
Multiobjective VLSI Cell Placement Using Distributed
Genetic Algorithm

ABSTRACT
Genetic Algorithms have worked fairly well for the VLSI
cell placement problem, albeit with significant run times.
This is all the more true for multiobjective VLSI cell place-
ment, where the need to optimize conflicting objectives adds
another level of complexity. A Master-Slave parallel strat-
egy for GA is presented for VLSI cell placement where the
objectives are optimizing power dissipation, timing perfor-
mance and interconnect wirelength, while layout width is a
constraint. Fuzzy rules are incorporated in order to design
a cost function that integrates these objectives into a sin-
gle overall value. Also, a Multi-Deme parallel GA, in which
each processor works independently on an allocated subpop-
ulation followed by information exchange through migration
of chromosomes, is applied to this multiobjective problem.
A pseudo-diversity approach is taken, wherein similar solu-
tions with the same overall cost values are not permitted
in the population at any given time. A series of experi-
ments are performed on ISCAS-85/89 benchmarks to show
the comparison of these two approaches with respect to so-
lution quality and speedup.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
J.6 [Computer Aided Engineering]: [Computer-aided
design]

General Terms
Algorithm, Performance

Keywords
Parallel Genetic Algorithms, Cluster Computing, Fuzzy Logic,
Genetic Crossover.

1. INTRODUCTION
The cell placement phase is an intermediate step in VLSI
circuit fabrication and involves designing and optimizing the
circuit layout by positioning cells within a constrained area.

Genetic Algorithms have been extensively used for solving
NP-hard problems such as VLSI cell placement. [9], [10].
Parallelization of these algorithms has increasingly become
an attractive option for accelerating performance, especially
due to the consistent growth in performance to cost ratios of
cluster computing environments that can be achieved with
today’s generic high-end PCs and networks. Two parallel
GA strategies are described here that target the optimiza-
tion of width-constrained, multi-objective placement.

2. PARALLELIZATION OF GENETIC AL-
GORITHMS

Prior to developing parallelization strategies, a profiling anal-
ysis of the serial GA was carried out to determine compu-
tation intensive functions and routines. It was seen that
the runtime intensive operations are fitness calculation and
the parent crossover. The first parallel model derived was
a ’Global Selection‘ approach where the population is di-
vided among slave processors, which then carry out individ-
ual crossover followed by fitness evaluation of generated off-
springs. Selection of the new population is done at the Mas-
ter, which collects the cumulative offsprings from the slave
processors. The performance results of this approach were
poor with very low speedup for small circuits. However, with
increasing circuit size, which translates into higher complex-
ity and larger search space, there is more potential with dis-
tributing the fitness calculation and the crossover. In the
case of smaller circuits, any gains achieved by such a distri-
bution would be lost due to communication overheads.

The second approach - the Multi-Deme parallel GA, has
often been favored over simplistic data distribution as in the
earlier model. In this strategy, the population is distributed
among all processors, which independently run their own
GA for a predefined number of generations. An extensive
study of the parameters governing the performance of this
model was done by Cantú-Paz [5]. The pseudo-code of the
algorithm is presented in Figure 1.

The initial population constructor on the master (root) pro-
cessor creates the initial population which is then distributed
to all non-root processors. Following this, all nodes, in-
cluding the root execute the serial GA on their allocated
population for a predefined number of iterations called the
Migration Frequency (MF). Then each node sends a cer-
tain number of its best solutions to the root. The number of
solutions sent is controlled by the Migration Rate (MR) pa-
rameter. The root determines the MR best solutions from

the collective MR ∗ (N) solutions and broadcasts it to all
processors. These migrants if not already present on the
processors, are then absorbed into the existing population
by weeding out and replacing the weakest solutions. Each
processor then continues with the serial GA for another MF
number of generations. Every interval between migrations,
i.e., the length of time defined by MF number of generations
is called as Epoch. The stopping criteria is a predefined num-
ber of Epochs.

It is important to note that the migrant absorption policy
dictates the replacement of worst solutions with incoming
migrants only if the migrants already do not exist within the
population. Also, logically this model could represent a fully
connected topology of non-hierarchical processing elements
which cooperate to determine the best MR solutions among
themselves and absorb these into their existing populations.

3. RESULTS AND DISCUSSION
The parallel architecture used in this work is a dedicated
eight-node cluster connected via a low-latency network. Each
of these nodes is a general purpose stand-alone Pentium4
workstation running at 2.0GHz with 256MB memory and
running the RedHat Linux distribution. The cluster runs
over a Fast-Ethernet switch. Communication between nodes
is achieved using the MPICH implementation of the Message
Passing Interface.

Results for the Multi-Deme Parallel GA are documented in
Table 1. The Migration Frequency and Migration Rate are
twenty and one respectively, i.e., all processors run the GA
on their allocated sub-population for twenty generations, fol-
lowed by migration of one chromosome between them. The
GA parameters are the same as used for the serial Genetic
Algorithm.

An interesting pattern seen from the above results is the
lack of effect of the ‘population size per processor’ on so-
lution quality. As the population is further distributed on
each processor, each node works with a smaller number of
solutions - this should normally lead to a deterioration in
the solution qualities. However, the new migration parame-
ter and the migrant absorption policy mitigate the effect of
the truncated population. Regarding parallel performance
of this Multi-Deme approach, the speedup, which is defined
as:

Speedup =
Runtime on a Single Processor

Runtime on Multiple Processors

can be seen in Figure 2. It is consistently increasing across
different circuits, which hints towards an independence be-
tween the scalability of this model and the size of the search
space.

4. CONCLUSION
This paper primarily serves as a demonstration of docu-
mented GA parallelization strategies to multiobjective opti-
mization problems. The first approach was a variation of the
canonical Master-Slave parallel GA, with both fitness and
crossover distributed among processors. Only Selection was

ALGORITHM Multi − Deme Parallel GA
NOTATION
RANK : ROOT= Root Processor designated by Rank=0
RANK : NON − ROOT= All other Processors designated by rank>0
RANK : ANY = All processors, including Root
MF= Migration Frequency
MR= Migration Rate
N= Number of Processors
Epoch = Instances of Migration
EPOCH MAX = Maximum Number of Migrations Stopping Criteria
Begin
(Multi − Deme Parallel GA)

FOR RANK:ROOT
Initial Population Constructor
Distribute Initial Population
ENDFOR RANK:ROOT

FOR RANK:ANY
Receive Allocated Population

ENDFOR RANK:ANY

LOOP-A
FOR RANK:ANY

LOOP-B
Serial GA on Allocated Population:

Choice of Parents
Crossover and Offspring Generation
Fitness Calculation
New Population Selection

END LOOP-B IF [Num Iterations >= MF]
Send MR Best Solutions and Costs to ROOT

ENDFOR RANK:ANY

FOR RANK:ROOT
Collect the best MR*N solutions
Determine best MR distinct solutions
Broadcast MR solutions

ENDFOR RANK:0

FOR RANK:ANY
Receive MR Best Solutions
IF [Received Migrants not present in existing Population]

Replace Worst Solutions with Received Solutions
ENDIF

ENDFOR RANK:ANY

END LOOP-A IF [Epoch >= EPOCH MAX]

FOR RANK:0
Return Best solution.

ENDFOR RANK:0

End (Multi − Deme Parallel GA)

Figure 1: Structure of the Multi-Deme Parallel GA.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 1 2 3 4 5 6 7 8

S
pe

ed
up

Number of Processors

Speedup with Increasing Number of Processors

Speedup

Figure 2: Speedup for circuit s386. The speedup
pattern is almost identical for all circuits

Table 1: Multi-Deme Parallel GA: Variation in runtime taken to reach a target fitness with increasing number
of processors.

Circuit Target Time taken to reach target fitness
Fitness P=1 P=2 P=3 P=4 P=5 P=6 P=7 P=8

s298 0.73 219 116 79 62 48 42 37 36
s386 0.63 314 171 109 89 71 62 52 52
s832 0.54 569 306 199 155 122 105 89 88
s953 0.54 1004 549 354 280 222 191 162 162
s641 0.64 2734 1439 933 730 589 520 425 424
s1196 0.54 1538 876 549 439 348 299 247 248
s1494 0.53 1679 942 597 460 367 319 263 268
s1488 0.54 1672 913 592 459 368 316 266 268
s3330 0.50 6818 3959 2584 1933 1523 1317 1090 1094

implemented by the Master. Performance gains in terms of
reduced run-time were seen only for larger circuits. On the
other hand, the Multi-Deme approach reported consistent
performance gains independent of problem complexity and
size of the search space.

Acknowledgment:
The authors thank King Fahd University of Petroleum &
Minerals (KFUPM), Dhahran, Saudi Arabia, for support
under Project Code COE/CellPlacement/263.

5. REFERENCES
[1] N. Adachi and Y. Yoshida. Accelerating genetic

algorithms: protected chromosomes and parallel
processing, 1995.

[2] P. Adamidis. Review of genetic algorithms
bibliography. Technical Report, Aristotle University of
Thessaloniki, Greece, 1994.

[3] M. Arakawa and I. Hagiwara. Development of revised
adaptive real range genetic algorithms, 1997.

[4] P. Banerjee and M. Jones. A parallel simulated
annealing algorithm for standard-cell placement on a
hypercube computer. Proceedings of International
Conference on Computer-Aided Design, ICCAD-86,
1986.

[5] E. Cantú-Paz. Designing efficient master-slave parallel
genetic algorithms. Genetic Programming 1998:
Proceedings of the Third Annual Conference, 1998.

[6] E. Cantú-Paz. A survey of parallel genetic algorithms.
Calculateurs Parallles, Reseaux et Systems Repartis,
1998.

[7] A. Casotto, F. Romeo, and A. L.
Sangiovanni-Vincentelli. A parallel simulated
annealing algorithm for the placement of macro-cells.
IEEE Transactions on Computer-Aided Design,
CAD-6(5):838–847, September 1987.

[8] A. D. Bethke. Comparison of genetic algorithms and
gradient-based optimizers on parallel processors.
Technical Report 197, University of Michigan, Ann
Arbor, 1976.

[9] H. Esbensen. A genetic algorithm for macro cell
placement. Proceedings of the 7th International
Conference on VLSI Design, pages 52–57, 1992.

[10] H.Chan, P. Mazumdar, and K. Shahookar. Macro-cell
and module placement by genetic adaptive search
with bitmap-represented chromosome. Integration, the
VLSI Journal, 12:49–77, 1991.

[11] G. J. Parallel adaptive algorithms for function
optimization. Technical Report No. CS-81-19,
Vanderbilt University, Tenessee, 1981.

[12] S. M. Sait and H. Youssef. VLSI Physical Design
Automation: Theory and Practice. World Scientific
Pubishers, 2001.

[13] S. M. Sait and H. Youssef. Iterative computer
algorithms and their application to engineering:
Solving combinatorial optimization problems.
December 1999.

[14] S. M. Sait, H. Youssef, A. El-Maleh, and M. R.
Minhas. Iterative heuristics for multiobjective VLSI
standard cell placement. Proceedings of IJCNN’01,
International Joint Conference on Neural Networks,
3:2224–2229, July 2001.

[15] R. R. Yager. On ordered weighted averaging
aggregation operators in multicriteria decision making.
IEEE Transaction on Systems, MAN, and
Cybernetics, 18(1), January 1988.

