
10-3

Physical Placement Support

Module Compiler Relative Placement Flow

Figure 10-1 Module Compiler Relative Placement Flow

In Figure 10-1, Module Compiler RB Beta outputs two files:

• A relative placement information file (.layout, .dpcm, or .tile)

• A .rpv file for viewing in RP Viewer

Module
Compiler

with
Relative

Placement
Enabled

Apollo-DP Smartpath Mustang

ASIC
Placement and Routing

Module Compiler
Language

.dpcm .tile .layout

M
od

ul
e

C
om

pi
le

r
S

ys
te

m
T

ili
ng

 E
nh

an
ce

d
P

la
ce

r

RP View

 .rpv

10-4

Physical Placement Support

Module Compiler Relative Placement Checklist

• Load 1999.05 Async., see Chapter 2 “Installation and Setup” of
the Module Compiler User Guide for details.

• Read over this document and its appendix.

• Determine a directory to run Module Compiler RP in.

• Make sure the synthesis libraries are set for use with Module
Compiler.

• Make sure that necessary mcenv variables are set before invoking
Module Compiler Relative Placement, see “Enabling Module
Compiler Relative Placement” on page 10-5.

• Enable Module Compiler RP (see next section).

• Select “RP Grouping” check box in GUI (see Figure 10-5).

• Select Optimization Controls in GUI (see “RP Optimization
Control” on page 10-16).

- Select “RP Optimizations” check box.

- Determine multiplier RP.

- Specify column removal rate.

- Calculate logical height and enter value.

- Determine I/O Locations (Left-to-Right recommended).

- Specify level of column merging optimization effort.

• Specify Output Format (see Figure 10-21).

- Specify output format (in addition to .layout).

10-5

Physical Placement Support

- Specify output filename.

• View RP using Module Compiler View (see “Module Compiler
Relative Placement Viewer” on page 10-32.

Enabling Module Compiler Relative Placement

• The Module Compiler Relative Placement application is built into
the Module Compiler application. You do not need any additional
software to run the relative placement capability. Relative
placement is enabled by default and therefore does not need to
be enabled. To disable the Module Compiler Relative Placement
capability, you will need to modify the mc.env file.

• To disable the Module Compiler Relative Placement capability,
you will need to modify the mc.env file.

- Using a text editor such as vi or EMACS, add the following line
to the beginning of the mc.env file:

dp_physical -
dp_layout_out -

- Alternatively you can type at the UNIX prompt:

% mcenv dp_physical -
% mcenv dp_layout_out -

These commands will enter the variables and their settings into
the mc.env file. If mc.env does not exist, Module Compiler will
created it for you.

10-6

Physical Placement Support

You must set both variables to enable Module Compiler Relative
Placement capability. Setting these variables will modify the Module
compiler GUI. The new GUI features will be covered later in this
document.

Starting Module Compiler Relative Placement

Once you have enabled Module Compiler Relative Placement
capability by editing the mc.env file, you can run the application.by
typing at the UNIX prompt:

% mc -tech <my_library>

This will bring up the Module Compiler GUI. Clicking on the
“Optimization” menu will show a screen similar to that in Figure 10-2.

Figure 10-2 RP Layout Options Optimization Menu Selection

10-7

Physical Placement Support

Figure 10-2 show that Module Compiler Relative Placement has
added an additional submenu item “Physical Layout Options...” to the
“Optimization” menu in the graphical user interface (GUI).

Relative Placement Overview

Relative placement is also called tiling or datapath structured
placement. You use RP information to control the placement of
instances in your design.

Module Compiler Relative Placement assigns an instance to a row
and column position. Each row corresponds to a single bit of a bus,
and each column corresponds to a function or an operation. The
instances making up a function span multiple bits (rows) and are
arranged vertically in a column. A function can be composed of one
or more columns.

Module Compiler Relative Placement optimization provides column
and row optimizations using a cost function to improve wire length
and/or utilization.

Your layout system might require that the bit slices be vertical rather
than horizontal, but this change does not impact the general
operations discussed in this section.

10-8

Physical Placement Support

Figure 10-3 Module Compiler Relative Placement Illustration

In Figure 10-3, instance 1 is located in the first column (fx_1) and 3rd
row (bit 2). Instance 2 is located in the 3rd column (fx_3) and 2nd row
(bit 1). Also columns 3 and 4 make up function 3 (fx_3).

Relative placement does not specify absolute (X,Y) locations for
instances as would full ASIC place and route. The benefit of working
with relative placement rather than absolute placement is efficiency
and speed. By working at a higher level of abstraction, you can quickly
explore different placement approaches.

In order to view the results in RP View, Module Compiler Relative
Placement writes out a file (.rpv) and a viewer (MC View).

Module Compiler provides the RP information in a file that provides
an efficient starting point for placement and routing. Module compiler
supports several third party tile formats as well as providing its own
format, .layout.

0
1
2

n-1

Bit

Function
fx_1 fx_2 fx_3 fx_n

inst 2

inst 1

10-9

Physical Placement Support

Module Compiler provides both physical grouping, gate-level tiling,
and relative placement optimization:

• Grouping and gate-level tiling use directives in Module Compiler
Language to specify relative placement (row and column
positions) for instantiated gates.

Gate-level tiling produces RP blocks using the
physicalfunction directive. These blocks can placed in a
physical group using the group directive. For more information
see Figure 10-5.

• Module Compiler Relative Placement optimization provides
column optimizations using a cost function to improve wire length
and utilization. For more information see “Display Contrast Menu”
on page 10-49.

Module Compiler can automatically perform the following RP
optimizations:

• Reorder columns

• Remove columns

• Merge columns

• Use alternative Wallace tree multiplier RP

You can choose the default optimization values, or control the RP
optimization by setting your own values in the GUI.

With Module Compiler, the default for relative placement optimization
is on. Module Compiler will perform relative placement optimizations.
To disable RP optimization, turn RP optimization off in the “RP Layout
Options...” submenu of the Module Compiler GUI. By disabling RP
optimizations, Module Compiler will not perform RP optimizations or
output a RP file.

10-10

Physical Placement Support

Controlling Relative Placement

Figure 10-4 RP Layout Options Window

Use the “RP Layout Options” window to control the RP optimization.
Clicking on the “RP Layout Options...” menu item in Figure 10-2 brings
up the window in Figure 10-4. When you open this window for the
first time, it displays the default settings.

This window has three buttons on the bottom: Apply, OK, and Cancel.
When you click apply, Module Compiler enters the settings but keeps
the window open. When you click OK, Module Compiler enters the

10-11

Physical Placement Support

settings and quits the window. Clicking Cancel closes the window and
keeps any previous settings unchanged. The rest of the controls on
this window will be covered in detail.

Enabling Relative Placement Grouping

Figure 10-5 RP Grouping Control

Select this check box (Figure 10-5) to enable physical grouping in
Module Compiler. Grouping is always supported in Module Compiler.
But when you select this check box, Module Compiler will treat each
logical group as a physical group.

If RP grouping is selected, and you do not specify a logical group,
Module Compiler will create one physical group for the entire design
and name the group “misc”.

You use the Module Compiler Language group attribute to define a
group and provide it with a name.

10-12

Physical Placement Support

Example 10-1 Using the Group Attribute
module groupex (Z,A,B,C,n);
integer n=32;
input [n-1:0] A,B,C;
output [n:0] Z;
wire [n]tmp;
wire [n]tmp2;
tmp2=A+B;

directive(group="first");
tmp=C+B;

directive(group="second");
Z=tmp+tmp2;

endmodule

Example 10-1 gives an example of using group in Module Compiler
Language. With RP Grouping enabled, Module Compiler creates the
RP shown in Figure 10-6.

Figure 10-6 View of groupex Example RP

10-13

Physical Placement Support

In Figure 10-6, you can see the creation of three groups (misc, first,
and second) from the Module Compiler Language example (Example
10-1).

Gate-Level Tiling

Along with physical grouping, you can control gate-level tiling by
specifying directives in the Module Compiler Language. Gate-level
tiling allows you to create an RP block (physicalfunction) and specify
cell row and column positions in that block.

This RP block can be associated with a physical group if you have
enabled RP Grouping. A physical group can have one or more RP
blocks created with the physicalfunction directive. A RP block can
belong to one and only one group.

You can use gate-level tiling to create reusable RP blocks, such as
an array multiplier, a ripple adder, and so on. The following discusses
gate-level tiling directives and gives a Module Compiler Language
example of gate-level tiling usage.

Gate-Level Tiling Directives

These are the directives in Module Compiler Language to support
Gate Level Tiling:

• physical

This directive can be set to “on” or “off”. If set to “on” then it will
enable gate-level tiling

directive(physical="on")

10-14

Physical Placement Support

• physicalfunction

This directive is used to name the bit-sliced RP block in Module
Compiler Language.

directive(physicalfunction="rippleadder")

• row

This directive specifies the row position of a instance in its physical
function. The default value for this directive is 0.

directive(row=3)

• col

This directive specifies the column position of a instance in its
physical function. The default value for this directive is 0.

directive(col=4)

Gate-Level Directive Example

This example implements a ripple adder using the gate-level
directives discussed above.

10-15

Physical Placement Support

Example 10-2 Gate-Level Directive
module ripple(Z, CO, A, B, CI, n);
directive(physical="on");
directive(physicalfunction="ripple_adder");

integer n = 8;
input [1] CI;
input [n] A, B;
output [1] CO;
wire [1] repl(i,n) {CARRY_IN_{i}, } CARRY_IN_{n};
wire [1] repl(i,n,",") {Z{i}};
output [n] Z=cat(repl(i,n,",") {Z{n-1-i}});

CARRY_IN_0 = CI;

repl(i, n) {
 directive(row={i},col=0);
 fa1a I10{i} (CARRY_IN_{i+1}, Z{i}, A[{i}], B[{i}],
CARRY_IN_{i});
}
CO = CARRY_IN_{n};

directive(physical="off");

endmodule

Figure 10-7 shows the result of the example above.

10-16

Physical Placement Support

Figure 10-7 Result of Gate-Level Directive Example

Viewing Example 10-2, in Module Compiler RP Viewer shows the
creation of eight adders in the physical block named ripple_adder.
RP View is covered in more detail in the section “Module Compiler
Relative Placement Viewer” on page 10-32.

RP Optimization Control

The control section of the RP Layout Options Window is show below
in Figure 10-8.

10-17

Physical Placement Support

Figure 10-8 RP Optimization Control Section

Select the PR Optimization check box to enable RP optimization in
Module Compiler. This is the master switch to turn on all RP
optimizations.

Alternate Multiplier RP Control

Select this check box to use an alternative relative placement
multiplier.

In Module Compiler Relative Placement Beta, there are four
Multipliers that you can choose from that are show in Figure 10-9.

10-18

Physical Placement Support

Figure 10-9 RP Multiplier Choices

There are four multiplier choices for the Module Compiler Relative
Placement Beta, which are shown above (Figure 10-9). The use of
these multipliers depends your design goals. The array multiplier is
serial and very regular, and can be easily placed in a bit-sliced fashion.
It gives better utilization and wiring compared to a Wallace tree
multiplier. The Wallace tree does not have the regularity of the array
multiplier, but has better performance.

The two types of RP for an Array Multiplier are shown in Figure 10-10.

Multipliers

Array

Parallelogram Rectangle Default Alternate

Wallace Tree

10-19

Physical Placement Support

Figure 10-10 Array Multipliers

Parallelogram

Rectangle

10-20

Physical Placement Support

Create an Array multipliers

These are the steps to create an array multiplier show in Figure 10-10.

Set maxtreedepth to 2 and multtype to nonbooth to create an array
multiplier. This occurs even if you select the Alternative Multiplier
check box. To create an array multiplier, see Example 10-3 on page
10-21 for details.

• Set the mcenv variable rp_pushpp 1 to create a
rectangular-shaped array multiplier RP.

• Set the mcenv variable rp_pushpp 0 to create a
parallelogram-shaped array multiplier RP. Zero is also the default
value.

You can set rp_pushpp to 1 or Zero by typing one of the following
commands at the UNIX prompt:

% mcenv rp_pushpp 1

or

% mcenv rp_pushpp 0

Alternatively you can use a text editor to add one of the following
entries to mc.env:

rp_pushpp 1

or

rp_pushpp 0

10-21

Physical Placement Support

Example 10-3 Creating an Array Multiplier
//generate an array multiplier:

directive(maxtreedepth=2);
directive(multtype="nonbooth");

Z = A*B;

//A, B can be signed/unsigned numbers

An example of the two types of RP for an Array Multiplier are shown
in Figure 10-10. This is only an example for comparison purposes.
Your result will depend on your design and optimization settings.

10-22

Physical Placement Support

Figure 10-11 Wallace Tree Multipliers

Default

Alternate

10-23

Physical Placement Support

Create a Wallace tree multiplier

You can specify an alternate relative placement for the Wallace tree
multiplier. The default is off (unchecked) that gives the standard
Module Compiler Wallace tree multiplier. Turn this feature on
(checked) to use a alternate Wallace tree multiplier RP.
You can also control the Wallace tree multiplier by:

• Setting maxtreedepth equal to a high value such as 9999 to create
a Wallace tree multiplier, which has lower regularity.

• Setting the value to between 2 and a high number (9999) to create
an intermediate multiplier (between an array and a Wallace tree
multiplier).

Specifying Signal IO Direction

Figure 10-12 IO Locations Control

This control in Figure 10-12, allows you to specify the signal IO
locations. You can specify the signal direction or specify none
(ignore).

Module Compiler Relative Placement optimization provides
rudimentary support for I/O locations. There are three port locations:
Ignore, Left-to-Right, and Right-to-Left.

