total of 4 steps). The counter counts from 3 down to 0. 
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Figure 3: Multiplier Data Path 



The operation is stopped when the count reaches 0. This zero 

condition (Zero) is detected by a NOR gate. 

Notation: 

 (E, PH) refers to the 5-bit register consisting of E as the MSB and PH. 

 (E, PH, PL) refer to the 9-bit register consisting of E as the MSB, PH. and PL. 
 

Computation Steps: 

1. Initialize: i=0, PH ← 0, PL ← A, B-Reg ← B, Cnt ← n-1, where n = number of 

operand bits.  

2.  (E,PH) ← PH + aiB = PH + P0B; 

3. Shift (E, PH, PL) right by one bit;   Cnt ← Cnt -1;      and     i=i+1. 

4. IF      Cnt = 0      then      STOP      else          Loop back to step 2 
 

Notes: 

 The 1-bit register (E) may be considered as the MSB bit of the PH register. The 

4-bit sum output of the adder are the parallel input of PH, while E is loaded 

with the adder carry out output (Cout). This expanded 5-bit register will be 

referred to as the (E, PH) register. 

 After initializing the P-Reg, the partial products (aiB) are accumulated into the 

PH -register one by one.  

 Instead of shifting the partial products lefts before accumulating into P, the P-

register (E, PH, PL) is shifted rights and the partial products are then added to 

it. 

 In the shift right step, the three registers (E, PH, PL) are treated as one 9-bit 

shift register (P). In this shift right step, a zero is shifted into E. 

 Since PL is initially loaded with A, and P is shifted rights one bit per iteration, 

then the LSB P0 will always equal to ai, i.e. P0 = ai    ∀iteration steps. 

 Important Note: Control signals are asserted in some state but ACTUAL 

EXECUTION of corresponding operation doesn’t take place except AFTER 

the NEXT ACTIVE CLOCK EDGE arrives. 

 



Example: A=1011, B=1101, then n = 4. 

1. Initialization: P =  (PH, PL) = 0000_1011 

 B = 1101 

 Cnt = 3 

 i = 0 
 

2. E, PH ← PH + P0B = (0000) + (1101) = 01101  (E, PH, PL) = (0, 1101, 1011) 

3. Shift P  Right –-- P = (0110, 1101) , Cnt = 2, and i=1 

4. E, PH ← PH + P0B = (0110) + (1101) = 10011   (E, PH, PL) = (1, 0011, 1101) 

5. Shift P  Right –-- P = (1001, 1110) , Cnt = 1, and i=2 

6. E, PH ← PH + P0B = (1001) + (0000) = 01001  (E, PH, PL) = (0, 1001, 1110) 

7. Shift P  Right –-- P = (0100, 1111) , Cnt = 0, and i=3 (Note that Cnt becomes 0 

only after the next clock not while being in state S2) 

8. E, PH ← PH + P0B = (0100) + (1101) = 10001  (E, PH, PL) = (1, 0001, 1111) 

9. Shift P  Right –-- P = (1000, 1111) , Cnt = 0 

10. STOP. 

 
 
Controlling Data Path Registers  
 

 Operations of the data path registers are controlled by the states of its control 
signals. These control signals are produced by the controller. 

 Again, it is important to stress that the control signals asserted in some state are 
executed only AFTER the arrival of the NEXT ACTIVE CLOCK EDGE. 

 
Following is a list of data path registers and the various control signals: 

 B-Register: Requires a parallel load  capability to load the multiplicand (B) 

 PH-Register: Requires the following features: 

o Synchronous clear for initialization (PH ←0) 

o Parallel load to allow loading of the adder output sum bits. 

o Shift right.. 

 PL-Register: Requires the following features: 

o Parallel load to allow loading of the multiplier (A). 

o Shift right. 

 E-Register: Requires the following features: 



o Parallel load to allow loading of the adder carryout output bit. 

o Shift right capability with 0 serial input. 

 Cnt:         Requires the following features: 

o Parallel load to allow initial loading of n-1. 

o Decrement by 1. 
 
Figure 4 shows the control signals of data path registers. 
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Figure 4: Data path Register Control Signals 

 

 
Multiplier Controller 
 
The data path control signals are generated by the 
controller in a proper sequence to compute the 
required result (P = A x B). Controllers in general 
need status information to decide on the next 
proper actions. In the case of multiplier, the 
controller uses the data path signal “Zero” to 
determine when to stop the computation.  
 
The state diagram of the controller is shown in 
Figure 5. The controller FSM has 3 states (S0, S1, 
and S2). The initial state is the reset state S0. The 
state machine stays in the reset state until a Start 
signal “S” is asserted high indicating the 
availability of new input data. Thus, when S is 
asserted high, the next clock edge moves the FSM 
to the second state S1, loads multiplier input (A) into PL, clears PH, loads multiplicand 
(B) into the B-register, and loads the value ‘n-1’ (= 3) in the down counter “Cnt”.  
 
The FSM remains in the second state (S1), as long as the start signal S is high. If the start 
signal is reset low the next clock will take the FSM to the next state S2 while asserting 
the following data path control signals: 
 

 LD_PH and LD_E, which load the adder sum and carry-out bits into the PH 
and E registers. 
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Figure 5: Multiplier Controller 



Cnt ≠ 0 indicates that there are more multiplier bits to be processed. In this case, the next 
state of S2 is S1, otherwise the computation is done and controller returns back to state 
S0. In either case,  and the following data path control signals are asserted:  

 Decrement the counter, Dec_Cnt. 
 Shft_Rt, which causes a 1-bit right shift of the (E, PH, PL) register. 

 
It should be noted that a “Reset” input will put the FSM in the initial state S0. 
 

Generating Data Path Control Signal 
The Boolean expressions of the various control signals can be easily derived from the 
state diagram as follows: 

 Clr_ PH = S0.S 
 Ld_ PL = S0.S 
 Ld_ B = S0.S 
 Ld_ Cnt = S0.S 
 Ld_ PH = S1. S’ 
 Ld_ E   = S1. S’ 
 Shft_Rt = S2 
 Dec_Cnt =S2 

 
Implementation Issues 
 
There are various choices available for implementing the counter. You can either use a 
simple up counter to produce the flag zero when it reaches a value ‘3’ or you can use a 
down counter and preload it with value ‘3’ in it. In the former case, you might need to 
clear the counter instead of loading it with value (n-1) (=3) as well as change the zero 
flag logic.  
 
You may use the 4-bit adder available in the Spartan device library. 
 
Similar to the adder, shift registers are also available in the library.  
 
Inputs: 

 A: First 4-Bit operand (multiplier)P:  Use 4 Switches 
 B: Second 4-Bit operand (multiplicand). :  4 Switches 
 S: Start signal which initiates the multiplication operation:  Push button 
 Reset: Reset signal which puts the controller into the initial state:  Push button 
 Clock:  Use one push button 

 
Outputs: 

 P: The 8-bit product result (P = A x B) where P = (PH, PL). 
 
Display: 

 Cnt: The current content of the count register to be displayed on the leftmost 7-
segment display digit. 



  (E, PH, PL): Displayed using the remaining THREE 7-segment display digits. 
Leftmost digit displays the contents of E, while the second & third digits display 
P = (PH, PL). 

 Data Path Control Signals: Displayed using LED’s in the following order from 
left to right: 

i. Ld_ PH  
ii. Ld_ E   
iii. Shft_Rt  
iv. Dec_Cnt  
v. Clr_ PH  
vi. Ld_ PL  
vii. Ld_ B  
viii. Ld_ Cnt  

 
You already have a good exposure utilizing the on-board seven-segment display digits. In 
this lab, you need to use a seven-segment decoder that displays result in hex-format. The 
format for the six hexadecimal digits is shown in Figure 6. 
 

 
Figure 6: Hexadecimal Display 

. 
 

Pre-Lab 
1. Study and understand the design strategy explained in this document. 
2. On a worksheet, show how the product of A=1010 and B=1110 is computed 

according to the above multiplier circuit. 
3. Design the controller FSM using D-FFs and generate all data path control 

signals. 
4. Design the data path control signal logic. 
5. Design/plan strategy for displaying the required information. 

 
Before coming to the lab, make sure you have the complete design with you. 

In-Lab 
You need to complete the lab by breaking it to four stages. 
 
 Design and verification of data path. 



You need to design the data path and provide the control signals manually. Verify 
your data path by simulating it through the embedded simulator. 

 Design and verification of controller. 
Design the controller using D-Flip-Flops. Verify that it is functionally correct by 
giving the external signals and observing the data path control signals in the 
embedded simulator. 

 Design, verification and implementation of display decoder. 
You need to design, verify and implement the seven-segment decoder required for 
displaying the result of the multiplier. For this purpose, you can use the 8 switches 
available on the board for producing a hex digit. For verification purposes, you 
can use this hex digit for both the hex digits to be displayed. 

 Complete the design. 
Join the three components of the multiplier together. Verify its functioning in the 
simulator and after downloading on the FPGA prototype board. 

Hand-in 
You have to hand in a lab report that contains the following:  

 Section on the Pre-lab explaining the design of each block and the work sheet of the 
multiplication example.  

 Discussion of implementation results commenting on the time a control signal 
becomes valid and the time it actually gets executed. 

 
 Conclusions.  


