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Abstract - We engineer a well-known opti-
mization technique namely Tabu Search (TS) [1]
for the performance and low power driven VLSI
standard cell placement problem [2], [3]. The
above problem is of multiobjective nature since
three possibly conflicting objectives are consid-
ered to be optimized subject to the constraint
of layout width. These objectives are power dis-
sipation, timing performance, and interconnect
wire length. It is well known that optimizing cell
placement for even a single objective namely to-
tal wire length a hard problem to solve. Due to
imprecise nature of objective values, fuzzy logic
is incorporated in the design of aggregating func-
tion. The above technique is applied to the place-
ment of ISCAS-89 benchmark circuits and the re-
sults are compared with Adaptive-bias Simulated
Evolution (SimE) approach reported in [4]. The
comparison shows a significant improvement over
the SimE approach.

I. Introduction

The need for low power driven VLSI design has
emerged rapidly in past few years. While optimizing a
circuit design for power consumption, other design ob-
jectives like performance and interconnect wire length
need also to be taken care of. This fact leads to the de-
velopment of techniques, which target to simultaneously
optimize all these design goals. Previously, the objectives
of optimizing interconnect wire length and performance
were focused, and a large number of efforts targeting ei-
ther one or both of above two objectives are reported in
the literature [5], [6]. There has been reported some work
for optimizing power consumption while considering the
wire length and performance as constraints [7], [8]. Re-
cently, some efforts targeting simultaneous optimization
of all three objectives are also reported in [9], [10].
VLSI design is a complex process and is carried out at

certain abstraction levels [2]. The design process starts
from an abstract idea, and then each intermediate step
continues refining the design and the process ends with
the fabrication of a new chip. The problem of power
optimization can be addressed at a higher level as well
as at a lower level e.g., physical level [11].
In this work, we address the above problem in the

placement step at the physical level. Placement is an im-
portant step in VLSI physical design responsible for ar-
rangement of cells on a layout surface for optimizing cer-
tain objectives while satisfying some constraints. Stan-
dard cell placement is a special case where all the cells
to be placed have equal height. The VLSI cell placement
problem can be stated as follows: Given a collection of
cells or modules with ports (inputs, outputs, power and
ground pins) on the boundaries, the dimensions of these
cells (height, width, etc), and a collection of nets (which
are sets of ports that are to be wired together), placement

problem consists of finding suitable physical locations for
each cell on the layout [2]. By suitable we mean those
locations that minimize given objective functions, sub-
ject to some constraints imposed by the designer, the
implementation process, or layout strategy and the de-
sign style.
This paper is organized as follows: In the next section,

we formulate our problem and cost functions. Section 3
presents our TS approach, and the experimental results
are presented and discussed in section 4.

II. Problem Formulation and Cost Functions

In this section, we formulate our problem and the cost
function used in our optimization process.
We are addressing the problem of VLSI standard cell

placement with the objectives of optimizing power con-
sumption, timing performance (delay), and wire length
while considering layout width as a constraint. Formally,
the problem can be stated as follows:

A set of cells or modules M = {m1,m2, ...,mn} and a



set of signals S = {s1, s2, ..., sk} is given. Moreover, a set

of signals Smi
, where Smi

⊆ S, is associated with each

module mi ∈M . Similarly, a set of modules Msj
, where

Msj
= {mi|sj ∈ Smi

} is called a signal net, is associated

with each signal sj ∈ S. Also, a set of locations L =
{L1, L2, ..., Lp}, where p ≥ n is given. The problem is to

assign each mi ∈M to a unique location Lj, such that all

of our objectives are optimized subject to our constraints.

A. Cost Functions

Now we formulate cost functions for our three said ob-
jectives and for the width constraint.

A.0.a Wire length Cost:. Interconnect Wire length of
each net in the circuit is estimated and then total wire
length is computed by adding all these individual esti-
mates:

Costwire =
∑

i∈M

li (1)

where li is the wire length estimation for net i and M

denotes total number of nets in circuit (which is the same
as number of modules for single output cells).

A.0.b Power Cost:. Power consumption pi of a net i in
a circuit can be given as:

pi '
1

2
· Ci · V

2

DD · f · Si · β (2)

where Ci is total capacitance of net i, VDD is the sup-
ply voltage, f is the clock frequency, Si is the switching
probability of net i, and β is a technology dependent
constant.
Assuming a fix supply voltage and clock frequency, the

above equation reduces to the following:

pi ' Ci · Si (3)

The capacitance Ci of cell i is given as:

Ci = Cr
i +

∑

j∈Mi

C
g
j (4)

where Cg
j is the input capacitance of gate j and C

r
i is the

interconnect capacitance at the output node of cell i.
At the placement phase, only the interconnect capac-

itance Cr
i can be manipulated while C

g
j comes from the

properties of the cell library used and is thus indepen-
dent of placement. Moreover, Cr

i depends on wire length
of net i, so equation 3 can be written as:

pi ' li · Si (5)

The cost function for total power consumption in the
circuit can be given as:

Costpower =
∑

i∈M

pi =
∑

i∈M

(li · Si) (6)

A.0.c Delay Cost:. Delay cost is determined by the
delay along the longest path in a circuit. The delay Tπ
of a path π consisting of nets {v1, v2, ..., vk}, is expressed
as:

Tπ =

k−1
∑

i=1

(CDi + IDi) (7)

where CDi is the switching delay of the cell driving net
vi and IDi is the interconnect delay of net vi. The place-
ment phase affects IDi because CDi is technology de-
pendent parameter and is independent of placement.
The delay cost function can be written as:

Costdelay = max{Tπ} (8)

A.0.d Width Cost:. Width cost is given by the maxi-
mum of all the row widths in the layout. We have con-
strained layout width not to exceed a certain positive
ratio α to the average row width wavg, where wavg is the
minimum possible layout width obtained by dividing the
total width of all the cells in the layout by the number
of rows in the layout. Formally, we can express width
constraint as below:

Width− wavg ≤ α× wavg (9)

A.0.e Overall Fuzzy Cost Function:. Since, we are opti-
mizing three objectives simultaneously, we need to have
a cost function that represents the effect of all three ob-
jectives in form of a single quantity. We propose the use
of fuzzy logic to integrate these multiple, possibly con-
flicting objectives into a scalar cost function. Fuzzy logic
allows us to describe the objectives in terms of linguistic
variables. Then, fuzzy rules are used to find the overall
cost of a placement solution. In this work, we have used
following fuzzy rule:
IF a solution has
SMALL wire length AND
LOW power consumption AND
SHORT delay

THEN it is an GOOD solution.
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g i
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Fig. 1. Membership functions

The above rule is translated to and-like OWA fuzzy
operator [12] and the membership µ(x) of a solution x in



fuzzy set GOOD solution is given as:

µ(x) =























β ·min
j=p,d,l

{µj(x)}+ (1− β) · 1

3

∑

j=p,d,l
µj(x);

if Width− wavg ≤ α · wavg,

0; otherwise.
(10)

Here µj(x) for j = p, d, l, width are the member-
ship values in the fuzzy sets LOW power consumption,

SHORT delay, and SMALL wire length respectively. β is
the constant in the range [0, 1]. The solution that results
in maximum value of µ(x) is reported as the best solution
found by the search heuristic.
The membership functions for fuzzy sets LOW power

consumption, SHORT delay, and SMALL wire length are
shown in Figure 1. We can vary the preference of an ob-
jective j in overall membership function by changing the
value of gj . The lower bounds Oj for different objectives
are computed as given in Equations 11-14:

Ol =
n

∑

i=1

l∗i ∀vi ∈ {v1, v2, ..., vn} (11)

Op =

n
∑

i=1

Sil
∗

i ∀vi ∈ {v1, v2, ..., vn} (12)

Od =

k
∑

j=1

CDj+ ID
∗

j ∀vj ∈ {v1, v2, ..., vk} in path πc

(13)

Owidth =

∑n

i=1
Widthi

# of rows in layout
(14)

where Oj for j ∈ {l, p, d, width} are the optimal costs for
wire-length, power, delay and layout width respectively,
n is the number of nets in layout, l∗i is the optimal wire-
length of net vi, CDi is the switching delay of the cell i
driving net vi, IDi is the optimal interconnect delay of
net vi calculated with the help of li, Si is the switching
probability of net vi, πc is the most critical path with
respect to optimal interconnect delays, k is the number
of nets in πc and Widthi is the width of the individual
cell driving net vi.

III. Tabu Search for Performance and Low
Power Driven VLSI Placement

In this section, we first briefly describe TS algorithm
and then discuss the details of our TS approach for mul-
tiobjective VLSI Placement. Tabu Search is an elegant
heuristic that proceeds by making iterative perturbations
while preventing cycling to certain number of recently
visited points in search space. First, An initial solution

Algor ithm  Tabu_Search 
ΩΩΩΩ : Set of feasible solutions 
S : Current solution 
S* : Best solution 
Cost : Objective function 
ΝΝΝΝ(S) : Neighborhood of S ∈ Ω 
V* : Sample of neighborhood solutions 
T : Tabu list 
AL : Aspirartion level 
Begin 
Start with random initial solution S ∈ Ω 
Initialize tabu list and aspiration level 
For fixed number of iterations Do 
 Generate neighbor solutions V*  ⊂ N(S) by swapping 
  two randomly chosen cells  
 Find best S*  ∈ V*  
 I f move S to S*  is not in T Then 
  Accept move and update best solution 
  Store index of a swapped cell in T 
 Else 
  I f  Cost(S*) < AL Then 
   Accept move and update best solution 
   Store index of a swapped cell in T 

 End I f 
End I f 

End For  
End. 

Fig. 2. Tabu Search Algorithm for Multiobjective VLSI Cell
Placement.

is constructed and a certain number of trial moves are
made to generate a set of neighbor solutions called can-

didate list. The best individual from the list is accepted
and some characteristic of the move that resulted in this
best solution is stored in a tabu list. Then, at each subse-
quent iteration, same number of trial moves are made but
before accepting the move leading to the best neighbor
solution, it is checked in tabu list. If it is not matched
with any entry in the list, it is accepted and the tabu list
is updated. Otherwise, the best trial solution is checked
against aspiration criterion and if passed it is accepted
and tabu list is updated. If the aspiration criterion is
failed, the best trial solution is discarded and heuristic
proceeds to next iteration. A commonly used aspiration
criterion is that the best trial solution is the best solu-
tion seen so far. Other aspiration criteria can also be
used. The structure of TS used in this work is shown in
Figure 2.

A. Solution Representation and Initialization

A placement solution is an arrangement of cells in two
dimensional layout surface. So we decided to represent



solution in the form of a 2-D grid. Due to varying widths
of the cells in a circuit, all the rows can not have equal
number of cells. This fact disturbs our two dimensional
representation. For instance consider a circuit compris-
ing of 11 cells 1, 2, 3, . . . , 11. A possible layout may be as
below:

3 5 8 6
9 10
7 11 1
4 2

The above layout is constructed by computing the av-
erage row width as explained above in the cost functions
section when discussing width cost. Then we divide av-
erage row width by the smallest cell width to compute
the maximum number of locations in a row. Assume that
we have 4 locations and also we know from the min-cut
placer information that there are 4 rows in layout. Then
we start constructing the initial solution by randomly se-
lecting a cell from 11 cells and placing it in the first row.
Before placing a cell, it is checked whether adding it will
violate the width constraint, and if it does, then it is
placed at the start of next row. In the example above,
assume that sum of widths of cells 3, 5, 8, 6 was within
allowed width constraint, but adding cell 9 was violating
the width constraint, and so it was placed in second row.
Similarly, all the cells were placed on the layout. As a
result, we have five empty locations: two in second row,
one in third row, and two in last row. In order to make
it a perfect grid, we fill the empty locations by dummy
cells represented by distinct negative integers as shown
below:

3 5 8 6
9 10 -1 -2
7 11 1 -3
4 2 -4 -5

These negative numbers are used for encoding purpose
as well as for the appropriate application of genetic op-
erators like crossover and these do not play any role in
cost computation of the solution.
In the initialization step random encoded strings are

generated. For encoding purpose we use a square grid
having L slots, such that L > N , where N is the number
of cells in the circuit. Each cell is assigned a positive
integer value. Also, L − N dummy cells are created,
each dummy cell is assigned a negative integer in such a
way that not two dummy cells have the same value. To
generate the string, first row of the grid is placed first in
the string followed by the next row and so on.

B. Cost Evaluation

Since, we are addressing a multiobjective optimization
problem in which we are trying to minimize three mu-
tually conflicting objectives, therefore we should have a
measure which can quantify the overall quality of a so-
lution with respect to all three objectives collectively.
A conventional approach to this problem is the use of
weighted sum. In this approach, the costs of all the ob-
jectives are first normalized, then multiplied with a cer-
tain weight co-efficient, and finally added to obtain an
overall cost. The weights are to taken in such a way
that their sum is always 1. This approach is not used in
our implementation because it is known to have certain
problems. For instance, it is difficult to find values for
weights as these heavily affect the relative importance of
objectives.
Fuzzy logic provides a convenient alternative to

weighted sum approach and hence used in this research.
In this scheme, each solution is assigned a fitness value
between 0 and 1 that is equal to the membership value
in the fuzzy set of acceptable solution. This member-
ship value is computed using Equation 10. The fitness
of a solution is a measure of its proximity to the optimal
solution. The higher the fitness value of a solution, the
closer is it to the optimal solution. In our implementa-
tion, initial random solution is assigned a fitness value
of 0 and the optimal solution is assigned a fitness value
of 1. This implies that any solution may have a fitness
value in range 0.0-1.0.

C. Neighbor Solutions Generation

In each iteration, we generate a number of neighbor so-
lutions by making perturbations as follows: two cells are
selected randomly with the condition that both of them
should not be dummy cells at the same time, then their
locations are interchanged. The neighborhood size i.e.,
the number of neighbor solutions generated in each iter-
ation is taken depending on the circuit size i.e. number
of cells in the circuit. The value of neighborhood size is
varied from 20 solutions for small circuits to 100 solutions
for large circuits.

D. Tabu List and Aspiration Level

The characteristic of the move that we keep in tabu list is
the indices of the cells involved in interchange. The size
of tabu list is taken also depending on the circuit size i.e.
5% of the total number of cells. We have used short term
memory element in our TS implementation. The aspira-
tion criterion used is as follows: if current best solution
is the best seen so far i.e. better than the global best,



TABLE I

Comparison between costs of the best solutions generated by TS and SimE

TS SimE
Circuit L (µm) P D (ps) T(s) L (µm) P D (ps) T(s)
s298 4888 947 131 15 7130 1395 152 21
s386 7264 1815 195 29 11167 2544 221 33
s832 19869 4699 350 77 28537 6577 485 114
s641 12669 2920 673 403 13773 3107 687 264
s953 30878 4929 223 97 33484 5523 250 130
s1238 44516 13402 376 272 45140 13870 397 295
s1196 40132 12104 345 430 41861 12918 357 433
s1494 63838 15604 727 248 67944 16091 809 279
s1488 66371 16303 724 210 73696 17511 891 216
s3330 190007 25640 422 3951 193731 25373 558 5610
s5378 316361 52324 337 8778 365204 56001 441 11369

then accept the current solution as new best solution by
overriding the tabu restriction and update the tabu list.

IV. Experimental Results and Discussion

We have experimented with TS and SimE on number
of ISCAS-89 benchmark circuits. Table I compares the
quality of final solution generated by TS and SimE. The
circuits are listed in order of their complexity. Here “L”,
“P” and “D” represent the wire length, power and de-
lay costs respectively, and “T” represents execution time
in seconds. Layout width was constrained not to exceed
more than 1.2 times the average row width by fixing the
value of α in equation 9 equal to 0.2. This constraint is
satisfied in obtaining all the results shown here. The set-
tings for TS parameters like neighborhood size and tabu
list size, which produced the shown results are discussed
above in section 3. The platform used is an IBM com-
patible PC with an Intel Pentium-III 600Mhz CPU and
256MB RAM.
From the results, it is clear that TS performs better

than SimE for all the circuits in terms of quality of so-
lution. The execution time of TS is smaller than that of
SimE in all the cases except s641, for which TS had to
be run for longer time to beat the results obtained from
SimE.
Figures 3 (a) and (b) show the trend of overall fuzzy

membership of the current solution against execution
time for TS and SimE respectively, in case of test case
s3330. It can be seen that TS is more directed in term
of solution membership as compared to SimE, which ex-
hibits a random trend in the membership of the current
solution. Also, it should be noted that TS is able to reach
a membership value above 0.7 within 4000 seconds while
SimE could not reach this value even after running for

more than 5000 seconds. This shows the superiority of
TS approach over SimE approach.

V. Conclusions

In this work, we have engineered Tabu Search (TS) al-
gorithm for a hard multiobjective optimization problem
of VLSI standard cell placement. An effort is made to
simultaneously optimize three objectives namely power
dissipation, performance, and interconnect wire length.
The incorporation of fuzzy logic is suggested to integrate
the cost values of three objectives in an aggregating cost
function. The experimental results for ISCAS-89 bench-
marks clearly indicate the improvement made by our TS
approach in terms of quality of the final solution obtained
as well as the execution time. As early results have indi-
cated superiority of SimE over Simulated Annealing [13],
hence our TS approach proves to be better than SA.
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