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Chapter 1

Parallelization of Iterative Heuristics

Sadiq M. Sait, Habib Youssef and Mohammad Faheemuddin

1.1 Introduction

Iterative heuristics such as Simulated Annealing, Genetic Algorithms, Tabu Search are

stochastic optimization algorithms that have found applications in a myriad of complex prob-

lems in science and engineering. The previous chapter discussed these algorithms in detail,

and elaborated on their various characteristics. However, with increasing domain complexity

and sizes, inspite of their robust nature and capability, these algorithms can have very high

run-times. Although there are acceleration strategies for these heuristics, these are often

just parameter tweaks and are at best problem specific and often non-scalable.

Parallelization of these algorithms to achieve reduced runtime as well as possibly find

better solutions has increasingly attracted attention over the years. With the ever decreasing

cost-performance ratio of generic computer systems, cluster environments have become a

norm in both academia and industry. Also as network technology keeps chipping away at

the latency constraint, these distributed computing environments offer very promising and

competing alternatives to expensive multi-processor machines.
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In this chapter, we document parallelization strategies for different popular iterative

heuristics, namely Simulated Annealing, Genetic Algorithms, Tabu Search and Simulated

Evolution. A detailed description of these heuristics is available in the book by Sait and

Youssef [24]. A broad classification is presented for the different parallel models followed by

an enumeration and description of relevant strategies. The focus is on parallel approaches

for cluster environments. The chapter concludes with further directions in contemporary

research.

1.2 Parallelization Issues

Distributed computing today offers extensive opportunities in collectively utilizing comput-

ing power for performance gains. The concept behind parallelization is often to allocate

fairly independent sections of the algorithm to individual processors, collect the results, do

the needful and continue onwards with the next iteration. However, this approach, though

simple and straightforward doesn’t scale well - Amdahl’s law is soon to set in - the speedup

achievable is limited to the non-parallelizable, serial fraction of the algorithm. This is espe-

cially aggravated by the inherently sequential nature of various heuristics such as Simulated

Annealing, Tabu Search and Simulated Evolution.

Parallelization strategies can be broadly classified into the following three approaches:

1. Low-Level Parallelization (Type 1): Also known as Move Acceleration, in this approach

the computation-intensive operations within a single iteration are distributed among

nodes. Such approaches seek to divide the workload for each iteration across multiple

processors, and as a consequence, leave the algorithm characteristics unaffected.

2. Domain Decomposition (Type 2): In this approach, the problem state space is divided

and assigned to different processors. Also known as multiple-trials parallelism, this

strategy can involve either partitioning the single solution across available processors or

distributing the search space by assigning processors sets of moves or perturbations. In

both these cases, all nodes work with the same single copy of the solution. This usually
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implies a conspicuous departure from the functionality and characteristics of the serial

algorithm.

3. Multithreaded or Parallel Search (Type 3): Parallelism here is implemented as multiple

concurrent exploration of the solution space using search threads with various degrees

of synchronization or information exchange. Often modeled as Multiple-Markov Chains

(MMC), these methods allow for increasing the variety of the search threads particularly

by having different types of searches - same method with different parameter settings or

even different meta-heuristics - proceeding concurrently. The distinguishing feature of

this approach is that the independent processors work on their own individual solutions

and can periodically communicate to cooperatively navigate the search space.

Of these various approaches, move acceleration is suitable only to tightly coupled, multi-

processor environments, rather than cluster computing. Even on the former, Amdahl’s law

restricts achievable scalability. As such, the discussion here is restricted to Domain Decompo-

sition strategies and Parallel Search models. Such cooperative parallel models are generally

applicable with minor variations to almost all heuristics in general, providing impressive

performance gains.

1.3 Simulated Annealing

Simulated Annealing is arguably the pioneering success story of iterative heuristics and their

application in combinatorial optimization problems. Proposed in the early eighties, SA

simulates the effect of a heat bath on the structure of metals [14, 6]. In the metallurgical

annealing process, heated metals are cooled at a controlled rate, thereby transitioning from

a higher energy state to a lower one over a period of time. A proper, controlled cooling

schedule allows the metal atoms to achieve perfect crystal lattices. This process was first

mathematically studied by Metropolis, et al in 1953 who established criteria to simulate how

thermodynamic systems change from one energy level to another. Lower energy states are

assumed to be always accepted, while acceptance of higher energy states is probabilistic. In

simulation parlance, this is referred to as the Metropolis Acceptance Criterion which defines

this probability given by the following expression:
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Prob(accept) = e
−( ∆E

KBT
)

(1.1)

where KB is the Boltzman constant and T indicates the temperature.

In Simulated Annealing, every iteration at a certain temperature, within the Metropolis

loop comprises the following steps:

1. Perturb the current solution to create a new solution,

2. Compute the difference in the cost between the current and new solutions,

3. Decide whether to accept or reject the new solution.

Domain Decomposition Strategies: This multiple-trials parallelization approach of simu-

lated annealing is very general and can be tailored to any particular problem instance. In

this strategy, several trials (moves) are generated and evaluated in parallel, where each trial

is executed by a single processor. The processors are forced to concurrently search for an

acceptable solution in the neighborhood of the same current solution. In order to ensure

that all processors are always working with the same current solution configuration, one has

to force them to communicate and synchronize their actions whenever at least one of the

trials is successful (accepted move).

Figure 1.1 is a possible parallel simulated annealing algorithm following this multiple-

trials parallelization approach. Here, it is assumed that one master processor is ordering

the concurrent execution and evaluation of p trials, where p is the number of processors.

These new solutions are returned to the master which arbitrates between them. In case of

no success, the master then orders the parallel evaluation of p new trials; otherwise, it selects

the best new current solution, and updates the state of all processors. This process repeats

until the defined termination criterion is reached. Also at the end of each p new trials, the

master processor checks to see whether equilibrium has been reached at current temperature.

If so, the algorithm parameters are updated.

An examination of the algorithm in Figure 1.1 reveals an evident overhead in commu-
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Algorithm Parallel SA;
(*S0 is the initial solution *)

Begin
Initialize parameters;
BestS = S0;
CurS = S0;

Repeat
Repeat
Communicate CurS to all processors;
ParFor each processor i

Perturb(CurS, NewSi);
Ai = Accept(CurS, NewSi) (* Ai is true if NewSi is accepted *)

EndParFor
If Success Then

(* Success = (
∨p

i=1 Ai = True) *)
Select(NewS);
If Cost(NewS) < Cost(BestS) Then BestS = NewS;

EndIf
Until Time to update parameters;

Until Time to stop;
Output Best solution found

End. (*Parallel SA*)

Figure 1.1: General parallel simulated annealing algorithm where synchronization is forced
after each trial.

nication, where the synchronous nature forces communication after each trial. However,

since the current solution will get updated only when a processor makes a successful trial,

the various nodes should be allowed to proceed asynchronously till one of them achieves an

acceptable move. Therefore, one can markedly improve the parallel algorithm of Figure 1.1

by making the following change. Synchronization is forced only when one of the processors

performs a successful trial. In this new variation communication is minimal. Furthermore,

it is a more efficient parallelization since no processor is forced to remain idle waiting for

other processors with more elaborate trials to finish.

Both variations of this parallel algorithm can be implemented to run on a multicomputer

or a multiprocessor machine. The parallel model assumed is a MISD or a MIMD machine.

For both algorithms, it is assumed that each processor must be able to set a common vari-

able to True whenever it accepts a move; then the solution accepted by the processor is

communicated to a master processor which will force all other processors to halt and to

properly update the current solution. Here, there are two possibilities. If the processors do
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not halt immediately, but rather are allowed to complete the trials that were in progress

when the request to stop was received, then there could be more than one solution accepted,

and therefore the master processor has to arbitrate between them, select the best, and pass

a copy to each processor. The other possibility is when a processor is supposed to abort

whatever activity in progress as soon as it receives a request to stop. In that case the first

solution accepted by any of the processors would be the new solution of all the processors.

A valid concern here is the behavior of this parallel model with respect to the Simulated

Annealing ’Temperature’ parameter. In the early regime (high temperature), SA behaves

close to a random search algorithm, where almost every move is accepted. This means that

for the multiple-trials approach, the speed-up will be low (almost 1) at high temperatures

since the processors will be forced to communicate after each trial. On the other hand, as

the temperature is lowered, less and less moves are accepted, reducing by the same token

the need for communication, thus allowing the p processors to concurrently be working most

of the time. Therefore, in the cold regime, the speed-up will be approaching the number of

processors.

Multithreaded Parallel Search Strategies: In this class of strategies, each processor runs

its own self-contained, independent annealing algorithm on its own solutions, with periodic

exchange of information to collectively guide the search process. Each of these search threads

can either be synchronous or asynchronous. In the former, all processors periodically stop

work at a defined time, and communicate information at once. In the asynchronous approach,

there are no such process barriers, and all nodes are free to communicate at their own

discretion. We document a recently reported adaptive variation of such an Asynchronous

Multiple Markov Chains (AMMC) method here.

The basic AMMC approach is shown in the Figure 1.2, where each slave process runs its

own annealing algorithm. The assigned master processor is excluded from the main compu-

tational workload and instead manages information exchange between the slaves. After each

Metropolis loop, the slave returns its best achieved cost to the master, which then compares

this value against the global best reached so far. If the former is better, the slave is instructed

to send the entire solution, and the associated global values are updated. Otherwise, the
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master sends its copy of the global best solution and associated cost to the slave, which

replaces its current relevant values and continues with the next iteration.

The adaptivity mechanism deals with a dynamic value of M - the number of perturbations

within a single Metropolis routine, i.e., the number of moves allowed before a temperature

update. Initially, during the high temperature region, where annealing approaches a random

walk, M is kept very low, and is incrementally increased allowing more thorough exploration

of the neighboring search space at lower, stable temperatures. This strategy was empirically

found to give significantly improved results over static AMMC approaches.

1.4 Genetic Algorithms

Genetic Algorithms are a powerful domain-independent, robust search technique inspired

by the Darwinian theory of evolution. Invented in the early 1970s by John Holland and his

colleagues [13], GAs emulate the process of natural evolution whereby high fitness individuals

survive and mate thus passing on their characteristics to offsprings. This adaptive algorithm

works with a population of solutions called chromosomes, which are encoded as strings. Each

of these solutions represent a point in the solution space, and in each iteration, referred to

as a generation, a new set of strings that represent solutions (called offsprings) is created by

crossing some of the strings of the current generation [12]. Occasionally new characteristics

are injected to add diversity. In this manner, GAs combine information exchange along with

survival of the fittest among individuals to conduct their search for the optimum solution.

In GAs, a number of initial solutions are generated as string-based chromosomes. An

equal number of offsprings are generated by selecting parent chromosomes, two at a time, and

implementing a crossover mechanism that copies substrings of solutions from both parents

into the offspring. The generated solutions are evaluated and a selection operator decides

which solutions are passed on to the next generation as parents.

Domain Decomposition Strategies: As GAs work with a population of solutions, they lend

themselves to straightforward workload division strategies. Such move-acceleration strategies

distribute the population among processors in every generation for fitness calculation and
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Algorithm Parallel Simulated Annealing(S0, T0, α, β, M,

Maxtime, my rank, p)
Notation

(* S0 is the initial solution. *)
(* BestS is the best solution. *)
(* T0 is the initial temperature. *)
(* α is the cooling rate. *)
(* M is the time until next parameter update. *)
(* Maxtime is the total allowed time for the annealing process. *)
(* my rank is rank of current process;0 for master,!0 for slaves. *)
(* p is the total number of running processes. *)

Begin

T = T0;
CurS = S0; // only master has the initial Solution
BestS = CurS;
CurCost = Cost(CurS);
BestCost = Cost(BestS);
Time = 0;
If (my rank == 0) // i.e. Master process

Broadcast(CurS);
Endif

If (my rank ! = 0) // i.e. Slave process
Repeat

Call Metropolis(CurS, CurCost, BestS, BestCost, T, M);
Time = Time + M;
T = α T;
M = β M;
Send to Master(BestCost);
Receive frm Master(verdict);
If (verdict == 1)

Send to Master (BestS);
Else

Receive frm Master(BestS);
EndIf

Until (Time ≥ Maxtime);
EndIf

If (my rank == 0) // i.e. Master process
Repeat

Receive frm Slave(BestCost);
Send to Slave(verdict);
If (verdict == 1)

Receive frm Slave(BestS);
Else

Send to Slave (BestS);
EndIf

Until (All Slaves are done);
Return(BestS);

EndIf

End. (*Parallel Simulated Annealing*)

Figure 1.2: Procedure for Parallel Simulated Annealing using Asynchronous MMC.
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possibly even recombination1. The calculated fitnes values are then collected at the assigned

Master which then applies the GA operators and moves to the next generation. In such

approaches, also referred to as ’Global Parallel Models’, the algorithm characteristics are left

undisturbed as the decision processes such as population selection and mutation are done by a

single processor. However, such strategies have predictable and limited scalability [5]. A more

popular approach is the Multi-Deme parallel model, where subpopulations on independent

nodes communicate and collectively navigate the search space. These come under the Type-3

or Multi-threaded parallelization strategies.

Multithreaded Parallel Search Strategies: Multiple-Population GAs provide a more so-

phisticated parallelization strategy wherein several subpopulations evolve independently on

individual processors and exchange individuals periodically. This exchange of solutions is

called migration and is a core aspect of this parallel model. Multi-population GAs are known

with different names. They are referred to as Multi-deme parallel GAs (drawing on the anal-

ogy of natural evolution), Distributed GAs (as they are often implemented on distributed

parallel architectures), and Coarse-grained GAs (since the computation to communication

ratio is usually high). This model of parallel GAs is very popular, but also the most difficult

to understand due to the effect of migration and a large number of influential parameters.

The first systematic study of parallel GAs with multiple populations was Grosso’s work

in the 1980s [21]. The objective was to simulate the interaction of several parallel sub-

components of an evolving population. The population was divided into five demes, each

of exchanging individuals with the other after a fixed interval. The effect of migration on

the search process and population convergence was documented, and the findings were later

on bolstered by the further work of Grefenstette [4]. From these studies it was seen that

favorable traits spread faster when the population is divided into smaller demes. However,

when the demes were isolated, the rapid rise in fitness stops at a lower fitness value than

with the complete population i.e., the quality of the solution found after convergence was

worse. This is expected as the quality of solution is heavily dependent on the initial pop-

ulation size. However, the controlled movement of solutions between these subpopulations

1Genetic operators such as crossover, selection and mutation are often trivial in terms of runtime compared to the more
computation intensive fitness calculations. As such, the runtime gain by distributing these operators may not be justifiable
with the associated communication latencies.
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called migration can significantly alter this behavior. The migration policy associated with

a multi-deme GA can be a function of the following parameters:

1. Migration Frequency: This is defined as the time scale between the movement of in-

dividual solutions between demes. Migration Frequency is also referred to as Epoch

Length, and the interval between migrations is called an Epoch.

2. Migration Rate: This is the number of individual solutions that will migrate from one

deme to another per epoch. Migration Frequency and Rate are closely related, and can

be either static i.e., a fixed number of solutions moving between populations after a

fixed number of generations or dynamic, wherein both parameters are controlled by the

rate of convergence in individual subpopulations.

3. Migrant Absorption: This parameter defines how migrants are absorbed into destina-

tion demes. Though the usual policy for identifying migrant solutions in the source

demes is to select from the best, the absorption policy within the destination deme can

vary. Common models advocate replacing worst solutions, replacing random solutions

or roulette-wheel based probabilistic replacement.

4. Communication Topology: This defines the connectivity between individual demes.

Again, this can be static, wherein movement of solutions is predefined by the network

topology, or dynamic, wherein movement of migrants to and from demes depends on

their population diversity, average fitness and convergence.

The tuning of these parameters has often been on an intuitive basis, with different values

reported for distinct problems. In the case of migration rate and frequency, most models

adopt a synchronous approach, triggering movement of solutions at periodic intervals. How-

ever, an alternative policy is to be asynchronous, wherein demes communicate only when

near convergence [3, 17]. The purpose of this model is most often to prevent premature

convergence by restoring diversity into the demes. It is found that there is a certain critical

migration rate and frequency which allows the communicating subpopulations to achieve

solutions of almost the same quality as panmictic populations. Lower values of these param-

eters would not allow proper mixing of solutions, thus achieving the same as isolated demes.
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Higher values of migration and frequency may show no improvement, thus wasting time and

resources or worse, may actually hinder population diversity among processors.

Communication topology is an important factor controlling the spread of good solutions

among different demes. It defines the direction of movement of migrant solutions from one

deme to another. Although a dense topology would encourage rapid spread of good solutions

throughout all demes, however it might also prevent each subpopulation from following

a separate evolutionary path. A more sparse connectivity will achieve certain amount of

isolation between demes, thus allowing different solutions to be found and exploring different

areas of the search space. Another possible classification of topologies distinguishes them

into static, where the communication is already defined, and dynamic, wherein migrant

destination is decided by factors such as average fitness or population diversity of candidate

destination demes [17].

An extensive study of the effect of these parameters, especially of the influence of migra-

tion and population sizes was done by Cantú Paz. Inspite of its complexities, this Multi-Deme

approach shown in Figure 1.3 has often been favored over simplistic data distribution as in

the earlier model. The initial population constructor on the master (root) processor creates

the initial population which is then distributed to all non-root processors. Following this,

all nodes, including the root execute the serial GA on their allocated population for a pre-

defined number of iterations called the Migration Frequency (MF ). Then each node sends

a certain number of its best solutions to the root. The number of solutions sent is controlled

by the Migration Rate (MR) parameter. The root determines the MR best solutions from

the collective MR ∗ (N) solutions and broadcasts it to all processors. These migrants if not

already present on the processors, are then absorbed into the existing population by weeding

out and replacing the weakest solutions. Each processor then continues with the serial GA

for another MF number of generations. Every interval between migrations, i.e., the length

of time defined by MF number of generations is called an Epoch. The stopping criterion is

a predefined number of Epochs.

It is important to note that the migrant absorption policy dictates the replacement of

worst solutions with incoming migrants only if the migrants already do not exist within
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ALGORITHM Multi −Deme Parallel GA

NOTATION

RANK : ROOT= Root Processor designated by Rank=0
RANK : NON − ROOT= All other Processors designated by rank>0
RANK : ANY = All processors, including Root
MF= Migration Frequency
MR= Migration Rate
N= Number of Processors
Epoch = Instances of Migration
EPOCH MAX = Maximum Number of Migrations Stopping Criteria
Begin
(Multi −Deme Parallel GA)

FOR RANK:ROOT
Initial Population Constructor
Distribute Initial Population
ENDFOR RANK:ROOT

FOR RANK:ANY
Receive Allocated Population

ENDFOR RANK:ANY

LOOP-A
FOR RANK:ANY

LOOP-B
Serial GA on Allocated Population:

Choice of Parents
Crossover and Offspring Generation
Fitness Calculation
New Population Selection

END LOOP-B IF [Num Iterations >= MF]
Send MR Best Solutions and Costs to ROOT

ENDFOR RANK:ANY

FOR RANK:ROOT
Collect the best MR*N solutions
Determine best MR distinct solutions
Broadcast MR solutions

ENDFOR RANK:0

FOR RANK:ANY
Receive MR Best Solutions
IF [Received Migrants not present in existing Population]

Replace Worst Solutions with Received Solutions
ENDIF

ENDFOR RANK:ANY

END LOOP-A IF [Epoch >= EPOCH MAX]

FOR RANK:0
Return Best solution.

ENDFOR RANK:0

End (Multi −Deme Parallel GA)

Figure 1.3: Structure of the Multi-Deme Parallel GA.



1.5. TABU SEARCH 15

the population. Also, logically this model could represent a fully connected topology of

non-hierarchical processing elements which cooperate to determine the best MR solutions

among themselves and absorb these into their existing populations.

1.5 Tabu Search

Conceptually, Tabu Search (TS) is an elegant combinatorial optimization method, which

belongs to the class of local search techniques. It enhances the performance of a local search

method by using memory structures, to control navigation of the search space. It uses a local

or neighborhood search procedure to iteratively move from a solution x to a solution x′ in

the neighborhood of x, until some stopping criterion has been satisfied. In order to explore

regions of the search space that would be left uncovered by the local search procedure and - by

doing this - escape local optimality, TS modifies the neighborhood structure of each solution

as the search progresses. The solutions admitted to N*(x), i.e. the new neighborhood, are

determined through the use of special memory structures. The search now progresses by

iteratively moving from one solution to another in N*(x).

One of the commmon types of short-term memory structures to determine which solutions

comprise the neighborhood, is the use of a tabu list. In its simplest form, a tabu list contains

solutions that have been visited in the recent past (less than n moves ago, where n is the

tabu tenure). Therefore, solutions in the tabu list are excluded from N*(x). However,

tabu lists containing attributes are much more effective, although they raise a new problem.

With forbidding an attribute, probabilistically more than one solution might be matched

and declared tabu. Some of these solutions that must now be avoided might be of excellent

quality and may not yet have been visited. To overcome this problem, aspiration criteria

are introduced which allow the overriding of the tabu state of a solution and thus including

it in the allowed set. A commonly used aspiration criterion is to allow solutions which are

better than the currently best known solution.

Parallel Tabu Search Taxonomy
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Of the various heuristics covered, Tabu Search stands out uniquely being the only algo-

rithm that employs memory systems to control navigation of the search space. However with

increasing problem sizes TS shows rapidly increasing runtimes, and as such can benefit from

intelligent parallelization efforts.

Parallel TS has drawn the attention of many researchers, especially in comparison with

similar acceleration strategies applied to other heuristics. Unlike GAs however, the TS

algorithm with its structure and process flow is highly sequential. The first reported studies

were published in the early 90’s [9, 26, 11]. Crainic et. al [8] classified the different parallel

tabu search heuristics based on a taxonomy along three dimensions as enumerated below.

• The first dimension is Control cardinality, where the algorithm is either 1-control,

where one processor executes the search and distributes tasks to other processors or

p-control, where each processor is responsible for its own search and communicates with

other processors.

• The second dimension is Control and communication type, where the algorithm can

either follow a synchronous rigid or knowledge synchronization (KS) approach, or it can

be asynchronous Collegial (C), or Knowledge Collegial (KC). In a synchronous operation

mode the processes are forced to establish communication and exchange information at

specific, explicitly defined points. In an asynchronous operation mode the processes can

indpendently decide on communication depending on the global characteristics of good

solutions, the search strategy, and the possible content of that communication.

• The third dimension is Search differentiation where the algorithm can be SPSS (Sin-

gle Point Single Strategy), SPDS (Single Point Different Strategies), MPSS (Multiple

Point Single Strategy), or MPDS (Multiple Point Different Strategies).

In addition to this type of classification, a more general category based on processor

communication is also used. This divides various approaches as either Synchronous or Asyn-

chronous. In the former, various processors working with the same solution, communicate in

a synchronous manner, where the managing processor orchestrates the activities of all oth-

ers. In asynchronous strategies, each processor communicates independently of other nodes
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using either the master-slave or peer-to-peer model.

Synchronous Parallel Tabu Search:

In this approach, the master is primarily in-charge of controlling movement in the search

process, while the slaves are used for executing their assigned workload. Depending on the

variants of this strategy, slave processors may start with either the same or different initial

solution. After searching its allocated part of the current neighborhood, each slave process

reports its best move back to the master. The master process selects the best among these,

subject to tabu conditions. If the stopping criteria are met then the search stops; otherwise

the master determines a new set of moves and distributes them among the slaves which

continue with the search.

A more detailed view of this approach, from the both perspectives of the master and slave

processors is given in Figure 1.4 and Figure 1.5 respectively.

Algorithm MasterProcess;
Begin

Initialize parameters and data structures;
S0 = Initial solution;
BestS = S0;
CurS = S0; /* Current solution */
Send CurS to all slave processes;
While not-time-to-stop

Begin
Wait for best moves from all slaves;
Select the best move subject to tabu restrictions;
Send the selected move to all slaves;

End
Force all slaves to stop;
Return (BestS) /* of slave running on same machine */

End. /* MasterProcess */

Figure 1.4: Synchronous Parallel Tabu Search: The Master Process.

Asynchronous Parallel Tabu Search:

In this approach, each processor explores a subset of the neighborhood of its current solution.

Each of these is competing with its neighbors (its adjacent processors) in finding a superior
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Algorithm SlaveProcess;
Begin

Initialize parameters and data structures;
Wait for initial solution S0 from master process;
BestS = S0;
CurS = S0; /* Current solution */
Repeat

Wait for selected move from the master;
Perform the move;
Update tabu list;
Update BestS and CurS;
Try all moves in partial neighborhood;
Select best move and send it to the master;

Until stop;
End. /* SlaveProcess */

Figure 1.5: Synchronous Parallel Tabu Search: The Slave Process.

solution. When the stopping criteria are met, every processor reports its best solution. The

general outline of this parallelization approach is given in Figure 1.6. Similar asynchronous

parallel tabu search implementations for the traveling salesman and quadratic assignment

problems have been reported in [9].

Algorithm AsynchronousParallelTabuSearch;
Begin
1. Construct initial solution and initialize parameters;
2. Explores own neighborhood;
3. Select best move subject to tabu restrictions;
4. Update tabu list;
5. Exchange current best solution with neighbors;
6. Update current solution based on received neighbor solutions;
7. If time-to-stop Then Return best solution;
8. Goto step 2
End.

Figure 1.6: Pseudo Code for Asynchronous Parallel Tabu Search Algorithm.

Acceleration of Tabu Search through parallelization has been proved to be an effective

strategy in numerous areas. Continuing with the literature on parallel TS, we cover its

various applications and classify these according to Crainic’s taxonomy.

Malek et. al [18] compared the performance of serial and parallel implementations of

simulated annealing and Tabu Search for Traveling Salesman Problem (TSP). The reported

experiments were performed on a 10 processor Sequent Balance 8000 computer. The au-

thors reported that the parallel version of Tabu Search outperforms not only its sequential
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counterpart, but produced comparable or better results than the serial and parallel ver-

sion of simulated annealing. Their strategy is synchronous following a 1-control, KS, SPDS

approach.

In order to solve the flow shop sequencing problem, Taillard [26] employed a parallel

implementation of the Tabu Search algorithm using a search space decomposition strategy.

It is a 1-control, RS, SPSS algorithm. Battiti et. al [2] used Tabu Search to solve the

Quadratic Assignment Problem (QAP) with hashing procedures. The scheme used is p-

control, RS, MPSS. The authors report that the parallelization strategy is efficient and the

average success time decreases with an increase in the number of processors.

Taillard [28] used parallel Tabu Search for vehicle routing problem. The parallelization is

based on domain decomposition strategy, which is p-control, KS, MPSS. It was implemented

on a Silicon Graphics 4D/35 workstation with 4 processors. Another effort by Taillard [27] to

apply parallel Tabu Search to quadratic assignment problem follows a 1-control, RS, SPSS

strategy. A ring of 10 transputers were used, but no implementation details were given.

Chakrapani et al. [7] also used parallel Tabu Search to solve QAP, which is 1-control, RS,

SPSS. The search is performed sequentially, while the move evaluation is done in parallel.

The implementation is specifically designed for Connection Machines CM-2: a massively

parallel SIMD machine. The authors report that the best known solutions were obtained in

a lesser number of iterations. Furthermore, they were able to determine good suboptimal

solutions to bigger problems in reasonable time.

Another effort to parallelize Tabu Search for TSP by Fiechter [10] used the p-control,

KS, MPSS strategy. Intensification and diversification steps were implemented in the syn-

chronous version. The algorithm was implemented on a network of transputers arranged in

a ring structure. The authors report near-optimal solutions to large problems and almost

linear speed-ups. TS was also applied for the vehicle routing problem by Garica et. al [11]

also using search space decomposition strategy. It was a 1-control, RS, SPSS algorithm.

The authors reported a noticeable improvement in solution quality over one of the best

constructive algorithms for vehicle routing problem, with substantial reduction in runtime.

In order to improve parallel Tabu Search using evolutionary principles, the algorithm
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presented by Falco et. al [9] used multi-search thread strategy for the traveling salesman

and quadratic assignment problems. It is a p-control, C, MPSS algorithm. The results

reported indicate a marked improvement in solution quality as well as convergence speedup.

Parallel TS for the 0-1 multidimensional knapsack problem was demonstrated by Nair [20],

who used a multi-search threads strategy in a p-control, RS, MPDS algorithm. Taillard’s

extensive work with TS continued where he applied a p-control, RS, MPSS strategy to the

job sequencing problem [25]. Several parallelization ideas which focussed on speeding up

computations related to neighborhood evaluation didn’t yield good results, either because

the communication overtook computation, or the available computing platform (a ring of

transputers, and a 2-processor Cray) were not suitable.

Crainic et. al [8], the authors who put forth the taxonomy of classification of Tabu Search,

presented several of the strategies for both synchronous and asynchronous TS for multi-

commodity location-allocation problems with balancing requirements. It was implemented

on a heterogenous network of 16 SUN Sparc workstations. The results show that the average

gap improved in most of the cases, when the number of processors increased. Mori and

Hayashim [19], used parallel Tabu Search algorithm for voltage and reactive power control

in power systems. Of the two schemes, one of them used the domain decomposition strategy,

while the other scheme followed a multi-search threads strategy. The first one is 1-control,

RS, SPSS and the second one is p-control, RS, MPDS algorithm.

A more recent work by Yamani et.al [1], parallelized Tabu Search for VLSI cell placement

on heterogenous cluster of workstations, using PVM. The algorithm was parallelized on two

levels simultaneously. The higher parallelization level can be classified as p-control while the

lower level was 1-control. The synchronization strategy was RS and MPSS search differen-

tiation strategy was used for both the levels. The authors reported obtaining proportional

speed-up in most of the cases.
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1.6 Simulated Evolution

Simulated Evolution (SimE) is a powerful general iterative heuristic for solving combinatorial

optimization problems. It starts from an initial assignment, and then, following an evolution-

based approach, it seeks to reach better assignments from one generation to the next. It

is stochastic because the selection of which components of a solution to change is done

according to a stochastic rule. Already well located components have a high probability to

remain where they are. The probabilistic feature gives Simulated Evolution its hill-climbing

property.

SimE assumes that there exists a population P of a set M of n (movable) elements. There

is a cost function Cost that is used to associate with each assignment of movable element m

a cost Cm. The cost Cm is used to compute the goodness gm of element m, for each m ∈ M .

This goodness value is closely related to the overall target fitness value of the solution.

SimE algorithm proceeds as follows. Initially, a population2 is created at random from all

populations satisfying the environmental constraints of the problem. The algorithm has one

main loop consisting of three basic steps, Evaluation, Selection, and Allocation. The three

steps are executed in sequence until the population average goodness reaches a maximum

value, or no noticeable improvement to the population goodness is observed after a number

of iterations.

Parallelization of SimE hasn’t attracted much attention from practitioners, with very few

reported schemes mostly by the inventors of the algorithm themselves [16].

Domain Decomposition: Classified under the Type-II scheme, this approach in SimE

involves the partitioning of a complete solution into smaller domains to be optimized in

parallel. This implies concurrent execution of all its operators including Allocation. Hence

the search behavior of this approach would differ from that of the serial algorithm - Such

a parallelization strategy was reported by Kling and Banerjee [15] for VLSI cell placement,

where alternating sets of rows are distributed among processors in every iteration. With

2In SimE terminology, a population refers to a single solution. Individuals of the population are components of the solution;
they are the movable elements.
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each processor limited to applying the SimE steps of Evaluation, Selection and Allocation

on its assigned set of rows, this alternating distribution scheme would allow each cell to move

to to any position in the placement within two iterations. A variation of this scheme was

reported much later, which proposed random assignment of rows to processors [23].

ALGORITHM TypeII Parallel SimE Master Process
NOTATION
(* ks: Set of row indices for each process s. *)
(* Φ: The complete current solution. *)

INITIALIZATIONS;
Read User Input Parameters
Read Input Files
Construct Initial Placement

Begin
Repeat

ForEach s ∈ m Generate Row Indices ks EndForEach;
(* For each slave process. *)

ParFor
Slave Process(Φ, ks)

(* Broadcast cur. placement and row-indices. *)
EndParFor
ParFor

Receive Partial Placement Rows
EndParFor

Construct Complete Solution
Until (Stopping Criteria is Satisfied)

Return Best Solution.
End. (*Master Process*)

Figure 1.7: Outline of Master Process for Type II Parallel SimE Algorithm.

Figures 1.7 and 1.8 give the outlines of this parallelization strategy from both the Master

and Slave perspectives. The slaves communicate back their assigned rows, modified by their

respective allocation scheme to the Master after every iteration. The master reconstructs

the complete solution, computes overall fitness and reassigns the rows for the next iteration.

This model is capable of achieving significant speedups for large problem sizes where

such a row distribution scheme would provide a fair work distribution. However, the overall

fitness values achieved by this method may vary from the serial values reached. In some

cases, such as multi-objective VLSI design, a loss in solution quality has been reported along

with reduced runtimes with increasing number of processors [22].
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ALGORITHM TypeII Parallel SimE Slave Process(Φ, ks)
NOTATION
(* B is the bias value. *)
(* Φs are the rows assigned to slave s. *)
(* mi is module i in Φs. *)
(* gi is the goodness of mi. *)

Begin
Receive Placement And Indices
EVALUATION:

ForEach mi ∈ Φs evaluate gi EndForEach;
SELECTION:

ForEach mi ∈ Φs DO
Begin

If Random > Min(gi + B, 1)
Then

Begin
Ss = Ss

∪ mi; Remove mi from Φs

End
End

Sort the elements of Ss

ALLOCATION:
ForEach mi ∈ Ss Do

Begin
Allocate(mi, Φi

s)
(* Allocate mi in local partial solution rows Φi

s. *)
End

Send Partial Placement Rows
End. (*Slave Process*)

Figure 1.8: Outline of Slave Process for Type II Parallel SimE Algorithm.

Multithreaded Parallel Search: As part of the Type-III approach, this scheme implements

parallel, independent search threads executed concurrently by each processor which may

communicate periodically to exchange information and collectively navigate the search space.

Such models have been reported with excellent results for other optimization algorithms such

as Simulated Annealing, and Genetic Algorithms.

Figure 1.9 demonstrates an example of such a parallel model, which is very similar to the

Asynchronous Multiple Markov Chains strategy discussed earlier for Simulated Annealing.

After a fixed number of user-defined iterations, a slave returns back its fitness value to the

master to compare against the global best received thus far. This central processor then

either provides a better solution, or directs the slave to provide the complete solution if the

latter has higher fitness.
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Inspite of the success of Markov Chain models with Annealing and GAs, this scheme

fails to perform with SimE [22]. The reason behind this is the nature of the heuristic

and its intelligence. The primary concept behind this approach is to force each thread to

explore a non-overlapping part of the search space near the global best solution reached so

far. However, with the Selection operator heavily dependent on element goodness, and the

deterministic Allocation process, achieving such random behavior on individual processors

is highly unlikely.

1.7 Conclusion

The increasing computational power of generic PCs today represents a fantastic opportunity

for cluster systems wherein high performance computing environments can be assembled

from off-the-shelf hardware. With growing standardization of parallel communication and

computation librariES, Out-of-the-box clustering solutions, and inexpensive, low latency

networks, these computing platforms provide excellent avenues for accelerating performance

and devising highly efficient algorithms.

In this chapter, we focussed on four popular heuristics, that have been extensively used

for optimization in numerous areas - Simulated Annealing, Genetic Algorithms, Tabu Search

and Simuated Evolution. Different parallel strategies were discussed under the context of

’Domain Partitioning’ and ’Multithreaded Parallel Search’ methods.
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ALGORITHM TypeIII Parallel SimE Process
NOTATION
(* Count is the current retry value. *)

Begin
INITIALIZATIONS:

Read User Input Parameters
Read Input Files
Construct Initial Placement

Repeat
EVALUATION:

ForEach mi ∈ Φ evaluate gi;
SELECTION:

ForEach mi ∈ Φ DO
Begin

If Random > Min(gi + B, 1)
Then

Begin
S = S ∪ mi; Remove mi from Φ

End
End

Sort the elements of S
ALLOCATION:

ForEach mi ∈ S Do
Begin
(* Allocate mi in Φi. *)

Allocate(mi, Φi)
End

Calculate Costs;
If CurCost > BestCost

Then
Begin
Inform Master;
Count = 0
End

Else
Count = Count + 1

EndIf
If Count > Retry Threshold
Then

Begin
If Costmaster < Costcur

Then Get New Placement
End

Until (Stopping Criteria is Satisfied)
End.

Figure 1.9: Structure of the Type III Parallel Simulated Evolution Algorithm.
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