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ABSTRACT

VLSI standard�cell placement is an NP�hard problem
to which various heuristics have been applied� In this
work� tabu search placement algorithm is parallelized
on a network of workstations using PVM� The objective
of the algorithm is to achieve the best possible solution
in terms of interconnection length� overall area of the
circuit� and critical path delay �circuit speed�� Two
parallelization strategies are integrated� functional de�
composition strategy and multi�search threads strat�
egy� In addition� domain decomposition strategy is im�
plemented probabilistically� The performance of each
strategy is observed and analyzed�

�� INTRODUCTION

Cell placement consists of �nding suitable locations for
all cells on the �nal layout of a VLSI circuit� It is a hard
combinatorial optimization problem with a number of
noisy objective functions� A category of algorithms
which were found e�ective in dealing with this class
of problems are iterative search heuristics such as Sim�

ulated Annealing �SA� �	
� Genetic Algorithm �GA� ��
�
Simulated Evolution �SE� ��
 and Tabu Search �TS� �
�
In this work� we propose a parallel tabu search algo�
rithm to address this problem�

A placement solution is evaluated with respect to
three main objectives� area� wire length� and critical
path delay� Prior to �nal layout these criteria cannot
be accurately measured� Further� it is unlikely that
a placement that optimizes all three objectives exists�
Designers usually have to make tradeo�s� To deal with
such complex objectives� we resort to the goal�directed
search approach proposed in ��
�

In the scheme used� the acceptable solution set is
modeled as a fuzzy set� For VLSI cell placement prob�
lem of minimizing three parameters� the following rule
is used to determine the membership in the fuzzy set

acceptable solution�

If a solution is within acceptable wire length AND within

acceptable delay AND within acceptable width THEN

it is an acceptable solution�

Using fuzzy algebraic notation� while adopting the AND�
like ordered weighted averaging operator of Yager ��
�
the above rule is expressed as follows�

��x� � � �min����x�� ���x�� ���x�� � �	� �� �
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where� ��x� is the membership value for solution x in
the fuzzy set acceptable solutions� and � is an averaging
constant� �i for i � 	� �� � represents the membership
values of solution x in the fuzzy sets within accept�

able wire length� within acceptable circuit delay� and
within acceptable width respectively� The membership
function of the fuzzy set corresponding to a particular
objective �i� is shown in Figure 	� The solution which
results in the maximumvalue of ��x� is reported as the
best solution found�

�� TABU SEARCH

Tabu Search starts with an initial solution s selected
randomly or using any constructive algorithm� It then
de�nes a subset V ��s�� called candidate list� of its neigh�
borhood N �s�� The algorithm selects the best solution
in V ��s� �in terms of an evaluation function� call it s��
to be considered as the next solution� If the short term
memory does not de�ne the move leading to s� as tabu�
it is accepted as the new solution even if it is worse than
the current solution in terms of the evaluation function�
However� if the move leading to s� is tabu� the solution
is not accepted unless it has some feature that makes
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Figure 	� The membership function within acceptable

criterion i� Ci�x� is cost of solution x and Oi is the
lower bound estimate of objective i�

the algorithm override its tabu status to accept it� As�
piration criterion is used to check whether the tabu
solution is accepted or not ��
� In this work a move
consists of the swapping of two cells� Nv pairs of cells
are trial swapped and the best swap among them is
considered for the next move� A compound move can
be made for d times where each time Nv other moves
are tested� where d is the desired move depth� and the
best move is taken each time� The algorithm checks if
the move is tabu by considering only the two cells that
were swapped �rst in the compound move� If the move
is found tabu� the aspiration criterion is checked� If the
move satis�es it� it is accepted� otherwise� it is rejected
and the process repeats� The tabu tenure i�e�� number
of iterations for which the move remains tabu is a pa�
rameter of the circuit size� If the tabu move leads to a
solution whose cost is better than all of those seen so
far� then the algorithm overrides the tabu status and
the move is accepted�

�� PARALLEL TABU SEARCH FOR

STANDARD�CELL PLACEMENT

The algorithm is parallelized on two levels simulta�
neously� The higher one is at the Tabu Search process
level where a master starts a number of Tabu Search

Workers �TSWs� and provides each with the same ini�
tial solution �multi�search threads�� The lower level is
the Candidate List construction level where each TSW
starts a number of Candidate List Workers �CLWs��
this is functional decomposition� The general structure
of the parallel algorithm is shown in Figure ��

The parallel search proceeds as follows� The mas�
ter initiates a number of TSWs to perform Tabu Search

starting from the given initial solution� A TSW gets all
parameters and the initial solution from the master� It
then performs a diversi�cation step where each TSW
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Figure �� Paradigm of tabu search parallel implemen�
tation�

Ni � Number of iterations�
X � Set of feasible solutions�
bs � Current best solution�
bc � Current best cost�
TL � Tabu list�
Nw � Number of workers�
�� Start with an initial feasible solution bs � X�
�� Initialize TL and bc�
�� Spawn Nw TSW workers to perform Tabu Search�
�� Send�bs�TL� bc� to all TSWs�
	� For Ni Do


� Wait for best cost from all workers�
�� Ask for bs and TL from the worker

that has the overall best�
�� Receive�s�TL��
� Update bc�
��� Send�bs�TL� bc� to all workers except sender�
��� Increment iteration number�
��� EndFor

Figure �� Algorithmic description of master process of
parallel TS�

diversi�es with respect to a di�erent range of cells so as
to enforce that TSWs don�t search in overlapping ar�
eas� Diversi�cation is performed by moves done within
the TSW range to a speci�c depth such that a di�erent
initial solution is used at each TSW� Then each TSW
starts a number of CLWs to investigate the neighbor�
hood of the current solution� It sends the parameters
and the initial solution to each CLW� It also gives each
CLW a range of cells to search the neighborhood with
respect to those cells� For every move it makes� the
CLW has to choose one of the cells from its range and
the other cell from anywhere in the whole cell space�
Therefore� the probability that two CLWs perform the
same move is equal to �

�n���� � The probability that

more than two CLWs select the same two cells is ��
This means that the probability that k CLWs make
the same move is eliminated completely if k � ��

Each CLW makes a compound move of a pre�
determined depth and keeps computing the gain� If
the current cost is improved before reaching the max�
imum depth� the move is accepted without further in�
vestigation� After �nding the compound move that im�
proves the cost the most �or degrades it the least�� the
CLW sends its best solution to the TSW that started
it� The TSW selects the best solution from the CLW



that achieves the maximum cost improvement �or the
least cost degradation�� It then checks if the move is
tabu� If it is not� it accepts it� Otherwise� the cost of
the new solution is checked against the aspiration cri�

terion and the process continues for a number of local
iterations� At the end of the local iteration count� each
TSW sends its best cost to the master process� The
master gets the overall best solution and broadcasts it
to all TSWs and the process continues for a number of
global iterations �See Figures � and ��

Ni � Number of iterations�
X � Set of feasible solutions�
s � Current solution�
s� � Best admissible solution�
bs � Current best solution�
C � Objective function�
��s� � Neighborhood of s � X�
V
� � Sample of neighborhood solutions�

TL � Tabu list�
AL � Aspiration Level�

�� Receive�s�TL�AL� from master�
�� For Ni Do

�� Perform a diversi�cation step�
�� Apply short term TS for �xed � of iterations�
	� Send AL to master�

� If the master asks for bs Then

�� Send�bs�TL� to master�
�� Else

� Receive�bs�TL�AL� from master�
��� s � bs�
��� EndIf

��� EndFor

Figure � A CLW worker process of parallel TS�

�� EXPERIMENTAL RESULTS AND

DISCUSSION

We used four ISCAS��� benchmark circuits fract� c����
c����� and struct� which have 	�� ��� 	���� and ����
cells respectively� We studied the e�ect of the degree
of low�level and high�level parallelization on the algo�
rithm performance� namely quality of best solution and
speedup� For this category of algorithms� speedup is
de�ned as follows

Speedup�n�x� �
t���x�

t�n�x�
�	�

where t���x� is the time needed to hit an x�quality solu�
tion using one Candidate List Worker �or Tabu Search

Worker � and t�n�x� is the time needed to hit the same
solution quality using nCLWs �or TSWs�� Speedup�n�x�
in this case can be greater than n because of the non�
deterministic nature of the algorithm�

E�ect of Degree of Low�level Parallelization

In this experiment� di�erent numbers of CLWs are tried
starting from 	 to  for each circuit� The number of

TSWs is  in all experiments� Twelve machines are
used as a parallel virtual machine�

Figure � shows the e�ect of changing the number
of CLWs on the best solution quality� it is clear that
increasing low level parallelization degree is bene�cial�
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Figure �� E�ect of number of CLWs on solution quality
�a� Plots for c��� and �b� Plots for c	����

Figure � shows the time needed to achieve a spe�
ci�c solution quality for all circuits� In all cases� adding
more CLWs resulted in reaching better solutions in less
time�
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Figure �� Runtime needed to achieve a solution of cost
less than x for di�erent numbers of CLWs� �a� Plots
for fract and �b� Plots for c	����

Figure � shows the speedup achieved in reaching
a speci�c solution quality for circuits fract and struct�
The �gure shows that as the number of CLWs increases
from 	 to � the speedup increases and exceeds � The
sharpness of the speedup increase depends on the cir�
cuit size and the goodness of the initial solution� For
example� for fract� the initial solution is too far from
the best reached� As a result� increasing the number of
CLWs results in a sharper change in the speedup� For
struct� the same behavior was observed because the cir�
cuit size is large� Because of communication overhead
the rate of change in the speedup goes down as the
number of CLWs is increased� In all the four experi�
ments� the critical point� where the speedup starts to
degrade� is not reached but it is clear in some curves
that it is being approached�
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Figure �� Speedup achieved in reaching a solution of
cost less than x for di�erent numbers of CLWs�

E�ect of Degree of High�level Parallelization

In this experiment� di�erent numbers of TSWs are tried
starting from 	 to � for each circuit� The number of
CLWs is �xed to 	 in all experiments� Twelve machines
are used as a parallel virtual machine�

Figure � shows the time needed to achieve a spe�
ci�c solution quality for two circuits �fract and struct��
Adding more TSWs proved to be bene�cial with re�
spect to runtime except for fract and c��� where run�
ning � TSWs took more time than running  TSWs be�
cause the circuit sizes are small� This means that com�
munication overhead involved was not compensated for
by the quality improvement�
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Figure �� Runtime needed to achieve a solution of cost
less than x for di�erent numbers of TSWs�

Figure � shows the speedup achieved in reaching
a speci�c solution quality for two circuits� For fract

the critical point� occurred at  TSWs� Adding more
TSWs degraded the speedup� For the other larger cir�
cuit �struct�� the critical point was approached but not
reached�

In general� increasing the number of CLWs per�
formed better than increasing the number of TSWs be�
cause the CLW is an inner loop for all TSWs running�
As a result� the speedup critical point was approached
using low�level parallelization faster than high�level par�
allelization�
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Figure �� Speedup achieved in reaching a solution of
cost less than x for di�erent numbers of TSWs�
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