
Multiobjective VLSI Cell Placement using Distributed
Genetic Algorithm

ABSTRACT
Genetic Algorithms have worked fairly well for the VLSI
cell placement problem, albeit with significant run times.
This is all the more true for multiobjective VLSI cell place-
ment, where the need to optimize conflicting objectives adds
another level of complexity. A Master-Slave parallel strat-
egy for GA is presented for VLSI cell placement where the
objectives are optimizing power dissipation, timing perfor-
mance and interconnect wirelength, while layout width is a
constraint. Fuzzy rules are incorporated in order to design
a cost function that integrates these objectives into a sin-
gle overall value. Also, a Multi-Deme parallel GA, in which
each processor works independently on an allocated subpop-
ulation followed by information exchange through migration
of chromosomes, is applied to this multiobjective problem.
A pseudo-diversity approach is taken, wherein similar solu-
tions with the same overall cost values are not permitted
in the population at any given time. A series of experi-
ments are performed on ISCAS-85/89 benchmarks to show
the comparison of these two approaches with respect to so-
lution quality and speedup.

Keywords
Parallel Genetic Algorithms, Cluster Computing, Fuzzy Logic,
Genetic Crossover.

1. INTRODUCTION
As VLSI (Very Large Scale Integration) technologies con-
tinue to proceed towards further submicron-scale circuit fab-
rication, the issues of design and optimization have become
all the more demanding. The cell placement phase which is
one of the intermediate steps in the physical design stage of
these circuits, involves designing and optimizing the circuit
layout by positioning cells within a constrained area. Given
the inherently NP-hard complexity of this design stage, con-
ventional constructive techniques have often proved inade-
quate. Genetic Algorithms on the other hand have been
quite effective in reaching satisfactory layout designs, al-

beit with long run-times [9], [10], [14]. As such, various
search acceleration strategies have been applied to Genetic
Algorithms such as modifying crossover and mutation op-
erators [1], [3]. However, Genetic Algorithms, due to their
working with a population of solutions lend themselves nat-
urally to parallelization. Such distributed implementations
are further attractive due to the advances in cluster com-
puting, especially the use of generic networked computers
and the increasingly reduced cost to performance ratios.

1.1 Related Work
A generic intuitive strategy for achieving parallelization is to
partition the data into small subsets distributed among the
processors [4], [7], [13]. Each processor is responsible for a
data subset and implements a sequential version of the con-
cerned heuristic over this data subset. This model maps into
the Genetic Algorithm structure efficiently, as GAs work
with a population of independent solutions.

The earliest study that discussed the parallel implemen-
tation of Genetic Algorithms was by Bethke [8]. He ana-
lyzed the efficiency of global parallel genetic algorithm im-
plemented over a SPMD machine and identified some bottle-
necks that limit their parallel efficiency. A more thorough
treatment of the subject was attempted by Grefenstette,
where he mapped genetic algorithms to existing parallel ar-
chitectures [11]. He proposed four prototypes, three of which
were variants of a master-slave model, where a single pop-
ulation is maintained on the master, while the slaves are
responsible for evaluating and returning the fitness. The
fourth was a multiple population scheme, where the com-
plete set of solutions is divided into multiple subpopulations.

Contemporarily, parallel Genetic Algorithms (ParGA) im-
plemented over distributed parallel computing environments
can be classified into two main categories [2], [6]:

1. Global single-population master-slave GAs

2. Multiple-population coarse-grained GAs

The former represents a master-slave paradigm, wherein the
master maintains the population while the slaves are respon-
sible for application of genetic crossovers and/or fitness cal-
cuations. This approach is straightforward in that the evo-
lutionary behavior can be maintained identical to the serial
GA. The master generates the initial population, chooses

mating-pairs and implements the crossover for offspring gen-
eration. These offsprings are then distributed among several
slave processors. The calculated fitness is aggregated back
at the Master, which then selects the new population for the
next generation. The speedup achievable in this model and
the optimal number of slave processors can be predicted to
a fairly accurate estimate [5], [6].

The second parallelization approach - the multiple-population
GAs - provide a more sophisticated parallelization strategy
wherein several subpopulations evolve independently on in-
dividual processors and exchange individuals periodically.
This exchange of solutions is called migration and is a core
aspect of this parallel model. Multi-population GAs are
known with different names. They are referred to as Multi-
Deme parallel GAs (drawing on the analogy of natural evo-
lution), Distributed GAs (as they are often implemented on
distributed parallel architectures), and Coarse-grained GAs
(since the computation to communication ratio is usually
high). This model of parallel GAs is very popular, but also
the most difficult to understand due to the effect of migra-
tion and the new influential parameters it introduces.

Two parallel GA strategies described in this paper target
the optimization of width-constrained, multiobjective place-
ment. The first model is a derivative of the standard Master-
Slave approach involving distribution of crossover in addi-
tion to fitness calculation. The second model demonstrates
the application of Multi-Deme parallel GAs to this multiob-
jective optimization problem.

The serial GA which provides the baseline for comparison
follows an aggressive pseudo-diversity approach, whereby
similar solutions are not allowed in the population. How-
ever, instead of comparing the exact solution strings, which
would be a runtime-expensive endeavor, the fuzzy fitness is
used as the distinguishing attribute, i.e., no two solutions
in the population are allowed to have the same fitness val-
ues. This approach, which is applied to both the serial GA,
and the two parallelization strategies, serves to widen the
search, while limiting the possibility of premature conver-
gence of the search process in local minima solution space.

The rest of the paper is organized as follows: The cost func-
tions for the objectives - minimizing wirelength, delay and
power dissipation, and the application of fuzzy logic to ag-
gregate these objectives is documented in the following sec-
tion. The Global Selection and the Multi-Deme parallel GAs
are described in Sections 3 and 4. This is followed by results
and discussion in Section 5. Section 6 concludes the paper.

2. PROBLEM AND COST FUNCTION
MODELING

In this section, we document the problem and the cost func-
tions used in the optimization process.

2.1 Problem Formulation
We are addressing the problem of VLSI standard cell place-
ment with the objectives of optimizing power consumption,
timing performance (delay), and wirelength while consider-
ing layout width as a constraint. Semi-formally, the problem
can be stated as follows:

A set of cells or modules M = {m1,m2, ...,mn} and a set

of signals S = {s1, s2, ..., sk} is given. Moreover, a set of

signals Smi
, where Smi

⊆ S, is associated with each module

mi ∈ M . Similarly, a set of modules Msj
, where Msj

=
{mi|sj ∈ Smi

} is called a signal net, is associated with each

signal sj ∈ S. Also, a set of locations L = {L1, L2, ..., Lp},
where p ≥ n is given. The problem is to assign each mi ∈M

to a unique location Lj, such that all of our objectives are

optimized subject to our constraints [12].

2.2 Cost Functions
Now we formulate cost functions for our three above-mentioned
objectives.

Wirelength Cost:
Interconnect wirelength of each net in the circuit is esti-
mated and then total wire length is computed by adding
the individual estimates:

Costwire =
∑

i∈M

li (1)

where li is the wirelength estimation for net i andM denotes
total number of nets in circuit.

Power Cost:
Power consumption pi of a net i in a circuit can be given as:

pi '
1

2
· Ci · V

2

DD · f · Si · α (2)

where Ci is total capacitance of net i, VDD is the supply
voltage, f is the clock frequency, Si is the switching prob-
ability of net i, and α is a technology dependent constant.
Assuming a fix supply voltage and clock frequency, the above
equation reduces to the following:

pi ' Ci · Si (3)

The capacitance Ci of cell i is given as:

Ci = C
r
i +

∑

j∈Mi

C
g
j (4)

where Cg
j is the input capacitance of gate j and Cr

i is the
interconnect capacitance at the output node of cell i. At
the placement phase, only the interconnect capacitance Cr

i

can be manipulated while Cg
j comes from the properties of

the cell from the library used and is thus independent of
placement. Moreover, Cr

i depends on wirelength of net i, so
Equation 3 can be written as:

pi ' li · Si (5)

The cost function for estimate of total power consumption
in the circuit can be given as:

Costpower =
∑

i∈M

pi =
∑

i∈M

(li · Si) (6)

Delay Cost:
This cost is determined by the delay along the longest path
in a circuit. The delay Tπ of a path π consisting of nets {v1, v2, ..., vk},
is expressed as:

Tπ =

k−1
∑

i=1

(CDi + IDi) (7)

where CDi is the switching delay of the cell driving net vi
and IDi is the interconnect delay of net vi. The placement
phase affects IDi because CDi is technology dependent pa-
rameter and is independent of placement. The delay cost
can be estimated as:

Costdelay = max{Tπ} (8)

Width Cost:
Width cost is given by the maximum of all the row widths in
the layout. We have constrained layout width not to exceed
a certain positive ratio α to the average row width wavg,
where wavg is the minimum possible layout width obtained
by dividing the total width of all the cells in the layout by
the number of rows in the layout. Formally, we can express
width constraint as below:

Width− wavg ≤ α× wavg (9)

Overall Fuzzy Cost Function:
Since, we are optimizing three objectives simultaneously, we
need to have a cost function that represents the effect of all
three objectives in form of a single quantity. We propose
the use of fuzzy logic to integrate these multiple, possibly
conflicting objectives into a scalar cost function. Fuzzy logic
allows us to describe the objectives in terms of linguistic
variables. Then, fuzzy rules are used to find the overall cost
of a placement solution. In this work, we have used following
fuzzy rule:

IF a solution has SMALL wirelength AND LOW power

consumption AND SHORT delay THEN it is an GOOD

solution.

1.0
C i/O i

1.0

g i
* g i

i
cµ

C width/O width

1.0

gwidth

width
cµ

(a) (b)

Figure 1: Membership functions.

The above rule is translated to and-like OWA fuzzy operator
[15] and the membership µ(x) of a solution x in fuzzy set
GOOD solution is given as:

µ(x) =

β ·min
j=p,d,l

{µj(x)}+ (1− β) · 1

3

∑

j=p,d,l
µj(x);

if Width− wavg ≤ α · wavg,

0; otherwise.
(10)

Here µj(x) for j = p, d, l, width are the membership values
in the fuzzy sets LOW power consumption, SHORT delay,
and SMALL wirelength respectively. β is the constant in the
range [0, 1]. The solution that results in maximum value of
µ(x) is reported as the best solution found by the search
heuristic.

The membership functions for fuzzy sets LOW power con-

sumption, SHORT delay, and SMALL wirelength are shown
in Figure 1. We can vary the preference of an objective j in
overall membership function by changing the value of gj .
The lower bounds Oj for different objectives are computed
as given in Equations 11-14:

Ol =

n
∑

i=1

l
∗

i ∀vi ∈ {v1, v2, ..., vn} (11)

Op =
n

∑

i=1

Sil
∗

i ∀vi ∈ {v1, v2, ..., vn} (12)

Od =

k
∑

j=1

CDj + ID
∗

j ∀vj ∈ {v1, v2, ..., vk} in path πc

(13)

Owidth =

∑n

i=1
Widthi

of rows in layout
(14)

where Oj for j ∈ {l, p, d, width} are the optimal cost esti-
mates for wirelength, power, delay and layout width respec-
tively, n is the number of nets in layout, l∗i is the optimal
wirelength of net vi, CDi is the switching delay of the cell i
driving net vi, IDi is the optimal interconnect delay of net
vi calculated with the help of li, Si is the switching proba-
bility of net vi, πc is the most critical path with respect to
optimal interconnect delays, k is the number of nets in πc
and Widthi is the width of the individual cell driving net
vi.

3. GLOBAL SELECTION PARALLEL
GENETIC ALGORITHM

The serial Genetic Algorithm used as the basis for speed-
up comparison is a variant of the canonical GA, in that an
aggressive diversity approach is adopted to ensure that no
two solutions within the population and generated offsprings
are similar. However, instead of comparing actual solution
strings and thus incurring significant computational over-
head, the fuzzy fitness value is adopted as the distinguish-
ing attribute. This approach serves to widen the search,
while limiting the possibility of premature convergence of
the search process in local minima solution space. The en-
coding of the solution and the application of genetic opera-
tors such as parent choice, crossover, mutation, and selection
are taken from [14].

Before approaching plausible strategies of parallelization, a
profiling of the serial GA is required to determine compu-
tation intensive functions and routines. Using gprof, Ta-
ble 1 shows the percentile distribution of runtime between
the components of the genetic algorithm. As seen in the
table, the expensive operations are the fitness calculation as
well as the crossover. However, with increasing circuit size
and complexity, crossover starts consuming larger chunks of
time.

Given the above profile, it can be seen that the canonical
model of Global Parallel GA, wherein only the fitness is
distributed among processors will fail here. This model,
which has been widely quoted in literature, assumes that
application of genetic operators is trivial, with most of the

Table 1: Percentage Time Spent in Genetic Opera-

tors versus Fitness Calculation.

Circuit Cells Rows Fitness Crossover Selection
(%) (%) (%)

s298 136 5 49.0 44.1 1.4
s386 172 5 53.4 39.3 1.3
s832 310 7 47.7 45.2 1.7
s1196 561 9 57.5 36.9 1.0
s1494 661 11 43.8 51.6 0.4
s1488 667 11 44.2 51.6 0.6
s3330 1961 17 12.3 75.4 0.7

ALGORITHM Global Selection Parallel GA

NOTATION

RANK : ROOT= Root Processor designated by Rank=0
RANK : NON − ROOT= All other Processors designated by rank>0
RANK : ALL= All processors, including Root
N= Number of Processors
POP SIZE = Population Size, same as total number of offsprings
PROC NUM OFFSPRING = Number of offsprings generated by
each processor
NUM GENERATIONS = Number of generations to run the GA

Begin (Global Selection Parallel GA)

FOR RANK:ROOT
Initial Population Constructor
Compute Fitness of Population

ENDFOR RANK:ROOT

LOOP-A

FOR RANK: ROOT
Broadcast Population
Generate list of parents pairs based on roulette choice
Broadcast list of parent pairs

ENDFOR RANK: ROOT

FOR RANK: NON-ROOT
Receive Population
Receive list of parent pairs

ENDFOR RANK: NON-ROOT

LOOP-B

FOR RANK: ALL
Read Parents from the received Parent Pair list
Crossover between Parents and Offspring Generation
Avoid Duplicates in generated Offspring

Fitness Calculation of offspring
ENDFOR RANK: ALL

END LOOP-B IF [Offsprings >= PROC NUM OFFSPRING]

FOR RANK: ALL
Gather offsprings at ROOT Processor
Gather offspring fitness at ROOT Processor

ENDFOR RANK: ALL

FOR RANK: ROOT
New Population Selection based on roulette selection

ENDFOR RANK: ROOT

END LOOP-A IF [Iterations >= NUM GENERATIONS]

FOR RANK: ROOT
Return Best solution.

ENDFOR RANK: ROOT

End (Global Selection Parallel GA)

Figure 2: Structure of the Global Selection Parallel

GA.

time spent in fitness calculation [2],[6]. This model, which
is the simplest strategy follows a behavior pattern identical
to that of serial GA, and thus can be readily analyzed using
convergence studies applied to serial GA.

However, based on the above profiling analysis, a more ap-
propriate approach would be to distribute both crossover
(offspring generation) as well as fitness calculation. This
would be best achieved by dividing the population among
slave processors, where each would carry out individual
crossover, followed by fitness computation of the resulting
offspring. However, selection of the new population would
be completed on the Master, which would be collect the
cumulative offsprings from the slave processors. This step
maintains an evolutionary pattern similar to the Serial GA,
while at the same time, achieving speedups. The schematic
of this approach is illustrated in Figure 2.

4. MULTI-DEME PARALLEL GENETIC
ALGORITHM

The Multi-Deme model for parallel GA has often been fa-
vored over simplistic data distribution as in the earlier model.
In this strategy, the population is distributed among all pro-
cessors, which independently run their own GA for a pre-
defined number of generations. An extensive study of the
parameters governing the performance of this model was
done by Cantú-Paz [5]. The pseudo-code of the algorithm is
presented in Figure 3.

The initial population constructor on the master (root) pro-
cessor creates the initial population which is then distributed
to all non-root processors. Following this, all nodes, in-
cluding the root execute the serial GA on their allocated
population for a predefined number of iterations called the
Migration Frequency (MF). Then each node sends a cer-
tain number of its best solutions to the root. The number of
solutions sent is controlled by the Migration Rate (MR) pa-
rameter. The root determines the MR best solutions from
the collective MR ∗ (N) solutions and broadcasts it to all
processors. These migrants if not already present on the
processors, are then absorbed into the existing population
by weeding out and replacing the weakest solutions. Each
processor then continues with the serial GA for anotherMF

number of generations. Every interval between migrations,
i.e., the length of time defined by MF number of generations
is called as Epoch. The stopping criteria is a predefined num-
ber of Epochs.

It is important to note that the migrant absorption policy
dictates the replacement of worst solutions with incoming
migrants only if the migrants already do not exist within the
population. Also, logically this model could represent a fully
connected topology of non-hierarchical processing elements
which cooperate to determine the best MR solutions among
themselves and absorb these into their existing populations.

5. RESULTS AND DISCUSSION
5.1 Experimental Setup
The parallel architecture used in this work is a dedicated
eight-node cluster connected via a low-latency network. Each
of these nodes is a general purpose stand-alone Pentium4
workstation running at 2.0GHz with 256MB memory and

running the RedHat Linux distribution. The cluster runs
over a Fast-Ethernet switch. Communication between nodes
is achieved using the MPICH implementation of the Message
Passing Interface.

In terms of GFlops measure, the maximum performance of
the cluster, with NAS Parallel Benchmarks is 1.6 GFlops,
(using NAS’s LU, Class A, for 8 processors). Using this
same benchmark for a single processor, the individual per-
formance of one machine was found out to be 0.3 GFlops.
The maximum bandwidth achieved using PMB was 91.12
Mbits/sec, with an average latency of 68.69 µsec per mes-
sage. ISCAS-89 circuits are used as performance bench-
marks for evaluating the proposed parallel GA placement
technique. These circuits are of various sizes in terms of
number of cells and paths, and thus offer a variety of test
cases.

The profiling and performance tools used in the program
development consisted of standard GNU applications avail-
able natively on Linux such as the ubiquitous gdb, gprof,
vmstat, as well as MPI-specific software such as Upshot and
Vampir/VampirTrace for measuring program performance
and behavior.

5.2 Global Selection Parallel Genetic Algorithm
Results for our Global Selection Parallel GA are tabulated in
Table 2. Though the performance gain is almost null for the
smallest circuit ‘s298’, larger circuits show better speedup
values with increasing number of processors. With increas-
ing circuit size, which translates into higher complexity and
larger search space, there is more potential with distribut-
ing the fitness calculation and the crossover. In the case of
smaller circuits, any gains achieved by such a distribution
are lost due to communication overheads.

5.3 Multi-Deme Parallel Genetic Algorithm
Results for the Multi-Deme Parallel GA are documented in
Table 3. The Migration Frequency and Migration Rate are
twenty and one respectively, i.e., all processors run the GA
on their allocated sub-population for 20 generations, fol-
lowed by migration of one chromosome between them. The
GA parameters are the same as used for the serial Genetic
Algorithm.

An interesting pattern seen from the above results is the lack
of effect of population size on solution quality. As the pop-
ulation is further distributed on each processor, the quality
of solution should normally deteriorate. However, the new
migration parameter and the migrant absorption policy mit-
igate the effect of the truncated population. Regarding par-
allel performance, the scale-up is consistent across differing
circuits, which hints towards an independence between the
scalability of this model and the size of the search space. A
clearer view of scalability is seen in Figure 4.

6. CONCLUSION
This paper primarily serves as a demonstration of docu-
mented GA parallelization strategies to multiobjective opti-
mization problems. The first approach was a variation of the
canonical Master-Slave parallel GA, with both fitness and
crossover distributed among processors. Only Selection was

ALGORITHM Multi−Deme Parallel GA

NOTATION

RANK : ROOT= Root Processor designated by Rank=0
RANK : NON − ROOT= All other Processors designated by rank>0
RANK : ANY = All processors, including Root
MF= Migration Frequency
MR= Migration Rate
N= Number of Processors
Epoch = Instances of Migration
EPOCH MAX = Maximum Number of Migrations Stopping Criteria
Begin
(Multi−Deme Parallel GA)

FOR RANK:ROOT
Initial Population Constructor
Distribute Initial Population
ENDFOR RANK:ROOT

FOR RANK:ANY
Receive Allocated Population

ENDFOR RANK:ANY

LOOP-A
FOR RANK:ANY
LOOP-B
Serial GA on Allocated Population:
Choice of Parents
Crossover and Offspring Generation
Fitness Calculation
New Population Selection

END LOOP-B IF [Num Iterations >= MF]
Send MR Best Solutions and Costs to ROOT

ENDFOR RANK:ANY

FOR RANK:ROOT
Collect the best MR*N solutions
Determine best MR distinct solutions
Broadcast MR solutions

ENDFOR RANK:0

FOR RANK:ANY
Receive MR Best Solutions
IF [Received Migrants not present in existing Population]
Replace Worst Solutions with Received Solutions

ENDIF
ENDFOR RANK:ANY

END LOOP-A IF [Epoch >= EPOCH MAX]

FOR RANK:0
Return Best solution.

ENDFOR RANK:0

End (Multi−Deme Parallel GA)

Figure 3: Structure of the Multi-Deme Parallel GA.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 1 2 3 4 5 6 7 8

S
pe

ed
up

Number of Processors

Speedup with Increasing Number of Processors

Speedup

Figure 4: Speedup for circuit s386. The speedup

pattern is almost identical for all circuits

Table 2: Global Selection Parallel GA:Variation in runtime taken to reach a target fitness with increasing

number of processors.

Circuit Target Time taken to reach target fitness
Fitness P=1 P=2 P=3 P=4 P=5 P=6 P=7 P=8

s298 0.71 384 327 361 340 396 358 355 357
s386 0.69 1011 602 393 322 355 310 281 268
s832 0.56 1066 747 741 647 750 757 732 684
s1238 0.57 4406 2748 1887 1471 1196 1023 928 915
s641 0.51 5664 3361 2348 2154 1879 1761 1878 1646
s1196 0.54 4198 2686 1937 1679 1179 1027 948 930
s1494 0.53 4216 2757 1993 1520 1352 1141 1046 1052
s3330 0.41 10920 6663 5397 4630 4574 4270 4120 4055

Table 3: Multi-Deme Parallel GA: Variation in runtime taken to reach a target fitness with increasing number

of processors.

Circuit Target Time taken to reach target fitness
Fitness P=1 P=2 P=3 P=4 P=5 P=6 P=7 P=8

s298 0.73 219 116 79 62 48 42 37 36
s386 0.63 314 171 109 89 71 62 52 52
s832 0.54 569 306 199 155 122 105 89 88
s953 0.54 1004 549 354 280 222 191 162 162
s641 0.64 2734 1439 933 730 589 520 425 424
s1196 0.54 1538 876 549 439 348 299 247 248
s1494 0.53 1679 942 597 460 367 319 263 268
s1488 0.54 1672 913 592 459 368 316 266 268
s3330 0.50 6818 3959 2584 1933 1523 1317 1090 1094

implemented by the Master. Performance gains in terms of
reduced run-time were seen only for larger circuits. On the
other hand, the Multi-Deme approach reported consistent
performance gains independent of problem complexity and
size of the search space.

7. REFERENCES
[1] N. Adachi and Y. Yoshida. Accelerating genetic

algorithms: protected chromosomes and parallel
processing, 1995.

[2] P. Adamidis. Review of genetic algorithms
bibliography. Technical Report, Aristotle University of
Thessaloniki, Greece, 1994.

[3] M. Arakawa and I. Hagiwara. Development of revised
adaptive real range genetic algorithms, 1997.

[4] P. Banerjee and M. Jones. A parallel simulated
annealing algorithm for standard-cell placement on a
hypercube computer. Proceedings of International
Conference on Computer-Aided Design, ICCAD-86,
1986.

[5] E. Cantú-Paz. Designing efficient master-slave parallel
genetic algorithms. Genetic Programming 1998:
Proceedings of the Third Annual Conference, 1998.

[6] E. Cantú-Paz. A survey of parallel genetic algorithms.
Calculateurs Parallles, Reseaux et Systems Repartis,
1998.

[7] A. Casotto, F. Romeo, and A. L.
Sangiovanni-Vincentelli. A parallel simulated
annealing algorithm for the placement of macro-cells.
IEEE Transactions on Computer-Aided Design,
CAD-6(5):838–847, September 1987.

[8] A. D. Bethke. Comparison of genetic algorithms and
gradient-based optimizers on parallel processors.
Technical Report 197, University of Michigan, Ann

Arbor, 1976.

[9] H. Esbensen. A genetic algorithm for macro cell
placement. Proceedings of the 7th International

Conference on VLSI Design, pages 52–57, 1992.

[10] H.Chan, P. Mazumdar, and K. Shahookar. Macro-cell
and module placement by genetic adaptive search
with bitmap-represented chromosome. Integration, the
VLSI Journal, 12:49–77, 1991.

[11] G. J. Parallel adaptive algorithms for function
optimization. Technical Report No. CS-81-19,
Vanderbilt University, Tenessee, 1981.

[12] S. M. Sait and H. Youssef. VLSI Physical Design
Automation: Theory and Practice. World Scientific

Pubishers, 2001.

[13] S. M. Sait and H. Youssef. Iterative computer
algorithms and their application to engineering:
Solving combinatorial optimization problems.
December 1999.

[14] S. M. Sait, H. Youssef, A. El-Maleh, and M. R.
Minhas. Iterative heuristics for multiobjective VLSI
standard cell placement. Proceedings of IJCNN’01,
International Joint Conference on Neural Networks,
3:2224–2229, July 2001.

[15] R. R. Yager. On ordered weighted averaging
aggregation operators in multicriteria decision making.
IEEE Transaction on Systems, MAN, and

Cybernetics, 18(1), January 1988.

