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Abstract. In this paper an approach based on an evolutionary algorithm to design synchronous

sequential logic circuits with minimum number of logic gates is suggested. The proposed method consists of

four main stages. The first stage is concerned with the use of genetic algorithms (GA) for the state assign-

ment problem to compute optimal binary codes for each symbolic state and construct the state transition

table of finite state machine (FSM). The second stage defines the subcircuits required to achieve the desired

functionality. The third stage evaluates the subcircuits using extrinsic Evolvable Hardware (EHW).

During the fourth stage, the final circuit is assembled. The obtained results compare favourably against

those produced by manual methods and other methods based on heuristic techniques.
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1. Introduction

Design is the process of translating an idea into a product that can be manufactured.

In the design of electronic circuits, this implies a product formed from electronic
components, software and electromechanics. Effective design allows this translation

to be done quickly, cheaply and accurately to produce a product that is fit for the

purpose. The top–down automatic design method of electronic circuits is generally a

complex task requiring knowledge of a large collection of domain specific rules. The

process of implementing a digital electronic circuit in hardware has typically

involved the following stages: (1) transforming the original logical specification into

a form suitable for the target technology; (2) minimising and optimising the

representation with respect to user defined constraints; (3) carrying out technology
mapping onto the target device. The final stage typically involves placing and routing

of component gates, which comprise the complete design [1, 2].

It should be emphasised that during all these stages great care has to be taken to

maintain the logical functionality of the original circuit specification. Hence, there is a

demand for effective tools that perform some of the design tasks leaving the designer to

concentrate on issues of performance optimisation. The complexity of the electronic

design search space has encouraged the use of Evolutionary Electronic Design (EED)



procedures. EED has shown a high degree of flexibility in dealing with complex and

computationally hard problems [3, 4, 5, 6]. The automated synthesis of digital logic to

satisfy the function specification is a well-researched area [2, 4, 6]. A circuit synthesised

using function specification is a relatively straightforward process. However,
optimising either the size or the performance of such circuit is a considerably more

difficult problem. There is very little research, which actually evolves the functionality

of sequential logic circuits [3, 7]. Hardware evolution is performed through a

succession of changes, reconfigurations of elementary cell functions and cell inter-

connectivity, and selection of the fit configurations until the target functionality is

reached. A particular goal of this research is to come up with a design for a sequential

circuit that can evolve under the control of a selection algorithm.

EHW approach has begun to show that it is possible to evolve such circuits in a
radically different way [3, 4, 6] as described in Table 1. The sequential circuits are

divided into purely combinational blocks and registers. Large sequential circuits are

typically modelled by smaller interacting finite state machines [1]. An FSM is defined

as a mathematical model of a system with discrete inputs, discrete outputs and a

finite number of internal configurations or states. The states of a system completely

summarise the information concerning past inputs to the system that is needed to

determine its behaviour on subsequent inputs.

The aim of this work is to look at the problem of automated synthesis of
synchronous sequential circuits using a new approach based on evolutionary

algorithms. The evolutionary algorithms are used to design synchronous sequential

Table 1. Recent EHW approach used to evolve sequential logic circuits

Author Year

Type of sequential

circuit

Evolving

platform

Target

application

Type of

EHW

T Higuchi [14] 1993 State transition graph Digital logic circuit Extrinsic

H Hemmi [7] 1994 Digital sequential

adder

AdAM system Serial Adder Extrinsic

A Thomson [11] 1995 Dynamic state

machine (DSM)

Simulator

‘‘Mr. Chip

robot’’

Robotics Intrinsic

C. Manovit [10] and

P. Chongstitvatana

[3]

1998

1999

Synchronous sequential

logic circuits partial

input/output sequence

[10] and finite-state

machine synthesis

from multiple partial

input/output

sequences [3]

PLD, GAL Frequency

detector, Odd

Parity Detector,

Module-5 counter,

Serial Adder

Intrinsic

C. Aporntewan

et al. [27]

2000 Learning finite state

machine synthesis

from partial input/

output sequences

PLD, FPGA Serial Adder, 0101

Detector,

Module-4

counter,

Reversible

8-counter

Intrinsic
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logic circuits with minimum number of logic gates. GA is meant to mimic Darwinian

evolution [9]. A population of candidates is maintained, and goes through a series of

generations. For each new generation, some of the existing candidates survive, while

others are created by a type of reproduction and mutation from a set of parents.
EHW combine knowledge of both GA and logic design to evolve circuits.

This new approach can be expressed as a black box of the problem. From this

point of view, one regards the problem of implementing the circuits as being

equivalent to designing a black box with inputs and outputs. This black box should

be such that on presentation of the original input signals the desired outputs are

delivered. The essential new feature of this technique is that the details inside the box

are encoded into chromosomes. The chromosome representing a circuit is subject to

the usual processes of evolutionary algorithms.
The advantage of EHW over the traditional circuit design approach is its capacity

for dynamic and autonomous adaptation. EHW can reconfigure its structure

dynamically (on-line) and autonomously, according to changes in the task

requirement or the environment in which the EHW is embedded [11]. Considerable

progress has been recently made in the evolution of digital combinational logic

circuits [8, 9]. The evolution of sequential logic circuits is considerably less mature

[3, 10, 11]. The complexity of circuit connections and encoding chromosomes to evolve

the sequential logic circuit may be one of the reasons that not much work has been
done in this area.

The paper will consider the circuit design technique that is based on the use of

evolutionary algorithm during different stages of the circuit design procedure. In the

proposed approach both GA for state assignment problem and EHW are combined

together, to produce optimal logic circuits. First GA is used to find optimal state

assignment. Second, the extrinsic EHW is used to find the functional design of

combinational parts of the sequential logic circuits. The remaining sections are

organised as follows: Section 2 give summary of the previous work in this area.
Sections 3 consider the basic idea of the proposed approach. Section 4 shows an

application using GA to find optimal state assignment to identify state transition

table for the circuit. In Section 5, the application of EHW is implemented where

different simple sequential logic circuits are evolved. The experimental results are

given in Section 6. Finally, Section 7 provides the conclusions and future work.

2. Related work

EHW has only recently been applied to the synthesis of sequential logic circuits.

Though a number of authors made useful contributions [3, 4, 7, 11, 14]; the subject

area is still in the early stage of development.

Table 1 summarises the recent work concerning the evolution of sequential logic

circuits. Analysing the table, it can be noticed that EHW has been used mainly to

synthesise relatively small sequential circuits. The hardware evolution uses primitive

logic gates, which are not powerful enough for industrial applications. Development

of large circuits is still an important challenge to EHW researchers. Research in EHW
can be subdivided in two main categories: intrinsic evolution and extrinsic evolution.

EVOLUTIONARY ALGORITHMS AND THEIR USE 13



Therefore, the circuits generated by EHW are evaluated either extrinsically (software

simulation) or intrinsically. Intrinsic evolution implies that the circuit is downloaded

into the reconfigurable hardware devices and then evaluated.

3. Basic idea of the proposed approach

The design of a synchronous sequential circuit starts from a set of specifications and

culminates in a logic diagram or a list of Boolean functions from which a logic

diagram can be obtained. In contrast to a combinational logic, which is fully
specified by a truth table, a sequential circuit requires a state table for its

specification. The first step in the design of sequential circuits is to obtain a state

table or an equivalence representation, such as a state diagram.

In this section, a new approach is introduced to evolve sequential logic circuits.

The complexity of logic circuits can be defined as a function of the number of gates

in the circuit. The central idea of this approach is to represent the circuits in such a

way that the genetic operations can be carried out. The architecture of the genetic

synthesis of sequential logic circuits is shown in Figure 1. Stage 1 represents the
target circuit specification using symbolic state transition table. The state

minimization, if required, can be done using existing tools [5]. In the next stage,

the genetic algorithm uses this state transition table (STT) to generate optimal state

assignment to assign binary code for each state. Therefore, the STT of the sequential

circuit is formatted as two-level logic PLA file. GA is used to generate the state

assignment aiming to reduce the circuit area. The objective function of GA leads to

simpler equations and therefore smaller area. Finally, the processing of genetic

algorithm for state assignment and EHW to design the desired circuit are combined
together to produce optimum logic circuit. This combined process leads to clear

interface among components. Extrinsic EHW proposed in [26] is used to generate the

combinational part of sequential logic circuit. The extrinsic EHW uses software

models to evaluate the fitness function of the resulting circuit. The genetic synthesis

State Minimization

Combinational
circuit design

logic level

FSMs specification

State Assignment

STT

Stage 1

Stage 2

Stage 3

Figure 1. Processing of the proposed approach.
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creates circuits at the gate-level by using function set of logic device such as AND,

OR, NOT and D flip-flops.

4. Generation of state transition table

First stage to evolve a sequential circuit is to find optimum state assignment, which

minimises the number of components. The only restriction for a valid minimal length

state assignment is that each state has to be assigned a unique binary value. The total

number of possible unique assignment for FSM is given by Aðn, bÞ ¼ ð2b � 1Þ!=
ðb!ð2b � nÞ!Þ [1]. Where n is number of states and b is the smallest integer that is equal

to or greater than log2 n. The number of distinct assignment is large enough to

discourage any attempt at obtaining the solution. Table 2 presents a variety of

available approaches for the state assignment problem. In addition, there are a
number of algorithms implemented with SIS ‘‘A System for Sequential Circuit

Synthesis’’ [5] such as NOVA [15], which targets a two-level implementation and

JEDI [16], which targets a multilevel implementation. The input to the system for

synthesis of an FSM is typically a KISS (Keep Internal State Simple) format file.

During recent years, several researchers have been applying genetic algorithm

technique to solve the state assignment problem [17, 18].

There is no completely satisfactory manual technique for finding the optimum

state assignment. The problem of finding the optimum state assignment is NP-hard
[1]. The GA finds good optimal solutions short of complete enumeration and

evaluation of all possible assignments.

4.1. Chromosome representation for GA state assignment problem

A finite state machine can be described by STT or state transition graph (STG).

When implementing finite state machines, they are commonly represented as two-

dimensional tables with a number of rows equal to the number of states and a

number of columns equal to the size of the input alphabet. The intersection between

a state and an input alphabet contains the output symbol and the next-state

transition. The chromosome represents the FSMs as a list of states. The length of the

chromosome is equal to the number of the states used for the sequential machine.
The initial population is generated randomly. Each chromosome represents a

solution to the problem. The duplicated chromosomes are discarded. In order to

encode the actual information, the FSM is represented as a list of n states; the ith

element of the list is a number in the range from 1 to (2b� iþ 1). Consider the

example shown in Figure 2 where the genotype of the chromosome has been

generated randomly. The genotype of a problem is represented by array of integers.

The figure shows how a six state sequential machine is encoded. According to

Figure 2, the method can be summarised as follows:

(a) Random function is used to generate six integers (2,4,5,2,4,2).

(b) The ordinal integers represents the states as list (0,1,2,3,4,5,6,7); the list starts with
zero and contains all possible assignments for states of an FSM using minimum

EVOLUTIONARY ALGORITHMS AND THEIR USE 15
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length code, i.e. b¼ [log2 n] bits to encode the set of n states. The content of the

state list represents state assignments. The algorithm works through the status-

validity table initially set to one. The numbers are counted from left to right.

The procedure is interpreted as follows: (1) The first random number is 2, take the

second number from the possible state list 1 as first code for the initial state and set

validity (0), so it will not be used for future selections; (2) The next random number

is 4, take the fourth number from the possible state list and remove it from the list by
setting validity (0); (3) The next random number is 5, take the fifth number from the

possible state list and set validity (0).

The procedure continues in the same way for the remaining numbers in the list. It

can be seen from the figure that the random number 2,4,5,2,4,2 would map the states

0,1,2,3,4,5,6,7 to the assignment 1,4,6,2,7,3 respectively to assign a unique code to

each state. This method is applied to generate randomly the initial generation and is

similar to the ordinal list described in [24].

4.2. Fitness function

The goal of the GA is to extract the optimum state assignment for the target state

machine, which requires the least number of logic gates. Therefore the number of

2-inputs AND/OR logic gates are used to define the fitness function.

4.3. Genetic operators

Fitness value is assigned to each individual in the population. Roulette wheel

selection is used to select the chromosomes from the previous population. Then, the

recombination operations are applied. Two-point crossover operation has been

applied to produce child chromosome as illustrated in Figure 3.

The mutation operation chosen is based on the interchange of two genes (states) in

each chromosome. However, when creating a new population by crossover &

mutation, the best chromosome can be lost. In order to avoid this situation, elitism is

utilised to process the best chromosomes in the new population. Elitism rapidly
improves the performance of the GA, by preventing the loss of the best-found

Figure 2. Chromosome representation of state assignment.
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solution. Several parameters control the way GA optimises the state assignment of

the FSM, allowing the users to vary their values. The parameters are:

� The population size of the genetic algorithm;

� The number of generations of the GA around the main loop;

� The initial numbers of runs of the GA to perform the optimisation;

� The probabilities of crossover rate (Pc) and mutation rate (Pm).

Selecting the GA parameter values for optimal state assignments will be discussed

in Section 6. The mutation rate was variable and increased with each generation if

there had been no improvement in the gate count of the best chromosome.

5. Extrinsic Evolvable Hardware approach for combinational logic design

Extrinsic EHW initially proposed in [26] have been used to design the combinational

part of circuit. The EHW approach is a recently developed technique used to

synthesize combinational and sequential circuits [11, 25, 26]. The automated design

of digital systems uses both software simulation and programmable hardware

techniques. Therefore, EHW approach is based on the idea of combining

reconfigurable hardware devices with GA to perform reconfiguration autonomously.

The state transition table (STT) has been chosen to describe the behaviour of the

synchronous sequential logic circuit. The structure of sequential logic circuits shown
in Figure 4 comprises a set of two sections of combinational logic circuit and D flip-

flops (DFFs). The circuit is generated using a given set of available logic gates. The

combinational parts of sequential logic circuits are generated using extrinsic EHW

approach. The desired functionality for the combinational parts of the logic circuit is

described using STT. The search space is defined by a number of different factors:

(1) type of building blocks presented to the framework; (2) the number of logic elements

used to generate the circuit; (3) the application for which the circuit is being evolved.

In the design process, it has been long accepted that the best way to solve a
problem is to decompose the problem into several sub-problem. The structure of a

sequential logic circuit in the proposed approach contains 3 subcircuits as shown in

Figure 4. Each subcircuit is evolved separately. Once the subcircuits have been

designed, the sequential circuit is assembled. In this case, the 2-combinational logic

circuits A and B have to be synthesised. Full details of extrinsic EHW approach to

design combinational logic circuits can be found in [25, 26] but the approach is

summarised here for convenience. Each combinational circuit is represented as a

rectangular array of logic gates. Each logic gate in this array is uncommitted and
can be removed from the network if it is proved redundant. The genotype is

Figure 3. The two-point crossover operation. Two offspring are produced from a pair of parents. The ‘‘j’’
symbol indicates the randomly chosen crossover point.
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characterised by the following parameters: the number of columns, the number of

rows and the level back parameter and connectivity list of rectangular array of logic

gates [26] (see Figure 5). The first two parameters are merely the dimension of the

rectangular array and the third one is a parameter, which controls the internal

connectivity of logic circuit. The maximum cell connectivity can be achieved if the
number of rows is one and the level back parameter is equal to the number of

columns. At the same time, if the number of rows is one and the level back parameter

is one then each cell must be connected to its immediate neighbour to the left.

Further, cells within any particular column cannot be connected to each other and

each logic gate has two-inputs and one output.

The chromosome defines the connection in the network between the primary

inputs and primary outputs. Figure 5 shows the representation of the chromosome

connection between the 3-primary inputs and 2-primary outputs. The network is
designed using 2-input, one-output logic gates. The chromosome layout is 3� 4

(ncolumns� nrows) geometry of uncommitted logic cells and netlist numbering. Each

logic cell is represented by a triple of integers hc1 c2 c3i, where c1 defines functional

gene and c2, c3 define the gate inputs.

5.1. Fitness function

Dynamic fitness function (F1þF2) is used to evaluate the circuit [26]. F1 uses
Hamming distance to measure the functionality of the circuit between a given set of

Figure 5. Schematics of the chromosome structure used in EHW approach with circuit layout 3� 4 [26].

Figure 4. Description on the circuit parts.
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inputs and outputs. F2 defines the number of primitive logic cells that are used in the

circuit. F2 is activated once F1 reaches 100% functionality.

The first fitness function compares the corresponding output of subcircuit A and

subcircuit B (Figure 4) with given next state and output columns of STT. The
percentage of correct next state bits corresponding to the j-th output, Fyj is

calculated as follows: Fyj ¼ ð
Pp

j¼1 jyj � dj j=pÞ � 100; where jyj � djj is the absolute

difference between the actual next state output and the desired output dj, yj is the

vector of the j-th circuit outputs and p is the number of input combinations in

the given logic function. The circuit completely implements the output yj reaches

100% functionality. Once the solution has been evolved the circuit optimisation

criteria is activated. The second fitness function F2 minimises the number of logic

gates by rewarding those circuits with the least number of active logic gates. The
procedure described above applies for both subcircuits A and B.

5.2. Motivation examples

Let us consider the design process of the sequential circuit based on the synthesis of

the symbolic transition table given in Figure 6. The FSM has five states, one input

and one output. In Figure 6 step 1 shows the symbolic state table of FSM and the

state assignment generated by GA was assigned to each state. In step 2, the encoding

is used to obtain the standard two-level PLA format.

In step 3, the STT of the circuit is divided into input combinational logic

subcircuit A and output combinational logic subcircuit B. Once the decomposition is

completed, the fully functional circuits can be generated using EHW.
The initial data of evolutionary algorithms parameters is given in Table 4 and

circuit evolved is shown in Figure 7. The total number of logic gates in the assembled

circuit is 10 (6 AND, 3 OR, 1 NOT). The most efficient evolved subcircuit consists

of 3 logic gates in subcircuit A, 7 gates in subcircuit B and 3 D flip-flops. The

initial parameters of GA to generate optimal state assignment (SA) to construct

the STT and extrinsic EHW to design the desired logic circuits are given in

. i  4

. o 4

. p 1 0

0 0 0 0  0 0 1 0
0 0 0 1  0 1 0 1
0 1 0 1  0 1 0 1
0 1 1 0  0 1 0 0
0 0 1 0  0 0 0 0
1 0 0 0  1 0 1 0
1 0 0 1  1 1 0 1
1 1 0 1  1 1 0 0
1 1 1 0  0 1 0 1
1 0 1 0  0 0 0 0
. e

Step 2 Step 3

STT of the circuit STT of subcircuit A STT of subcircuit B

i/p Ps Ns o/p
0  S0 S1 0
0  S1 S4 1
0  S2 S4 1
0  S3 S4 0
0  S4 S0 0
1  S0 S2 0
1  S1 S3 1
1  S2 S3 0
1  S3 S4 1
1  S4 S0 0

i/p inputs
o/p outputs
Ps Present state
Ns Next state

State 0 = 0 0 0
State 1 = 0 0 1
State 2 = 1 0 1
State 3 = 1 1 0
State 4 = 0 1 0

. i  4

. o 3

. p 1 0

0 0 0 0  0 0 1
0 0 0 1  0 1 0
0 1 0 1  0 1 0
0 1 1 0  0 1 0
0 0 1 0  0 0 0
1 0 0 0  1 0 1
1 0 0 1  1 1 0
1 1 0 1  1 1 0
1 1 1 0  0 1 0
1 0 1 0  0 0 0
. e

Step 1

. i  4

. o 1

. p 1 0

0 0 0 0  0
0 0 0 1  1
0 1 0 1  1
0 1 1 0  0
0 0 1 0  0
1 0 0 0  0
1 0 0 1  1
1 1 0 1  0
1 1 1 0  1
1 0 1 0  0
. e

Figure 6. The transformation process of STT into PLA file format. Where .i inputs¼ inputþpresent state

bits, .o defined the number of outputs calculated, outputs¼next stateþoutput bits, .p is the number of

product terms, .e is end of file.
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Table 4. The functional set of logic gates contains all gates encoded from 0 to 15 (see

Table 3).

6. Experimental results

In this section, the circuit structure synthesised using the proposed approach is

considered and compared to manual designs. We present the problem of designing a

digital circuit in terms of a set of examples. Where in this experimental result, the GA

parameters in Table 4 are used for the state assignment problem. A number of

Table 4. Initial parameters used to evolve the circuit

Parameters SA EHW

Population size 20 10

Number of generations 100 50000

Number of GA runs 10 100

Crossover rate 0.25 0.6

Crossover type Two-point Uniform

Mutation rate 0.015 0.05

Circuit layout — 3� 4

Figure 7. The circuit structure implemented according to state table given in Figure 6.

Table 3. Functional set of logic gates used in EHW

Gene Function gene Gene Function gene Gene Function gene Gene Function gene

0 ‘‘0’’ 4 !a NOT (a) 8 !ab AND (!a, b) 12 !ajb OR (!a, b)

1 ‘‘1’’ 5 !b NOT (b) 9 !a!b AND (!a, !b) 13 !aj!b OR (!a, !b)

2 ‘‘a’’ wire 6 ab AND (a, b) 10 ajb OR (a, b) 14 a ^ b XOR (a, b)

3 ‘‘b’’ wire 7 a!b AND (a, !b) 11 aj !b OR (a, !b) 15 !a ^ !b XOR (!a, !b)
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experiments have been carried out in order to determine suitable value for the EHW

parameters.

6.1. Example 1: Module-4 counter

The simplest synchronous digital system is the binary counter because it has no input

and no combinational output block. Module-4 counter has four internal states as

shown in Figure 8. The optimal state assignment has been identified using GA as in

Figure 8(c). The evolutionary algorithm parameters to design the combinational

parts of the GA are: the population size is 5, the maximum number of generation is
50000, the total of runs is 100, the crossover rate is 0.6, the mutation rate is 0.05,

layout described by 1� 10 in proposed approach (a) and by 4� 4 in proposed

approach (b) and the resulting equations are given in Table 5.

In this example, small size of population and large numbers of generations are

used. The circuit shown in Figure 9 has also been tested using two layout sets with

the same state assignment. Choosing too small circuit layout runs the risk that no

100% functional solution could be found because it is physically impossible to build

the circuit of required functionality with few logic gates. Choosing too large a circuit
layout gives the evolutionary algorithm too many possibilities to work with. This is

has been proved for combinational logic circuit in [26].

Figure 9 show how the number of the columns and rows influences the evolution

of circuits. The search space of evolutionary algorithm increases with the number of

rows and columns. It can be seen that in Figure 9(b) the evolved optimal circuit

solution with circuit layout 4� 4 required 2 AND, 4 OR and 1 NOT logic gates.

6.2. Example 2: sequence detector

The sequence detector circuit has one-input, one-output and 6-internal states. The
behaviour of circuit can be described as shown in Figure 10. When the input

Figure 8. Module-4 counter (a)-state transition graph, (b) State table and (c) State assignment generated

by GA.
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sequence 011 occurs, the outputs become 1 and remains 1 until the sequence 011
occur again. In this case, the output returns to 0. The output then remains 0 until the

sequence 011 occurs a third time, etc. The comparison of result produced by the

proposed approach and manual design based on GA state assignment are shown in

Table 6.

Once the EHW generate the same output as the target machine, the sequential

network of subcircuit A can be structured using 5 AND, 2 OR, 1 NOT and

subcircuit C implemented by 3 D flip-flops as shown in Figure 11. The manual design

uses a random state assignment and Karnaugh maps to minimize the equations. The
parameters of the evolutionary algorithm for this example are as follows: the cell

mutation rate is 0.05, the population size is 20, and the maximum numbers of

generations is 50000. A circuit layout structure of 4 rows and 5 columns is used with

maximum level back parameter equal to 5. The parameter help to obtain a

reasonable probability of achieving 100% correct solution.

Analysing the evolved circuit structure in Figure 11 it can be seen that the

resulting circuit has a more efficient structure than the circuit obtained by manual

method.

(a) Layout 1x10 (b) Layout 4x4

Figure 9. The evolved optimal circuit solution of the model-4 counter.

Table 5. Solution obtained for Module-4 counter produced using proposed method and manual design

Proposed approach (a) Proposed approach (b) Manual method

DA ¼ �XX0Aþ X0B DA ¼ �XX0Aþ X0
�BB DA ¼ �XX0Aþ X0

�BB
DB ¼ X0

�AAþ �XXB DB ¼ X0Aþ �XX0B DB ¼ X0A�BBþ �XX0BþX0A

Subcircuit A¼ 7 gates Subcircuit A¼ 7 gates Subcircuit A¼ 9 gates

Subcircuit C¼ 2-D flip-flops Subcircuit C¼ 2 D flip-flops Subcircuit C¼ 2 D flip-flops
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6.3. Example 3: 1010 detector

The 1010 detector circuit has one input, one output and 4 internal states, as shown in

Figure 12. The results produced by the proposed method are compared with results

produced in [1] as shown in Table 7.

The solution reported in [1] uses almost 3 times more gates than the circuit

produced by the proposed approach. It is interesting to note that the outputs are

implemented in the same way for both circuits. The circuit was actually evolved by

separating each subcircuit and evolving each subcircuit separately to obtain the

target circuit. The probability of the cell mutation rate is 0.05, the population size is
20 and the number of generations is 50000 with 1� 10 circuit layout. The resulting

circuit is given in Figure 13.

6.4. MCNC benchmarks

In this section the experiment results have been determine with the application to a

set of machines chosen from MCNS benchmark set [28]. Table 8 shows the state
assignment generated by GA.

Table 6. Solutions obtained for sequential detector produced by

proposed approach and manual method

Proposed approach Manual method

DA¼XB DA ¼ A�CCþ A �XXþ BC �XX

DB ¼ �XX DB¼BXþ �AACX

DC ¼ XA �CC þ �XXC þ �AAC DC ¼BXþ �AA�CC �XXþ �AA�BB �XXþA�CCX

Z¼C Z¼AþBC

Subcircuit A ¼ 8, Subcircuit A¼ 17,

Subcircuit B¼ 1 Subcircuit B¼ 2

Subcircuit C ¼ 3 D flip-flops Subcircuit C¼ 3 D flip-flops

Figure 10. A sequence detector described as (a) state transition graph, (b) state table, (c) state assignment.
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As usual EHW begins from randomly connected and randomly chosen logic gates

and gradually evolves the target functionality. Neutrality of evolutionary algorithms

does not guarantee that 100% functionality circuit of the resulting connections will
be achieved in all cases so the results reported here are the average from 100 runs.

Table 9 present the experimental results obtained for general FSMs from MCNC

benchmark set. The table shows the numbers of gates used to evolve each subcircuit

after 100 runs. The particular set of logic gates used is fixed in advance, but whether

Figure 11. Evolved optimal circuit solution of the sequence detector with circuit layout 4� 5.

Figure 12. 1010 Detector (a) state transition graph, (b) state transition table, (c) state assignment.

Table 7. Solution obtained for 1010 detector produced using proposed

method and manual design

Proposal approach Almaini, 1994 [1]

DA ¼ X �BBþ A DA ¼ �XX �AABþ �XXA�BBþ XAB

DB¼X DB ¼ �AABþ A�BBþ X �BB

Z ¼ �XX �AAB Z ¼ �XXA�BB
Subcircuit A¼ 2 Subcircuit A¼ 12

Subcircuit B¼ 3 Subcircuit B¼ 2

Subcircuit C¼ 2 D flip-flops Subcircuit C¼ 2 D flip-flops
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or not any particular gate is used, or how many time a gate is used, is entirely free.

The advantage of this approach is that it allows us to synthesis the benchmarks

circuit using any set of logic gates. Consequently, it permits the synthesis of compact
and unusual circuit structures. The quality of evolved circuits is defined by the

number of logic gates in the circuit. It can be seen from Table 9 that large FSM

benchmarks (dk16) is difficult to evolve with one valid solution after 100 runs. These

benchmark sets results are compared against SIS [5] for sequential logic synthesis

and optimisation. The inputs to SIS are given in state table kiss format and the

library is given in genlib format. The output is a netlist of gates for the target

technology. The table shows the measure of computing time tEHW run on a 450 MHZ

PC 128 MBRAM for the benchmark that appears in the literature. The result shows
that the benchmark with small numbers of states the EHW required significantly less

CPU run time. Furthermore, It may be conclude that the results found by this

approach are at least as good as manual methods, but in some case better than those

derived by available methods.

7. Conclusions

The paper presents a new synthesis approach which provide for both GA to find
optimal state assignment and EHW to design the combitional part of sequential logic

Table 8. State assignments generated by GA

FSM #State State assignment

bbara 10 2,3,5,4,7,8,9,0,1,11

bbtas 6 6,1,5,4,3,0

dk15 4 0,2,1,3

dk16 27 12,8,1,27,13,28,14,29,0,16,26,9,2,4,3,10,11,17,24,5,18,7,21,25,6,20,19

dk27 7 6,1,5,7,4,3,0

dk512 14 4,3,14,9,12,7,2,1,0,10,13,8,5,6

lion9 9 1,0,4,6,7,53,1,11

shiftreg 8 6,2,4,0,7,3,5,1

tav 4 4,0,2,1

Figure 13. Evolved optimal circuit solution for 1010 detector using 4� 5-circuit layout.
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circuit.The EHW approach described is based on the exterinsic evolution at gate-

level, in the sense that each gene of a chromsome corresponds to a primitive logic

gate. The problem of how to evolve a sequential logic circuit that performs a desired

function (specified by state table); given a set of available logic gates has been
discussed. The experimental results obtained are compared with results produced by

the manual design method and other automted design tools. The minimum numbers

of AND, OR, NOT logic gates in the combinational block of the circuit is the criteria

set by the user to choose the optimal solution. The state assignment of state machine

is often critical and a small change in the codes assigned to the state can lead to very

wide difference in the number of logic gates and in the topological structure of that

logic. The work shows how an evolutionary algorithm could be used to produce a

novel and efficient design for digital logic circuit. As it has been verified through the
presented EHW approach implementations, the proposed approach can be

successfully applied to the design of simple sequential logic circuits. We believe

that the GA-based approach has a great potential to provide a practical tool for

assisting designers of logic circuits.

A common feature of most published work in this field is that the evolved circuit

size is small and hardware evolution is based on logic gates. Future work on EHW

will concentrate on using function-level EHW to evolve larger finite-state machine.
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