
r,
p-

ve

-
n

p-
es-

t
, a
p-

i-
.

-

lie
e
e
to

t

-

Consumption modelization of a DSP and automatic consmption/performance
estimation of a C code executed by this DSP

GUITTON-OUHAMOU Patricia, BELLEUDY Cécile, AUGUIN Michel
Laboratoire d’Informatique, Signaux et Systèmes de Sophia-Antipolis

Les Algorithmes-bat. Euclide
2000, route des Lucioles-BP 121, 06903 Sophia-Antipolis Cedex
guitton@i3s.unice.fr, belleudy@i3s.unice.fr, auguin@i3s.unice.fr
Abstract:
The great development of numeric systems (mobile
telephone, personal computers, multimedia terminal...)
increases every day the power consumption. The devel-
opment of mobile telephone and other embedded sys-
tems puts the question of the battery’s life. Indeed, the
life of the battery is a critical parameter, and batteries
create pollution. It is necessary to reduce this consump-
tion in this domain by every ways.
Some studies have shown that it is possible to reduce
about 40% the consumed energy by rewriting some
parts of the source code (software optimization) [1].
Optimization at system level can achieve a gain about
58% by reducing the supply voltage or the frequency
(compromise speed/consumption) [2]. To optimize the
code by rewriting some parts of the source code, it is
necessary to detect those parts. So a power estimator
coupling with a performance estimator would be an ide-
al tool. In this article, we show the integration of the
consumption criteria in a performance estimator tool
that already exists. So estimations of performance and
of the consumed power can be realized in the same time
to allow optimizations.

Key-words: power estimation of C code, consumption
model of a DSP, low-power code for DSP, perfor-
mance/energy estimator for a C code, automatic code
estimation.

1•Introduction

The great development of numeric systems (mobile
telephone, personal computers, multimedia terminal...)
increase every day the power consumption. Indeed, the
global consumption was about 160 MWatts in 1992 and
was achieving about 9000 MWatts in 2001[3].It is nec-
essary to reduce the consumption.Some studies have
shown that it is possible to reduce about 40% the con-
sumed energy by rewriting some parts of the source
code (software optimization) [1]. Optimization at sys-
tem level can achieve a gain about 58% by reducing the

supply voltage or the frequency (compromise speed/
consumption) [2]. As the telecommunication applica-
tions always use a core of signal treatment processo
Digital Signal Processor, our study uses the consum
tion model of a DSP, DSP OAKTM [4] of Phillips.
The telecommunication applications are written in C
and compilers are ineffective for the DSP. That’s why
the laboratory and Phillips Semiconductors Sophia ha
built a tool which estimates the performance of the
code, VESTIM [5]. It gives an estimation of an optimi
zed code in performance, so in cycles. The goal is the
to introduce the consumption criteria in this tool. It
could estimate the performance and the consumption
collectively. Indeed, to optimize the code by rewriting
some parts of the source code to reduce the consum
tion, it is necessary to detect those parts. So a power
timator coupling with a performance estimator would
be an ideal tool. To realize the integration of the con-
sumption criteria in this performance estimator tool, i
is necessary to have a consumption model.So, in first
consumption model has been extracted. Our consum
tion model is very accurate, the worst error is about
8.8%. Some writing rules have been deduced to optim
ze the consumption, a gain of 14% is achieved for a FIR
In this paper, the performance estimator tool, VESTIM
is presented, then the consumption model of the DSP
OAKTM is briefly presented, and then its implementa
tion in this tool. This last part constitutes the innovative
part and is a preparatory study.
Indeed, we can mention some related works as Natha
Julien[6]. They estimate the consumption of the C cod
for the TMS320C6201. A lot of parameters have to b
computed with a lot of test sequences and is not easy
utilize.
Furthermore, there are works of Tiwari and al. [7] bu
their work is at assembly level.
The novelty of our work is to estimate in performance
and in energy a C code without compiling it in assem
bly.

, a

nts
te
a

m-
2•VESTIM: performance estimator for DSPs

VESTIM is a performance estimation tool: it estimates
a C code from a compiler and gives an estimation of an
optimized code.

a•Goal: To program a DSP is more and more difficult

because of the complexification of the applications and

of the architectures. It is necessary to build compilers

able to supply an assembly codesince a C code. The

difficulty is the ineffectiveness of actually compilers

because of the DSP specific and heterogeneous archi-

tectures. VESTIM allows to detect the parts of the code

to optimize.
b•Estimation principles:VESTIM decomposes the
program in some base blocs. A base bloc is a part of the
program. The only entrance is the first instruction and
the only out is the latest instruction.
Each base bloc presents an execution time supplies by
the formula: Texe=xi ci, with ci, the cost in cycle num-
ber for each base bloc and xi is the number of execu-
tions of each bloc.
The execution number xi is achieved by executing the
program on a host processor (pentium for instance,
because its execution is faster). Test sequences of data
are used. It is to avoid the parts of code depending on
the values of data. For parts of test independent of data,
a profiling of the source code gives xi. This avoids sim-
ulations. So the xi are known.
The cycle number of each base bloc ci is computed. An
addition of the cost of each instruction in a base bloc is
done.
The application representation in RTL (Register Trans-
fer Language describes the processor) which is an
intermediate code for compilers GNU (and gives the
decomposition in base bloc) allows to build a CFG
(Control Flow Graph, figure 1).

Each knot Bi represents a base bloc with annotations
(priorities); each edge represents dependencies.

To estimate the number of cycles ci of each base bloc
DAG (Data Acyclic Graph, figure 2) is built with the
RTL representation.

Each knot represents an operation; each edge represe
precedencies and data dependencies. Names indica
characteristics. For example, Litt is an operation with
constant integer.

2•1•Overview of VESTIM

Let see a global diagram of VESTIM.

Figure 3. VESTIM

2•2•VESTIM, step by step

Let us explain the phases of VESTIM (Figure3):
Firstly, LST is an assembly code generates by a C co
piler.
Let us give some details about the different parts of
Figure3 which describes VESTIM.

B1
1

B2
 5

B3
31

B4
80

B5
31Figure 1. CFG

Shift

Sub

Litt Assign
XRAM

Litt

Assign

XRAMFigure 2. DAG

 Application description in C

Compilation on the host procesor

Execution

Computations of xi

Compilation on the target DSP

Estimation of an assembly
optimized code

LST
Performance of the generate

Comparison

Back-end

Front-end

library

processor

CFG

assembler code

RTL

-
s),
e

s
c-
n-
f
tak-
e-
e

c-
,
ta-

s-
di-
in
that
al.
or
• Front-end: Set of phases dependent on the source
code are independent of the target processor. At this
step a test sequence is executed on a host processor
to obtain the xi.

• Back-end: Set of phases dependent on the target
processor and on the intermediate language. The
generated code and the optimized code are esti-
mated.

Now, let us see libraries needed by VESTIM.

2•3•Processor library:

To take into account the consumption it is necessary to
fill-up the processor library. Let us see how the proces-
sor is described.
A file contains the processor name (Proc_Name), the
memories and registers resources (Res, Res...)operator
units and addressing modes (RMi (indirect addressing
mode), RMsd (short direct addressing mode))...
Example:
ADD:
CV, RMi; ALU; ACC
UT_Free = ALL - (MEM)
REG_Free = ALL - (RI)
Nb_Cycle = 1
Cond = No
In first, it is the operator name, ADD, in entrance, the
register CV (Constant Value), RMI indicates that the
addressing mode is indirect. In out, ACC means that out
are in accumulators. The unit activated is the ALU.
Constraints for memory use are UT_FREE=ALL-
(MEM), so no constraints except that the memory is not
available. For the registers, REG_FREE=ALL- - (RI)
means that all the registers are free except the R regis-
ters. Then the number cycle is presented and no condi-
tion to execute the instruction are necessary: Cond= No.

2•4•Operations scheduling:

As the intermediate RTL description, more oriented
RISC, an intermediate description oriented DSP is built
by applying adapted writing rules. An operation sche-
duling is so built. An instruction can contain some
operations.
Tasks are put in order of priority. Priorities are deter-
mined by deadlines and dependencies. When a task is
scheduled, these successors are integrated in the list.
This step takes into account the parallelism: instruc-
tions executing in parallel at the same cycle are put
together.

2•5•OUTPUT of VESTIM: Estimation

A task (described in the CFG) is implemented when a
corresponding operation in the target processor

description is met or when it is met in the scheduling
list. Then the conditional field is checking.
VESTIM supplies a scheduling table of operations on
the architectures units.
For the previous DAG the reservation table is:

3•DSP OAK+ (Phillips) description

The OAK DSPTM processor [4] is a CMOS 16 bits
fixed point DSP processor. It consists briefly of the
MPU, the ALU, the barrel shifter, the exponent logic
unit, the data address arithmetic unit, four 36-bit accu
mulators and six data/address registers r0...r5 (16 bit
two internal memories X and Y. Busses connecting th
registers ri are preloaded to 1. Its description in
VESTIM implies to simplify the architecture descrip-
tion and its resources description.

4•Implementation of the DSP Oak consumption
model in VESTIM

4•1•The consumption models[8].

Models are the most possible by functional unit
as works VESTIM. Because of heterogeneous archite
tures, DSPs may have very complex behaviours in co
sumption. In addition, their many possibilities o
datapath lead to developp some measures methods
ing into account the units of the architecture. Further
more, the instruction set of a DSP is very near to th
functional units, that means that parallelism instru
tions is obtain by activing paralell units. For example
we can mention the address generators, and compu
tion unit in an multiply/accumulation instruction.

Comapred to generic processors, DSP proce
sors are different. For example, registers are often de
cated and dependant on functional untis. They conta
some operators and some specific adressing modes
speed up the execution of some treatment of the sign
Many DSPs are fixed and data width is adaped f
some algorithms as audio algorithm.

cycle 1 cycle 2 cycle 3 cycle 4

ALU Sub

Barrel Shifter Shift

MEM Ltd X

CG (constant
Generator)

X X

ACCU X X X

RI X

SV X X

a

f

i.

st

-

es-
n-
e

g

is
reg-
d

r-

s

f
e

s
-
-
t all
it,

to
ds

e
er
a

For most of DSPs , it is preferable to dispose of a
parallel memory rather than a speed hierarchic memory
with caches.

As VESTIM exploits the operations schedulings
at functional level, we have decided to modelize con-
sumption according to datapath. For each VESTIM ins-
truction, it is so possible to compute a consumption
estimation by additionning contribution of each unit.
So the corresponding consumption modelization of the
OAK DSP could be at assembly level. Moreover, as the
consumption behavior is very complex, it is preferable
to modelize at the assembly level. So, let us describe
the meaurement methods.

In order to compute the power consumption, we
use the board-based measurement method developed in
[9].The average power is given by P=I*Vdd where I is
the average current and Vdd the supply voltage. The
energy E is given by: E=P*T where T is the execution
time of the program. The basic idea is to measure the
consumed current by inserting an ammeter between the
power supply and the CPU (the power supply connec-
tion to the CPU must be isolated from the reminder of
the system). Evaluation of the energy consumption of
an assembly program requires to differentiate two types
of consumptions:

- the base cost of an instruction provided by the
consumption of the execution of one instruction,

- the inter-instruction (or overhead) cost due to
the changes in the data path activated by two
successive instructions.

So, the principe is to measure the current for
each instruction, we create a test program that contains
initialization of the system and a loop combining the
instructions repeated 200 times. This number has been
determined so that the loop instructions does not
modify the measured current value, that means to
obtain an average measure only due to the instruction
itself, it is to neglect the effects due to instructions
managing the loop. To measure the overhead, the test
program contains 200 pairs of instructions.

In a first approach, these measurements must be
realized for each instruction, each value and each
addressing mode of the operands. Since this work is too
exhaustive, classes of instructions are formed. Two ins-
tructions in a class activate the same data path in the
DSP. For example, operations executed by the ALU
and using the same addressing modes for the operands
belong to the same class.

The evaluation of the power consumption of
program is calculated by
[1,4]:

Where:

O(i,j): is the overhead cost due to execution o
instruction i followed by the instruction j;

Ri: the base cost of instruction i;

Ni: number of cycles to execute the instruction

Ek represents the consumption due to lo
cycles, for example, cache and pipeline stalls.

Finally, it is so consider the instruction set, diffe
rent data and addressing modes.

To realize these measures, a test board is nec
sary. This test board has to allow to measure the co
sumption of the DSP core, of the output/input of th
circuit and of the memories.

Considering the architectural characteristics, two
sources of variation were identified:
a• the preload of the busses: the bits equal to 0 con-

sume more than those equal to 1.
This preload allows a faster clock rate. Indeed, forcin
busses to the logical zero level is faster than forcing
them to the logical level 1. The preload of the busses
activated only when operands use the data/address
isters of the DSP. To evaluate the effect of the preloa
of busses, the current values are measured for an
instruction executed first with accumulators input ope
ands and next with data/address register input oper-
ands. The difference between these two values
represents the consumption due to the preloaded bu
activity. We notice that in the worst case, the current
can double when data/address register operand are
used. The preload of busses is an important factor o
consumption for this processor. In this study, we mad
vary the number of bits equals to 0 in the input oper-
ands and their position.
b•the switching activity:
Another part of the consumption is due to the transition
of the bits, varying at each cycle from 0 to 1 and con
versely. This switching activity results from the charg
es and discharges of the capacities of transistors, tha
put together corresponds to the capacity of the circu
giving a power consumption proportional to: CV2

where V is the supply voltage. Measurements lead
conclude that the consumed power of the DSP depen
mainly on the switching activity of the signals. Let a b
the average number of transitions by cycle. The pow
Pswitching consumed by a unit of the power with

E Ri Ni×()
i

∑= O i j,() N i j,()×()
i j,
∑ Ek()

ki
∑+ +

n-

-
it

al-

r-
r-

r-
r-

d to

t

is
-

d.

of
clock fclk is [10,11]: Pswitching= *fclk*(C*Vdd
2).

The consumption of energy generated by the execution
of an application for all the units of the proces-
sor[10,11] is:

 with:

• n, the number of units of the processor;

• average number of bit transitions per cycle of

the its unit;
• Ci, out capacity of the considered unit.
However the out capacity of each unit is unknown. By
measuring the current, we can estimate the power
induced by the switching activity by changing the num-
ber of switching bits in the same instruction and the
same addressing mode. The influence of their position
was also tested.
In the worst case, we notice that the current may be
multiplied by 1.5 when all switching bits change with
regard to no change of bit (not to be influenced by the
preload of busses, operands are accumulators).
c•The consumption model
In order to take into account these consumption sources
the preloaded busses and switching activity, the follow-
ing instruction current model is:
I = Icst+ Ipreloaded bus+ Iswitching activity(1), where Icstis
the current measured with no switching activity. The
two other components can double the value current.
We present here only the consumption model for the
ALU:
Ipreloaded bus= N*I bus unit+ Iextension of sign, where: N is
the number of bits equal to 0 in the input data.

Ibus unit: elementary current (by bit) due the preload
of the busses.

I extension of sign: if the 15th bit of the input operand
is equal to 0, the extension of sign entails the following
20 bits to 0. If the 15th bit is equal to 1, I extension of
sign = 0.
These basic currents are measured as follows:
-Ibus unit= (Iand r1=0,a0 - Iand r1 =7FFF,a0)/15.
second operand is equal to 0 so that there is no switch-
ing activity.
-Iextension of sign:
If the 15th bit is equal to 0, Iextension of sign = (Iand
r1=7FFF,a0 - Iand r1 = FFF7,a0)
Else Iextension of sign =0.
- Iswitching activity= (Ixor a1=1,a0 - Ixor a1=0,a0.).
This model is applicable for arithmetic and logic
instructions executed by the ALU such as add, sub,

cmp, and, or, xor.... (instructions of the class untitled
ALU).
Accuracy of our model:
For these instructions, the estimated values of the co
sumption are compared with the real values:
- for logic instructions (and, or, xor), the worst case
reveals an error of 2.5%.
- for arithmetic instructions, the error is 6% in the
worst case.
We detail no more, there are other models for the dif
ferent units, with the same consumption sources, so
doesn’t bring more [8].
If the switching activity is negligible, the consumption
is a constant, else we have to take into account the v
ues of data.

Writing rules deduced:
Addressing modes have a significant impact on the cu
rent consumed by an instruction. There for, it is prefe
able to use the following resources, we examine only
the ALU, but it’s the same way for all the units:
Addressing modes have a significant impact on the cu
rent consumed by an instruction. There for, it is prefe
able to use the following resources, we examine only
the ALU, but it’s the same way for all the units:

-For the ALU
The source operands and addressing modes that lea
reduce the power consumption are:

- accumulators and registers a0, a1, p,
-short direct, and indirect addressing mode.

Using the differences of the overheads:
In a general approach, higher power savings are
obtained for successions of instructions belonging to
the same class then instructions belonging to differen
classes but with the same addressing mode.
Particularly:
- some pairs of instructions have a low power con-
sumption, as for example the pair mov-mpy or mov-
add.
-In contrast, it would be preferable to avoid mpy-add

d•Implementation
Addressing mode and the working unit are mainly to
determine the base cost of an instruction. Indeed, Icst
the consumption without switching activity, it is deter
mined by the addressing mode and the instruction
itself. The scheduling table, output of VESTIM, sup-
plies the addressing mode and the working unit, so a
first consumption estimation is obtained: Icst.
So it is necessary to integrate in the processor library
the consumption of each instruction and the overhea
For the moment, we have modified VESTIM to take
into account the consumption of each instruction and
an average overhead.

α

Pswitching αi CiV
2

f clck⋅ ⋅ 
 

i

n

∑=

αi

.
f

Reading the scheduling table, the algorithm computes
the consumption with the library. So implementation
gives us some average values of consumption for a C
code.

5•Results:

We present here some results.
We have considered an embedded video application.
This application treats images for an embedded camera
to detect motions on a fixed picture. The time con-
straint is to treat 25 images per second. All given
results are fictive values because Philips Semiconduc-
tors does not allow us to give real values. First, let us
describe the tested application.
 The application considers several pictures. The first
one is the background picture. The next pictures are uti-
lized to compare at the first picture to detect the motion.
Let us see the algorithm step by step:
• a parametrically average; its goal is to limit the

impact of noise signal;
• a substraction of images to distinguish motion

parts of fixed parts. In fact, the algorithm realized
the difference pixel to pixel between two pictures.
Fixed parts are in black and other in grey.

• a binarise operation to isolate moving objects,
• a treatment called "morphological" that filters pic-

ture to erase isolated points. The algorithm trans-
forms a white pixel in a black pixel if all
neighboring pixels are black.This treatment elimi-
nates noise. Therefore it is necessary to realized
previously some steps as

• erosion,
• dilatation and
• reconstruction.

Erosion eliminates noise and some details of mov-
ing objects. Then it is necessary to operate a dilata-
tion and a reconstruction to avoid too much
information losses.

In summary, let us see the figure4:

Figure4.video application

We have estimated the consumption for each step of
this application. Values are not real because Philips
Semiconductors does not allow us to give real values
As shows the followed table, we obtain the number o
cycles and the power for each task.

It is so possible to program and to know in the same
time the cost of the code.

tasks cycles power (mW)

parametrically aver-
age/substraction/

absolute

130082 111000000

histogram 178886 115000000

gradient 4 4000

binarisation 308874 171000000

erosion 564344 560000000

dilatation 1802333 758000000

reconstruction 196621 90000000

average on N images

Substraction

absolute Value

binarisation

histogram

gradient

erosion

dilatation

reconstruction

-

t
eur

i-

g

4
,

6•Optimization
To optimize the consumption by modifying the code,
the method consists in using the writing rules presented
previously. The successions of the instructions can be
cheap in energy or not. These values are put in a library
and are taken into account to build the scheduling list.
So the CFG is now built with two priorities: the priority
for the performance and the consumption priority. Con-
sumption priority is computed according to the base
cost.

The overhead cost must be considered carefully
because it is very important. The overhead must be
taken into account as annotation on the bow that is
between two base blocs. It is not satisfying because
some overheads between instructions are here
neglected. Indeed base blocs regroup some instruc-
tions. How to take into account overheads between
instructions? We have to modify the reservation table
obtained since the DAG. For example, the table can be
reviewed in considering the overheads between each
successive instruction, in taking into account the per-
formance.
So finally, an algorithm can be done that reviews the
scheduling table and put other orders to optimize the
total costs and compare with the performance.

A compromise has to be found because priorities are
not obligatory compatibles, that means that the optimi-
zed solution for the consumption is not necessary the
optimized performance solution. The compromise will
be determined by tolerances.
To optimize solutions, a genetic algorithm can be
implemented to propose the best solutions between the
compromises.

7•Conclusion:

We have presented a consumption model of a DSP. Our
method is reliable: the error is about 6% for the ALU.
Then we present the step to implement the consump-
tion model in a performance estimator tool, VESTIM.
The same work has to be realized with the new genera-
tions of DSP processors. Libraries have to be updated,
that represents an important work.

8•References:

[1] Tutorial: High level Power modeling, estimation
and optimization; DAC 1997 Chair: Massoud Pedram;
Organizers: Giovanni De Micheli, Massoud Pedram;

Presenters: Enrico Macii, Massoud Pedram, Fabio
Somenzi

[2] A. Pegatoquet, M. Auguin, L. Bianco, E. Gresset,
“Rapid Development of optimized DSP Code from a
High Level Description through Software Estima-
tions”, 36th Design Automation Conference, June 19
24, New Orleans, Louisiana, USA, 1999.

[3] Vivek Tiwari, Deo Singh, “Power Challenge in the
internet world”, Intel Corp., Tutorial of the 32 Annual
International Symposium on Microarchitectures,
November 1999.

[4] VVF3500 DSP Core User Manual, VLSI technol-
ogy, Inc.

[5] Thesis, A. Pegatoquet, “Méthodes d’estimation de
performance logicielle: application au développemen
rapide de code optimisé pour une classe de process
DSP", Université de Nice Sophia-Antipolis
(FRANCE), Octobre 1999.

[6] J. Laurent, N.Julien, E.Martin, «High Level Power
Estimation for a DSP», in proceedings of Sophia Ant
polis forum on MicroElectronics2000, October, 25-26
2000, p. 112-116.

[7]V. Tiwari, S. Malik and A. Wolfe, «Instruction level
optimisation software», Journal of VLSI Signal Pro-
cessing Systems, , p.139-154, April 1996.

[8] Guitton-Ouhamou Patricia, Belleudy Cécile,
Auguin Michel “Power consumption Model for the
DSP OAK Processor”, in SOC Design Methodologies
edited by Michel Robert, Christian Piguet, Marie-Lise
Flottes, Kluwer Academics Publishers, p217-228

[9]Vivek Tiwari, Sharad Malk and Andrew Wolfe,
Mike Tien-chien Lee “Instruction level power analysis
and optimization of software”, Journal of VLSI Signal
Processing Systems, Vol. 13, No. 2, August 1996.

[10] Chingwei Yeh, Min-Cheng Chang, Shih-Chieh
Chang, Wen-Bone Jone, “Gate-level Design exploitin
Dual supply voltages for power-driven applications”,
pp68-71 DAC 1999, New Orleans, LA, USA Newslet-
ter, pp59-64, January 2001.

[11] Renu Mehra and Jan Rabaey “Behavioral Level
Power Estimation and Exploration” Proceedings 199
International Workshop on Low Power Design, Napa
CA, pp. 197-202, April 24-27, 1994.

	1• Introduction
	2• VESTIM: performance estimator for DSPs
	2•1• Overview of VESTIM
	2•2• VESTIM, step by step
	2•3• Processor library:
	2•4• Operations scheduling:
	2•5• OUTPUT of VESTIM: Estimation
	3• DSP OAK+ (Phillips) description
	4• Implementation of the DSP Oak consumption model in VESTIM
	4•1• The consumption models[8].
	a• the preload of the busses: the bits equal to 0 consume more than those equal to 1.
	b• the switching activity:
	c• The consumption model
	d• Implementation

	5• Results:
	6• Optimization

	7• Conclusion:
	8• References:

