A& Genetic Programming and Evolvable Machines, 5, 11-29, 2004
‘w © 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.

Evolutionary Algorithms and Their Use in the
Design of Sequential Logic Circuits

B. ALI b.ali@napier.ac.uk
A. E. A. ALMAINI a.almaini@napier.ac.uk

School of Engineering, Napier University, 10 Colinton Road, Edinburgh EHI10 5DT, UK

T. KALGANOVA tatiana.kalganova@brunel.ac.uk

Electrical and Computer Engineering Department, Brunel University, Uxbridge,
Middlesex UBS 3PH, UK

Submitted March 26, 2002; Revised April 12, 2003

Abstract. In this paper an approach based on an evolutionary algorithm to design synchronous
sequential logic circuits with minimum number of logic gates is suggested. The proposed method consists of
four main stages. The first stage is concerned with the use of genetic algorithms (GA) for the state assign-
ment problem to compute optimal binary codes for each symbolic state and construct the state transition
table of finite state machine (FSM). The second stage defines the subcircuits required to achieve the desired
functionality. The third stage evaluates the subcircuits using extrinsic Evolvable Hardware (EHW).
During the fourth stage, the final circuit is assembled. The obtained results compare favourably against
those produced by manual methods and other methods based on heuristic techniques.

Keywords: sequential circuits, state assignment, genetic algorithm, evolvable hardware

1. Introduction

Design is the process of translating an idea into a product that can be manufactured.
In the design of electronic circuits, this implies a product formed from electronic
components, software and electromechanics. Effective design allows this translation
to be done quickly, cheaply and accurately to produce a product that is fit for the
purpose. The top—down automatic design method of electronic circuits is generally a
complex task requiring knowledge of a large collection of domain specific rules. The
process of implementing a digital electronic circuit in hardware has typically
involved the following stages: (1) transforming the original logical specification into
a form suitable for the target technology; (2) minimising and optimising the
representation with respect to user defined constraints; (3) carrying out technology
mapping onto the target device. The final stage typically involves placing and routing
of component gates, which comprise the complete design [1, 2].

It should be emphasised that during all these stages great care has to be taken to
maintain the logical functionality of the original circuit specification. Hence, there is a
demand for effective tools that perform some of the design tasks leaving the designer to
concentrate on issues of performance optimisation. The complexity of the electronic
design search space has encouraged the use of Evolutionary Electronic Design (EED)

12 ALI ET AL.

procedures. EED has shown a high degree of flexibility in dealing with complex and
computationally hard problems [3, 4, 5, 6]. The automated synthesis of digital logic to
satisfy the function specification is a well-researched area [2, 4, 6]. A circuit synthesised
using function specification is a relatively straightforward process. However,
optimising either the size or the performance of such circuit is a considerably more
difficult problem. There is very little research, which actually evolves the functionality
of sequential logic circuits [3,7]. Hardware evolution is performed through a
succession of changes, reconfigurations of elementary cell functions and cell inter-
connectivity, and selection of the fit configurations until the target functionality is
reached. A particular goal of this research is to come up with a design for a sequential
circuit that can evolve under the control of a selection algorithm.

EHW approach has begun to show that it is possible to evolve such circuits in a
radically different way [3, 4, 6] as described in Table 1. The sequential circuits are
divided into purely combinational blocks and registers. Large sequential circuits are
typically modelled by smaller interacting finite state machines [1]. An FSM is defined
as a mathematical model of a system with discrete inputs, discrete outputs and a
finite number of internal configurations or states. The states of a system completely
summarise the information concerning past inputs to the system that is needed to
determine its behaviour on subsequent inputs.

The aim of this work is to look at the problem of automated synthesis of
synchronous sequential circuits using a new approach based on evolutionary
algorithms. The evolutionary algorithms are used to design synchronous sequential

Table 1. Recent EHW approach used to evolve sequential logic circuits

Type of sequential Evolving Target Type of
Author Year circuit platform application EHW
T Higuchi [14] 1993 State transition graph Digital logic circuit Extrinsic
H Hemmi [7] 1994 Digital sequential AdAM system Serial Adder Extrinsic

adder
A Thomson [11] 1995 Dynamic state Simulator Robotics Intrinsic

machine (DSM) “Mr. Chip

robot”

C. Manovit [10] and 1998 Synchronous sequential PLD, GAL Frequency Intrinsic
P. Chongstitvatana 1999 logic circuits partial detector, Odd
[3] input/output sequence Parity Detector,

[10] and finite-state Module-5 counter,

machine synthesis Serial Adder

from multiple partial

input/output

sequences [3]
C. Aporntewan 2000 Learning finite state PLD, FPGA Serial Adder, 0101 Intrinsic
et al. [27] machine synthesis Detector,

from partial input/ Module-4

output sequences counter,

Reversible

8-counter

EVOLUTIONARY ALGORITHMS AND THEIR USE 13

logic circuits with minimum number of logic gates. GA is meant to mimic Darwinian
evolution [9]. A population of candidates is maintained, and goes through a series of
generations. For each new generation, some of the existing candidates survive, while
others are created by a type of reproduction and mutation from a set of parents.
EHW combine knowledge of both GA and logic design to evolve circuits.

This new approach can be expressed as a black box of the problem. From this
point of view, one regards the problem of implementing the circuits as being
equivalent to designing a black box with inputs and outputs. This black box should
be such that on presentation of the original input signals the desired outputs are
delivered. The essential new feature of this technique is that the details inside the box
are encoded into chromosomes. The chromosome representing a circuit is subject to
the usual processes of evolutionary algorithms.

The advantage of EHW over the traditional circuit design approach is its capacity
for dynamic and autonomous adaptation. EHW can reconfigure its structure
dynamically (on-line) and autonomously, according to changes in the task
requirement or the environment in which the EHW is embedded [11]. Considerable
progress has been recently made in the evolution of digital combinational logic
circuits [8, 9]. The evolution of sequential logic circuits is considerably less mature
[3, 10, 11]. The complexity of circuit connections and encoding chromosomes to evolve
the sequential logic circuit may be one of the reasons that not much work has been
done in this area.

The paper will consider the circuit design technique that is based on the use of
evolutionary algorithm during different stages of the circuit design procedure. In the
proposed approach both GA for state assignment problem and EHW are combined
together, to produce optimal logic circuits. First GA is used to find optimal state
assignment. Second, the extrinsic EHW is used to find the functional design of
combinational parts of the sequential logic circuits. The remaining sections are
organised as follows: Section 2 give summary of the previous work in this area.
Sections 3 consider the basic idea of the proposed approach. Section 4 shows an
application using GA to find optimal state assignment to identify state transition
table for the circuit. In Section 5, the application of EHW is implemented where
different simple sequential logic circuits are evolved. The experimental results are
given in Section 6. Finally, Section 7 provides the conclusions and future work.

2. Related work

EHW has only recently been applied to the synthesis of sequential logic circuits.
Though a number of authors made useful contributions [3, 4, 7, 11, 14]; the subject
area is still in the early stage of development.

Table 1 summarises the recent work concerning the evolution of sequential logic
circuits. Analysing the table, it can be noticed that EHW has been used mainly to
synthesise relatively small sequential circuits. The hardware evolution uses primitive
logic gates, which are not powerful enough for industrial applications. Development
of large circuits is still an important challenge to EHW researchers. Research in EHW
can be subdivided in two main categories: intrinsic evolution and extrinsic evolution.

14 ALI ET AL.

Therefore, the circuits generated by EHW are evaluated either extrinsically (software
simulation) or intrinsically. Intrinsic evolution implies that the circuit is downloaded
into the reconfigurable hardware devices and then evaluated.

3. Basic idea of the proposed approach

The design of a synchronous sequential circuit starts from a set of specifications and
culminates in a logic diagram or a list of Boolean functions from which a logic
diagram can be obtained. In contrast to a combinational logic, which is fully
specified by a truth table, a sequential circuit requires a state table for its
specification. The first step in the design of sequential circuits is to obtain a state
table or an equivalence representation, such as a state diagram.

In this section, a new approach is introduced to evolve sequential logic circuits.
The complexity of logic circuits can be defined as a function of the number of gates
in the circuit. The central idea of this approach is to represent the circuits in such a
way that the genetic operations can be carried out. The architecture of the genetic
synthesis of sequential logic circuits is shown in Figure 1. Stage 1 represents the
target circuit specification using symbolic state transition table. The state
minimization, if required, can be done using existing tools [5]. In the next stage,
the genetic algorithm uses this state transition table (STT) to generate optimal state
assignment to assign binary code for each state. Therefore, the STT of the sequential
circuit is formatted as two-level logic PLA file. GA is used to generate the state
assignment aiming to reduce the circuit area. The objective function of GA leads to
simpler equations and therefore smaller area. Finally, the processing of genetic
algorithm for state assignment and EHW to design the desired circuit are combined
together to produce optimum logic circuit. This combined process leads to clear
interface among components. Extrinsic EHW proposed in [26] is used to generate the
combinational part of sequential logic circuit. The extrinsic EHW uses software
models to evaluate the fitness function of the resulting circuit. The genetic synthesis

FSMs specification

v

Stage 1 | State Minimization |
Stage 2 | State Assignment |
\l/ STT
Combinational
Stage 3 circuit design
logic level

Figure 1. Processing of the proposed approach.

EVOLUTIONARY ALGORITHMS AND THEIR USE 15

creates circuits at the gate-level by using function set of logic device such as AND,
OR, NOT and D flip-flops.

4. Generation of state transition table

First stage to evolve a sequential circuit is to find optimum state assignment, which
minimises the number of components. The only restriction for a valid minimal length
state assignment is that each state has to be assigned a unique binary value. The total
number of possible unique assignment for FSM is given by A(n,b) = (2> —1)!/
(b!(2> — n)!) [1]. Where n is number of states and b is the smallest integer that is equal
to or greater than log,n. The number of distinct assignment is large enough to
discourage any attempt at obtaining the solution. Table 2 presents a variety of
available approaches for the state assignment problem. In addition, there are a
number of algorithms implemented with SIS “A System for Sequential Circuit
Synthesis” [5] such as NOVA [15], which targets a two-level implementation and
JEDI [16], which targets a multilevel implementation. The input to the system for
synthesis of an FSM is typically a KISS (Keep Internal State Simple) format file.

During recent years, several researchers have been applying genetic algorithm
technique to solve the state assignment problem [17, 18].

There is no completely satisfactory manual technique for finding the optimum
state assignment. The problem of finding the optimum state assignment is NP-hard
[1]. The GA finds good optimal solutions short of complete enumeration and
evaluation of all possible assignments.

4.1. Chromosome representation for GA state assignment problem

A finite state machine can be described by STT or state transition graph (STG).
When implementing finite state machines, they are commonly represented as two-
dimensional tables with a number of rows equal to the number of states and a
number of columns equal to the size of the input alphabet. The intersection between
a state and an input alphabet contains the output symbol and the next-state
transition. The chromosome represents the FSMs as a list of states. The length of the
chromosome is equal to the number of the states used for the sequential machine.
The initial population is generated randomly. Each chromosome represents a
solution to the problem. The duplicated chromosomes are discarded. In order to
encode the actual information, the FSM is represented as a list of n states; the ith
element of the list is a number in the range from 1 to (2°—i+1). Consider the
example shown in Figure 2 where the genotype of the chromosome has been
generated randomly. The genotype of a problem is represented by array of integers.
The figure shows how a six state sequential machine is encoded. According to
Figure 2, the method can be summarised as follows:

(a) Random function is used to generate six integers (2,4,5,2,4,2).
(b) The ordinal integers represents the states as list (0,1,2,3,4,5,6,7); the list starts with
zero and contains all possible assignments for states of an FSM using minimum

ALI ET AL.

16

‘WYILIo3[e Y} JO AOUdIOLJ

oy} 10 Teronid st s1ojerodo 9sayy jo

uor1o9[as oy], "uonejudwe[dur sir 10§
s1oje1ado jo 39s ® saxmbai yoeordde yo

‘A[uo uoneyuswoduwr [9A9] 0M) 10

‘uonejuowA[dw [9Ad[INW 10
‘JuowuSIsse 10j $oIBIS
ndino Junod 0} ur e} 1, Use0P JI puL
‘s9)e1S ())] UBY) QIOW IIM JUIYORW
10J pardde oq 3.ueo [us yoreoidde oy,

‘wepqod Surppaquid
93pa A[dwrs Inq JuSWUIISSL
oneipenb 2y} 9A[0s 3,Us20p I]

*Mofs st yoeordde jo uonejuswodwr ay [,

'soye)s 71 uey
9I0W JO QUIYOBW 10J 9[qBIORIIUI SI 1]

‘suonIed 9SO[0 9ABY SQUIYORW [[B JON

o1 2130] [erUanbas 10J
MHH PU® VD 109 Jo uoneuiquion

‘uonnjos renuajod jo aoeds Yoreds
SB PaIapIsu0d dgAew wajqoid
uoAI3 © J10J Juswudisse d[qissod [y

Jquneay
dquqreay

'sa1e1s 001
0} dn suryoew jo uonEsIEal
103 syrured yoeoadde siyp,

Juowugisse onerpenb
01 uonnjos ewrxoidde
se pajear} aq ueo yoeoxdde oy,
JuomugIsse
10J pa1ogas st Juryojewr Ajenba
uonnaed 1s9q Jo 1asqns Ay} pue
Pa3o9pas Areumndo are suonned [y
‘[61] yoeordde ueyy
10))9q UOAD }[NSAI) ‘UOTJLSI[BAT
poo3 K104 soAI3 yoroxdde sy,
'So[qeLIRA d1B)S oY)
u2aM)aq Aoudpuadop paonpar
ur Sunynsar suonnted pasopd
UO paseq ST JuowugIsse 91e)s oy]

“JIMOII A} JO
11ed [RUONIUSAUOD pUR JUSWIUSISSE
9e3s Tewmido 9jeroussd 03 o) Jurisn

JUAWIUSISS®

91e3s Tewmdo 9jeroussd 03 yo) Juisn
Juowugisse ae)s fewndo

10J Y0O[s[00} VD [BIOIWWO))
Juowugisse aes rewndo

10J Y0O[S[00} VD [BIOIWWO))

-sydeid aqnoradAy o3 9[qe}

NS woly pajeard sydeid awos
Surppaquid uo paseq st yoeoxdde sy,

'S91B)S U2IMIAq

uonIsue) pajudLIo o) Surpuodsariod

$93pa asoym ydeI3d a1e)s dY) woljy
Apoa11p pajeard Surppequid ydeis oy,

‘uonouny uedjoog Iurpuodsariod

9y} jo sanrxoidwos oy} Sunemoes Aq

A9reredoss juowugisse J0J s9JepIpuBd
se pajenyead are suonnred oqissod [y

juowudisse Jo Ayenb soudngur

0] BLIDJLIO SNOLIBA 0} 30adsar yjm
Pa109s 21 J[qe)} 9)BIS JO UWNJOD AT,

‘uryoew 2Je)s Yy dsodurooop
0} pasn are sanbruyos) ore1qas|y

€00z yoroidde pasodoig

81 “L11 s661 ‘Terewry
pue wrew|y yoroidde

WILIOZ[B O1}oUdD),,
[s1] L0661
VAON,, BI[IA Jo yoeoxddy

[e7] 8861
Sueisnyy,, sepead

‘eal v861
YDA “yoroidde
JuowuSIsse oneIpens)

‘Trad ocer
ZOIOJA Jo yoeoiddy

Terl zeer K103
Jo yoeoidde aanjerownuyg

‘ozl 961 LN
pue Blojo ‘yoeoidde
uoneneAd UwN[o)

[61]1 9961 surears pue
suewnIeH AIOdy], uonnied

Niltelistni(Ug)

SILIOIN

K109,

yoeorddy

juowugisse a)e)s [ewndo puy o) saydeoidde s[qe[reae Jo Arewwung ‘7 /gn [

EVOLUTIONARY ALGORITHMS AND THEIR USE 17

| 2 [4 [5 [= [4 [2]
| J
¥ ¥

poselles 0 1 2 a 4 5 8 7
Validity 0

Randotn mumbers 2 4 5 1 4 2

States list 0 1 2 3 4 5 6 7

Chromosome 1 4 i 2 7 3

State azsignment 001 1000 1100 010 111 011

Figure 2. Chromosome representation of state assignment.

length code, i.e. b=[log, n] bits to encode the set of n states. The content of the
state list represents state assignments. The algorithm works through the status-
validity table initially set to one. The numbers are counted from left to right.

The procedure is interpreted as follows: (1) The first random number is 2, take the
second number from the possible state list 1 as first code for the initial state and set
validity (0), so it will not be used for future selections; (2) The next random number
is 4, take the fourth number from the possible state list and remove it from the list by
setting validity (0); (3) The next random number is 5, take the fifth number from the
possible state list and set validity (0).

The procedure continues in the same way for the remaining numbers in the list. It
can be seen from the figure that the random number 2.,4,5,2.4,2 would map the states
0,1,2,3,4,5,6,7 to the assignment 1,4,6,2,7,3 respectively to assign a unique code to
each state. This method is applied to generate randomly the initial generation and is
similar to the ordinal list described in [24].

4.2. Fitness function

The goal of the GA is to extract the optimum state assignment for the target state
machine, which requires the least number of logic gates. Therefore the number of
2-inputs AND/OR logic gates are used to define the fitness function.

4.3. Genetic operators

Fitness value is assigned to each individual in the population. Roulette wheel
selection is used to select the chromosomes from the previous population. Then, the
recombination operations are applied. Two-point crossover operation has been
applied to produce child chromosome as illustrated in Figure 3.

The mutation operation chosen is based on the interchange of two genes (states) in
each chromosome. However, when creating a new population by crossover &
mutation, the best chromosome can be lost. In order to avoid this situation, elitism is
utilised to process the best chromosomes in the new population. Elitism rapidly
improves the performance of the GA, by preventing the loss of the best-found

18 ALI ET AL.

Before Crossover After Crossover
Chromosome 1=2 1|3 5|6 Offspringl=2 1|7 3|6
Chromosome 2=4 2|7 3|1 Offspring2=4 2|3 5|1

Figure 3. The two-point crossover operation. Two offspring are produced from a pair of parents. The
symbol indicates the randomly chosen crossover point.

“Iaa

solution. Several parameters control the way GA optimises the state assignment of
the FSM, allowing the users to vary their values. The parameters are:

The population size of the genetic algorithm;

The number of generations of the GA around the main loop;

The initial numbers of runs of the GA to perform the optimisation;
The probabilities of crossover rate (P.) and mutation rate (Py,).

Selecting the GA parameter values for optimal state assignments will be discussed
in Section 6. The mutation rate was variable and increased with each generation if
there had been no improvement in the gate count of the best chromosome.

5. Extrinsic Evolvable Hardware approach for combinational logic design

Extrinsic EHW initially proposed in [26] have been used to design the combinational
part of circuit. The EHW approach is a recently developed technique used to
synthesize combinational and sequential circuits [11, 25, 26]. The automated design
of digital systems uses both software simulation and programmable hardware
techniques. Therefore, EHW approach is based on the idea of combining
reconfigurable hardware devices with GA to perform reconfiguration autonomously.

The state transition table (STT) has been chosen to describe the behaviour of the
synchronous sequential logic circuit. The structure of sequential logic circuits shown
in Figure 4 comprises a set of two sections of combinational logic circuit and D flip-
flops (DFFs). The circuit is generated using a given set of available logic gates. The
combinational parts of sequential logic circuits are generated using extrinsic EHW
approach. The desired functionality for the combinational parts of the logic circuit is
described using STT. The search space is defined by a number of different factors:
(1) type of building blocks presented to the framework; (2) the number of logic elements
used to generate the circuit; (3) the application for which the circuit is being evolved.

In the design process, it has been long accepted that the best way to solve a
problem is to decompose the problem into several sub-problem. The structure of a
sequential logic circuit in the proposed approach contains 3 subcircuits as shown in
Figure 4. Each subcircuit is evolved separately. Once the subcircuits have been
designed, the sequential circuit is assembled. In this case, the 2-combinational logic
circuits A and B have to be synthesised. Full details of extrinsic EHW approach to
design combinational logic circuits can be found in [25, 26] but the approach is
summarised here for convenience. Each combinational circuit is represented as a
rectangular array of logic gates. Each logic gate in this array is uncommitted and
can be removed from the network if it is proved redundant. The genotype is

EVOLUTIONARY ALGORITHMS AND THEIR USE

Tnputs Next states Outputs
—> A —>| C > B —>
> | Next state f
> s(t+1) | 2@
logic | DFFs Output logic |
e
F g
s(1)
Present states
Figure 4. Description on the circuit parts.
Inputs Circuit connectivity Outputs
Circuit size ? Gate structure
columns L3 @ I {f ljD
rows Xz Je !»7
@ :
KN\ EEN| Gate type

Gate inputs

Circuit Outputs
Gate connectivity

Figure 5. Schematics of the chromosome structure used in EHW approach with circuit layout 3 x 4 [26].

characterised by the following parameters: the number of columns, the number of
rows and the level back parameter and connectivity list of rectangular array of logic
gates [26] (see Figure 5). The first two parameters are merely the dimension of the
rectangular array and the third one is a parameter, which controls the internal
connectivity of logic circuit. The maximum cell connectivity can be achieved if the
number of rows is one and the level back parameter is equal to the number of
columns. At the same time, if the number of rows is one and the level back parameter
is one then each cell must be connected to its immediate neighbour to the left.
Further, cells within any particular column cannot be connected to each other and
each logic gate has two-inputs and one output.

The chromosome defines the connection in the network between the primary
inputs and primary outputs. Figure 5 shows the representation of the chromosome
connection between the 3-primary inputs and 2-primary outputs. The network is
designed using 2-input, one-output logic gates. The chromosome layout is 3 x 4
(Meolumns X Hrows) geometry of uncommitted logic cells and netlist numbering. Each
logic cell is represented by a triple of integers (cl e c3>, where ¢' defines functional
gene and ¢, ¢ define the gate inputs.

5.1. Fitness function

Dynamic fitness function (F;+ F») is used to evaluate the circuit [26]. F; uses
Hamming distance to measure the functionality of the circuit between a given set of

20 ALI ET AL.

inputs and outputs. F, defines the number of primitive logic cells that are used in the
circuit. F, is activated once Fj reaches 100% functionality.

The first fitness function compares the corresponding output of subcircuit A and
subcircuit B (Figure 4) with given next state and output columns of STT. The
percentage of correct next state bits corresponding to the j-th output, Fy; is
calculated as follows: Fy; = (377, [y; — dj| /p) * 100; where |y; — dj| is the absolute
difference between the actual next state output and the desired output d;, y; is the
vector of the j-th circuit outputs and p is the number of input combinations in
the given logic function. The circuit completely implements the output y; reaches
100% functionality. Once the solution has been evolved the circuit optimisation
criteria is activated. The second fitness function F, minimises the number of logic
gates by rewarding those circuits with the least number of active logic gates. The
procedure described above applies for both subcircuits A and B.

5.2. Motivation examples

Let us consider the design process of the sequential circuit based on the synthesis of
the symbolic transition table given in Figure 6. The FSM has five states, one input
and one output. In Figure 6 step 1 shows the symbolic state table of FSM and the
state assignment generated by GA was assigned to each state. In step 2, the encoding
is used to obtain the standard two-level PLA format.

In step 3, the STT of the circuit is divided into input combinational logic
subcircuit A and output combinational logic subcircuit B. Once the decomposition is
completed, the fully functional circuits can be generated using EHW.

The initial data of evolutionary algorithms parameters is given in Table 4 and
circuit evolved is shown in Figure 7. The total number of logic gates in the assembled
circuit is 10 (6 AND, 3 OR, 1 NOT). The most efficient evolved subcircuit consists
of 3 logic gates in subcircuit A, 7 gates in subcircuit B and 3 D flip-flops. The
initial parameters of GA to generate optimal state assignment (SA) to construct
the STT and extrinsic EHW to design the desired logic circuits are given in

STT of the circuit STT of subcircuit A STT of subcircuit B

iip Ps Ns obp o4 G4 o4
0 S0 S1 0 o 4 o 3 o1
0 S1 S4 1
0 s2 s4 1 o v e
0 S3 s4 0 State 0 =000 0000 0010 0000 001 0000 0
0 sS4 S0 0 State 1 =00 1 0001 0101 0001 010 0001 1
I so s2 0 State2 =101 0101 0101 0101 010 0101 1
1 N S3 1 State3 =110 0110 0100 0110 010 0110 0
182 830 State 4 =010 0010 0000 0010 000 0010 0
oS3 s4 1000 1010 1000 101 1000 0
1 s4 S0 0 1001 1101 1001 110 1001 1
o 1101 1100 1101 110 1101 0
i/p inputs 1110 010 1 1110 010 1110 1
o/p outputs 1010 0000 1010 000 1010 0
Ps Present state e e .e
Ns Next state

Step 1 Step 2 Step 3

Figure 6. The transformation process of STT into PLA file format. Where .i inputs = input + present state
bits, .0 defined the number of outputs calculated, outputs = next state + output bits, .p is the number of
product terms, .e is end of file.

EVOLUTIONARY ALGORITHMS AND THEIR USE 21

P

Figure 7. The circuit structure implemented according to state table given in Figure 6.

Table 3. Functional set of logic gates used in EHW

Gene Function gene Gene Function gene Gene Function gene Gene Function gene

0 “0” 4 la NOT (a) 8 lab AND (la, b) 12 lalb OR (la, b)

1 “1” 5 b NOT (b) 9 lalb AND (la, !b) 13 la|!b OR (la, 'b)

2 “a” wire 6 ab AND (a, b) 10 alb OR (a, b) 14 a”b XOR (a, b)

3 “b” wire 7 alb AND (a, !b) 11 a] 'b OR (a, !b) 15 la~1b XOR (la, !b)

Table 4. Initial parameters used to evolve the circuit

Parameters SA EHW
Population size 20 10
Number of generations 100 50000
Number of GA runs 10 100
Crossover rate 0.25 0.6
Crossover type Two-point Uniform
Mutation rate 0.015 0.05
Circuit layout — 3x4

Table 4. The functional set of logic gates contains all gates encoded from 0 to 15 (see
Table 3).

6. Experimental results

In this section, the circuit structure synthesised using the proposed approach is
considered and compared to manual designs. We present the problem of designing a
digital circuit in terms of a set of examples. Where in this experimental result, the GA
parameters in Table 4 are used for the state assignment problem. A number of

22 ALI ET AL.

o (=]
=

-]
Qv

Py

4
Qa

0
1
0 S1 81

0 i@ 1 S1 82
0 S2 82 S0= 00
1 s2 83 S1= 01
0 S3 S3 2= 11
1 S3=10

(a) (b) (c)

Figure 8. Module-4 counter (a)-state transition graph, (b) State table and (c) State assignment generated
by GA.

experiments have been carried out in order to determine suitable value for the EHW
parameters.

6.1. Example 1: Module-4 counter

The simplest synchronous digital system is the binary counter because it has no input
and no combinational output block. Module-4 counter has four internal states as
shown in Figure 8. The optimal state assignment has been identified using GA as in
Figure 8(c). The evolutionary algorithm parameters to design the combinational
parts of the GA are: the population size is 5, the maximum number of generation is
50000, the total of runs is 100, the crossover rate is 0.6, the mutation rate is 0.05,
layout described by 1x 10 in proposed approach (a) and by 4 x4 in proposed
approach (b) and the resulting equations are given in Table 5.

In this example, small size of population and large numbers of generations are
used. The circuit shown in Figure 9 has also been tested using two layout sets with
the same state assignment. Choosing too small circuit layout runs the risk that no
100% functional solution could be found because it is physically impossible to build
the circuit of required functionality with few logic gates. Choosing too large a circuit
layout gives the evolutionary algorithm too many possibilities to work with. This is
has been proved for combinational logic circuit in [26].

Figure 9 show how the number of the columns and rows influences the evolution
of circuits. The search space of evolutionary algorithm increases with the number of
rows and columns. It can be seen that in Figure 9(b) the evolved optimal circuit
solution with circuit layout 4 x 4 required 2 AND, 4 OR and 1 NOT logic gates.

6.2. Example 2: sequence detector

The sequence detector circuit has one-input, one-output and 6-internal states. The
behaviour of circuit can be described as shown in Figure 10. When the input

EVOLUTIONARY ALGORITHMS AND THEIR USE 23

Table 5. Solution obtained for Module-4 counter produced using proposed method and manual design

Proposed approach (a) Proposed approach (b) Manual method

Dy =XoA + XoB D, = XA+ XoB Da = XoA + XoB
DB:XQA+X,B DB:X()A-"-/?()B Dg :X()AB+XOB+X()A
Subcircuit A=7 gates Subcircuit A =7 gates Subcircuit A=9 gates
Subcircuit C= 2-D flip-flops Subcircuit C=2 D flip-flops Subcircuit C=2 D flip-flops

Subeircuit C

(a) Layout 1x10 (b) Layout 4x4
Figure 9. The evolved optimal circuit solution of the model-4 counter.

sequence 011 occurs, the outputs become 1 and remains 1 until the sequence 011
occur again. In this case, the output returns to 0. The output then remains 0 until the
sequence 011 occurs a third time, etc. The comparison of result produced by the
proposed approach and manual design based on GA state assignment are shown in
Table 6.

Once the EHW generate the same output as the target machine, the sequential
network of subcircuit A can be structured using 5 AND, 2 OR, 1 NOT and
subcircuit C implemented by 3 D flip-flops as shown in Figure 11. The manual design
uses a random state assignment and Karnaugh maps to minimize the equations. The
parameters of the evolutionary algorithm for this example are as follows: the cell
mutation rate is 0.05, the population size is 20, and the maximum numbers of
generations is 50000. A circuit layout structure of 4 rows and 5 columns is used with
maximum level back parameter equal to 5. The parameter help to obtain a
reasonable probability of achieving 100% correct solution.

Analysing the evolved circuit structure in Figure 11 it can be seen that the
resulting circuit has a more efficient structure than the circuit obtained by manual
method.

24 ALI ET AL.

I/p Ps Ns O/p
0 SO st o
1 SO S0 o
0 SsI St o
1 81 82 0
0 2 Ss1 o
1 2 83 0
0 3 S4 1 S0 000
1 8 83 1 S1 010
0 % sS4 1 $2 001
1 &% S5 1 $3 100
0 Ss sS4 1 S4110
1 s so 1 S5101

(a) () ©

Figure 10. A sequence detector described as (a) state transition graph, (b) state table, (c) state assignment.

Table 6. Solutions obtained for sequential detector produced by
proposed approach and manual method

Proposed approach Manual method

D,=XB Da = AC + 4X + BCX
Dp=X D =BX +ACX
Dc=XAC+XC+AC Dc =BX+ACX +ABX +ACX
zZ=C Z=A+BC

Subcircuit A = 8, Subcircuit A=17,

Subcircuit B=1 Subcircuit B=2

Subcircuit C = 3 D flip-flops Subcircuit C=3 D flip-flops

6.3. Example 3: 1010 detector

The 1010 detector circuit has one input, one output and 4 internal states, as shown in
Figure 12. The results produced by the proposed method are compared with results
produced in [1] as shown in Table 7.

The solution reported in [1] uses almost 3 times more gates than the circuit
produced by the proposed approach. It is interesting to note that the outputs are
implemented in the same way for both circuits. The circuit was actually evolved by
separating each subcircuit and evolving each subcircuit separately to obtain the
target circuit. The probability of the cell mutation rate is 0.05, the population size is
20 and the number of generations is 50000 with 1 x 10 circuit layout. The resulting
circuit is given in Figure 13.

6.4. MCNC benchmarks

In this section the experiment results have been determine with the application to a
set of machines chosen from MCNS benchmark set [28]. Table 8 shows the state
assignment generated by GA.

EVOLUTIONARY ALGORITHMS AND THEIR USE 25

Cratpuat

I/p Ps Ns
so so
so s1
s1 s2
s1 s1
s2 so
sz s3

)

o~o0o0o0o000@

S3 S1

(@) ®) ©

Figure 12. 1010 Detector (a) state transition graph, (b) state transition table, (c) state assignment.

Table 7. Solution obtained for 1010 detector produced using proposed
method and manual design

Proposal approach Almaini, 1994 [1]
Ds=XB+ 4 Dys=XAB+ XAB+ XAB
Dp=X Dp=AB+ AB+ XB
Z=XAB Z=XAB

Subcircuit A=2 Subcircuit A =12

Subcircuit B=3 Subcircuit B=2

Subcircuit C=2 D flip-flops Subcircuit C=2 D flip-flops

As usual EHW begins from randomly connected and randomly chosen logic gates
and gradually evolves the target functionality. Neutrality of evolutionary algorithms
does not guarantee that 100% functionality circuit of the resulting connections will
be achieved in all cases so the results reported here are the average from 100 runs.

Table 9 present the experimental results obtained for general FSMs from MCNC
benchmark set. The table shows the numbers of gates used to evolve each subcircuit
after 100 runs. The particular set of logic gates used is fixed in advance, but whether

26 ALI ET AL.

Figure 13. Evolved optimal circuit solution for 1010 detector using 4 x 5-circuit layout.

Table 8. State assignments generated by GA

FSM #State State assignment

bbara 10 2,3,5,4,7,8,9,0,1,11

bbtas 6 6,1,5,4,3,0

dk15 4 0,2,1,3

dk16 27 12,8,1,27,13,28,14,29,0,16,26,9,2,4,3,10,11,17,24,5,18,7,21,25,6,20,19
dk27 7 6,1,5,7,4,3,0

dk512 14 4,3,14,9,12,7,2,1,0,10,13,8,5,6

lion9 9 1,0,4,6,7,53,1,11

shiftreg 8 6,2,4,0,7,3,5,1

tav 4 4,0,2,1

or not any particular gate is used, or how many time a gate is used, is entirely free.
The advantage of this approach is that it allows us to synthesis the benchmarks
circuit using any set of logic gates. Consequently, it permits the synthesis of compact
and unusual circuit structures. The quality of evolved circuits is defined by the
number of logic gates in the circuit. It can be seen from Table 9 that large FSM
benchmarks (dk16) is difficult to evolve with one valid solution after 100 runs. These
benchmark sets results are compared against SIS [5] for sequential logic synthesis
and optimisation. The inputs to SIS are given in state table kiss format and the
library is given in genlib format. The output is a netlist of gates for the target
technology. The table shows the measure of computing time tgyw run on a 450 MHZ
PC 128 MBRAM for the benchmark that appears in the literature. The result shows
that the benchmark with small numbers of states the EHW required significantly less
CPU run time. Furthermore, It may be conclude that the results found by this
approach are at least as good as manual methods, but in some case better than those
derived by available methods.

7. Conclusions

The paper presents a new synthesis approach which provide for both GA to find
optimal state assignment and EHW to design the combitional part of sequential logic

27

EVOLUTIONARY ALGORITHMS AND THEIR USE

VO JO suni (0] Io}je paure}qo suonnjos [euonouny A[ny jo requinu

AU} SI SaSBO (O #

09¢ 6C 6 9T 4 €T € SI°01°9-0 14 14 14 Al
001 4! IC 81 € S €l SI€I-0 8 I I Soryryg
0l¥ S¢ L 0S ¥ 1T 6C ST°01°9-0 6 I 4 6uory
8% 8¢ 1€ Ly 12 44 ST SI'PI-69-C il € I TIsAp
(1147 0C 8¢ 91 € S 1 S1°01°9-0 L 4 I LTIP
081¢ 54 I S0¢ S ov S9t SI-01°8°9°0 LT € 4 913pP
00€ 99 1 €S 4 €€ 0T SI-TT0IL'9T0 12 S € SIIp
08t 8T T 61 € 14 SI SI'TT0I°LT 9 4 4 se1qq
099 6L L 09 € 8¢ 43 SI01°9°6—0 01 4 14 eIeqq
MHH) [e10], SaSBO ()0[# [BIO], D UNdINGNS g UNdINgNS Yy 1InaIngng Jos [euonouNn, JBISH JNOx Uly SSIY YIewyoudg
(§)ouny NdD [gI SIS uonn[os paure)qo 1saq Y} Jo UoneWISy uonesyadg

yoeordde p\HH oISuLnxe jo synsar [eyudwiadxyg 6 9/qvf

28 ALI ET AL.

circuit. The EHW approach described is based on the exterinsic evolution at gate-
level, in the sense that each gene of a chromsome corresponds to a primitive logic
gate. The problem of how to evolve a sequential logic circuit that performs a desired
function (specified by state table); given a set of available logic gates has been
discussed. The experimental results obtained are compared with results produced by
the manual design method and other automted design tools. The minimum numbers
of AND, OR, NOT logic gates in the combinational block of the circuit is the criteria
set by the user to choose the optimal solution. The state assignment of state machine
is often critical and a small change in the codes assigned to the state can lead to very
wide difference in the number of logic gates and in the topological structure of that
logic. The work shows how an evolutionary algorithm could be used to produce a
novel and efficient design for digital logic circuit. As it has been verified through the
presented EHW approach implementations, the proposed approach can be
successfully applied to the design of simple sequential logic circuits. We believe
that the GA-based approach has a great potential to provide a practical tool for
assisting designers of logic circuits.

A common feature of most published work in this field is that the evolved circuit
size is small and hardware evolution is based on logic gates. Future work on EHW
will concentrate on using function-level EHW to evolve larger finite-state machine.

References

1. A. E. A. Almaini, Electronic Logic Systems, Prentice-Hall, 3rd Ed. 1994, UK.

. P. K. Lala, Practical Digital Design and Testing, Prentice Hall, 1996.

. P. Chongstitvatana and C. Aporntewan, “Improving correctness of finite-state machine synthesis from
multiple partial input/output sequences,” in Proceedings of the 1st NASA/DoD Workshop of
Evolvable Hardware, 1999, pp. 262-266.

4. S. Louis, “Genetic algorithm as computational tool for design,” PhD Dissertation, Department of
Computer Science, Indiana University, 1993.

5. E. M. Sentovich, et al. “SIS. A system for sequential circuit synthesis,” Tech. Rep. UCB/ERL
M92/41 Electronics Research Lab. University of California: Berkeley, CA 94720, May 1992.

6. A. Thompson, “An evolved circuit, intrinsic in silicon, entwined with physics,” in Proceedings of the
Ist International Conference on Evolvable Systems: From Biology to Hardware (ICES96), Lecture
Notes in Computer Science, T. Higuchi, et al. (eds.) Springer-Verlag, vol. 1259, 1997, pp. 390-405.

7. H. Hemmi, J. Mizoguchi, and K. Shimohara, “Development and evolution of hardware behaviours,”
Brooks and Maes (eds.), Artificial Life IV, pp. 371-376, 1994.

8. T. Kalganova, “Bidirectional incremental evolution in evolvable hardware,” in Proceeding of the Second
NASA/DoD Workshop on Evolvable Hardware J. Lohn, A. Stoica, D. Keymeulen, and
S. Colombano (eds.), Palo Alto, California, USA. Published by IEEE Computer Society, 2000, pp. 64-74.

9. J. Koza, F. Bennett, D. Andre, and M. Keane, Genetic Programming III: Darwinian Invention and
Problem Solving, Morgan Kaufman, 1999.

10. C. Manovit, C. Aporntewan, and P. Chongstitvatana, “Synthesis of synchronous sequential logic
circuits from partial input/output sequence,” in Proceedings of the Second International Conference
on Evolvable Systems (ICES’98) M. Sipper, D. Mange, and Andrés Pérez-Uribe (eds.), Springer-
Verlag: Heidelberg, vol. 1478, 1998, pp. 98-105.

11. A. Thompson, “Evolving electronic robot controllers that exploit hardware resources,” in Proceeding
3rd European Conference on Artificial Life (ECAL 95) A Moreno, J. J. Merelo, and P. Chacon (eds.),
Springer-Verlag, vol. 929, 1995, pp. 640-656.

W N

EVOLUTIONARY ALGORITHMS AND THEIR USE 29

12

13.
14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.
25.

26.

27.

28

. J. Story, H. Harrison, and E. Reinhard, “Optimum state assignment for synchronous sequential
circuit,” IEEE Trans. On Comp, vol. C-21, no. 12, pp. 1365-1373, 1972.

D. B. Fogel, Evolutionary Computation, IEEE Press, pp. 75-84, 1995.

T. Higuchi, T. Niwa, T. Tanaka, H. Iba, and T. Furuya, “A parallel architecture for genetic based
evolvable hardware,” in Proceeding of International Joint Conference on Artificial Intelligence
(IJCAT’93), H. Kitano, C. Suttner, and V. Kumar (eds.), Workshop on Parallel Processing for
Artificial Intelligence, 1993, pp. 46-52.

T. Villa and A. Sangiovanni-Vincentelli, “NOVA: state assignment of finite state machines for optimal
two level logic implementation,” IEEE Trans., C-9, pp. 905-924, 1990.

B. Lin and A. R. Newton, “Synthesis of multi-level logic from Symbolic High-level Description
Language,” in Proceeding IFIP Conference on VLSI, J. M. Luc (ed.), Munich: W. Germany, 1989,
pp. 187-196.

A. E. A. Almaini, J. Miller, P. Thomson, and S. Billina, “State assignment of state machine
using genetic algorithm,” in IEE Proc. Comp. and Digital Techniques, no. 4, July 1995 vol. 142, 1995,
pp. 279-286.

J. Amaral, K. Tumer, and J. Ghosh, “Design genetic algorithm for the state assignment problem,”
IEEE Trans, vol. no. SMC-25, 4, pp. 689-694, 1995.

J. Hartmanis and E. Stearns, Algebraic Structure Theory of Sequential Machines, Prentice Hall, 1996.
T. Dolotta and E. McCluskey, “The Coding of Internal States of Sequential Machines,” IEEE
Transaction on Electron. Comput, vol. EC-13, pp. 549-562, October 1964.

D. Z. Moroz, “An algorithm for encoding the states of an automaton,” Avtomatikai Vychislitelnaya
Tekhnika, vol. 4, no. 4, pp. 21-24, 1970.

G. De Micheli, “Optimal Encoding of Control Logic,” Int. Conf. on Circ. and Comp. Des. Rye NY,
September 1984.

S. Devadas, A. Newton, and V. Sangiovanni, “MUSTANG: State assignment of finite state machines
targeting multilevel logic implementations,” IEEE Trans. Computer-Aided Design, vol. CAD-7,
No.12, pp. 1290-1300, December 1988.

Z. Michalewicz, “Genetic Algorithms + Data Structure = Evolution Program,” Springer-Verlag, 1992.
T. Kalganvoa, J. Miller, and T. Fogarty, “Evolution of the digital circuit with variable layouts,” in
Proceeding of the Genetic and Evolutionary Computation Conference (GECCO’99), W. Benzhaf,
J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, and R. E. Smith (eds.), Orlando,
Florida, USA, Published by Morgan Kaufmann Publishers: San Francisco, California 1, vol. 2, 1999,
p. 1235.

T. Kalganvoa and J. Miller, “Circuit layout evolution: an evolvable hardware approach,” Colloquium
on “Evolutionary hardware systems,” IEE Colloquium Digest: London, UK, 1999.

C. Aporntewan and P. Chongstitvatana, “An on-line evolvable hardware for learning finite-state
machine,” in Proceeding of Int. Conf. on Intelligent Technologies, Bangkok, December 13-15
V. Kreinovich and J. Daengdej (eds.), 2000, pp. 13-15.

. S. Yang, Logic synthesis and optimisation benchmark user guide version 3.0, MCNC, 1991.

