Talk outline

- The various general iterative non-deterministic algorithms for combinatorial optimization.
 - Search, examples of hard problems
 - SA, TS, GA, SimE and StocE
 - Their background and operation
 - Parameters
 - Differences
 - Applications
 - Some research problems and related issues: Convergence, parallelization, hybridization, fuzzification, etc.
Talk outline

Combinatorics: Does a particular arrangement exist?

Combinatorial optimization: Concerned with the determination of an **optimal** arrangement or order

Hard problems: NP & NP complete.

Examples: QAP, Task scheduling, shortest path, TSP, partitioning (graphs, sets, etc), HCP, VCP, Topology Design, Facility location, etc

Optimization methods:

» **Constructive & Iterative**

» **Aim at improving a certain cost function**
Examples

- **QAP**: Required to assign M modules to L locations \((L \geq M)\), in order to minimize a certain objective
 - wire-length, timing, dissipation, area
 - Number of solutions is given by \(L!\)

- **Task Scheduling**: Given a set of tasks \((n)\) represented by an acyclic DAG, and a set of inter-connected processors \((m)\), it is required to assign the tasks to processors in order to minimize the "time to completion" of the tasks.
 - Number of solutions given by \(m^n\)
Scheduling

(a) Diagram showing the scheduling of tasks with time intervals between them.

(b) Diagram showing the flow of processes P1, P2, and P3 with their task execution times.

Tasks:
- T_1: 0, 0, 0, 0, 0
- T_2: 2, 2
- T_3: 0, 0
- T_4: 0, 0
- T_5: 0, 0

Processes:
- P1
- P2
- P3

Time intervals:
- P1: T_1, T_5
- P2: T_2
- P3: T_3, T_4

Timeline:
- 0, 4, 8, 12, 16

Note: The diagram illustrates the scheduling of tasks and processes with specific time intervals and execution times.
Purpose

- To motivate application of iterative search heuristics to hard practical engineering problems.

- To understand some of the underlying principles, parameters, and operators, of these modern heuristics.
Terminology

- **Search space**
- **Move** (perturb function)
- **Neighborhood**
- **Non-deterministic algorithms**
- **Optimal/Minimal solution**
Simulated Annealing

- Most popular and well developed technique
- Inspired by the cooling of metals
- Based on the Metropolis experiment
- Accepts bad moves with a probability that is a decreasing function of temperature
Simulated Annealing

- Most popular and well developed technique
- Inspired by the cooling of metals
- Based on the Metropolis experiment
- Accepts bad moves with a probability that is a decreasing function of temperature

$$\text{pr(accept)} = \exp(-\Delta E)/KT$$

- E represents energy (cost)
The Basic Algorithm

- Start with
 - a random solution
 - a reasonably high value of T (problem dependent)
- Call the Metropolis function
- Update parameters
 - Decrease temperature \((T^*\alpha)\)
 - Increase number of iterations in loop, i.e., \(M, (M^*\beta)\)
- Keep doing so until freezing, or, out of time
Metropolis Loop

- Begin Loop: Generate a \textit{neighbor} solution
- Compute \textit{difference} in cost between old and neighboring solution
- If $\text{cost}<0$ then accept, else accept only if
Metropolis Loop

- Begin Loop: Generate a neighbor solution
- Compute difference in cost between old and neighboring solution
- If cost < 0 then accept, else accept only if

\[\text{Random} < e^{-\Delta \text{Cost}/T} \]

- Decrement M, repeat loop until M = 0
Parameters

- Also known as the cooling schedule:
 - Comprises
 - choice of proper values of initial temperature T_0
 - decrement factor $\alpha < 1$
 - parameter $\beta > 1$
 - M (how many times the Metropolis loop is executed)
 - stopping criterion
Characteristics

- Given enough time it will converge to an optimal state
- Very time consuming
- During initial iterations, behaves like a random walk algorithm, during later iterations it behaves like a greedy algorithm, a weakness
- Very easy to implement
- Parallel implementations available
Requirements

- **Requirements:**
 - A representation of the state
 - A cost function
 - A neighbor function
 - A cooling schedule

- **Time consuming steps:**
 - Computation of cost due to move must be done efficiently (estimates of costs are used)
 - Neighbor function may also be time consuming
Applications

- Has been successfully applied to a large number of combinatorial optimization problems in
 - science
 - engineering
 - medicine
 - business
 - etc
Genetic Algorithms

- Introduced by **John Holland** and his colleagues
- Inspired by **Darwinian theory of evolution**
- **Emulates** the natural process of evolution
- Based on **theory of natural selection**
 - that assumes that individuals with certain characteristics are better able to survive
- Operate on a **set of solutions** (termed population)
- Each individual of the population is an **encoded string** (termed **chromosome**)

KFUPM-19
Genetic Algorithms

- Strings (chromosomes) represent points in the search space
- Each iteration is referred to as generation
- New sets of strings called offsprings are created in each generation by mating
- Cost function is translated to a fitness function
- From the pool of parents and offsprings, candidates for the next generation are selected based on their fitness
Requirements

- To represent solutions as strings of symbols or chromosomes
- **Operators:** To operate on parent chromosomes to generate offsprings (*crossover, mutation, inversion*)
- Mechanism for **choice of parents** for mating
- A **selection** mechanism
- A mechanism to efficiently compute the fitness
Operators

- **Crossover**: The main genetic operator
 - Types: Simple, Permutation based (such as Order, PMX, Cyclic), etc.
- **Mutation**: To introduce random changes
- **Inversion**: Not so much used in applications
Crossover

- Example:

 Chromosome for the **scheduling** problem of **eight** tasks, to be assigned to **three** processors

 \[[1 \ 2 \ 3 \ 1 \ 3 \ 1 \ 1 \ 2], \quad [1 \ 2 \ 3 \ 3 \ 1 \ 3 \ 2 \ 2] \] (index of the array refers to the task, and the value the processor it is assigned to)
Simple Crossover

- Cut and catenate
- Let the crossover point be after task 5, as shown. Then the offspring created by the simple crossover will be as follows:

- Chromosome for the scheduling problem of 8 tasks to be assigned to three processors

Parent #1: \([1\ 2\ 3\ 1\ 3\ |\ 1\ 1\ 2]\)

Parent #2: \([1\ 2\ 3\ 3\ 1\ |\ 3\ 2\ 2]\)

Offspring generated = \([1\ 2\ 3\ 1\ 3\ 3\ 2\ 2]\)
Permutation Crossovers

- Consider the linear placement problem of 8 modules (a, b, ..., g, h,) to 8 slots.

Parent #1: [h d a e b | c g f]

Parent #2: [d b c g a | f h e]

Offspring generated = [h d a e b f h e]

The above offspring is not a valid solution since modules e and h are assigned to more than one location, and modules c, and g are lost.
Order Crossovers

Parent #1: [h d a e b | c g f]

Parent #2: [d b f c a | g h e]

Offspring generated = [h d a e b | f c g]

The above offspring represents a valid solution
Mutation

- Similar to the perturb function used in simulated annealing.
- The idea is to produce incremental random changes in the offsprings.
- Important, because crossover is only an inheritance mechanism, and offsprings cannot inherit characteristics which are not in any member of the population.
- Size of the population is generally small.
Mutation

Example: Consider the population below

\[s_1 = 0 \ 1 \ 1 \ 0 \ 0 \ 1 \]
\[s_2 = 1 \ 0 \ 1 \ 1 \ 0 \ 0 \]
\[s_3 = 1 \ 1 \ 0 \ 1 \ 0 \ 1 \]
\[s_4 = 1 \ 1 \ 1 \ 0 \ 0 \ 0 \]

Observe that the second last gene in all chromosomes is always \(0\) and the offsprings generated by simple crossover will never get a 1.
Decisions to be made

- What is an **efficient chromosomal** representation?
- Probability of crossover (P_c)? Generally close to 1
- Probability of mutation (P_m) kept very very small, 1% - 5% (Schema theorem)
- Type of crossover? and, what mutation scheme?
- Size of the population? **How to construct the initial population?**
- What selection mechanism to use, and the generation gap (i.e., what percentage of population to be replaced during each generation?)
Problems

- Mapping cost function to fitness
- Premature convergence can occur. Scaling methods are proposed to avoid this
- Requires more memory and time
- Several parameters, and can be very hard to tune
Applications

- Classical hard problems (TSP, QAP, Knapsack, clustering, N-Queens problem, the Steiner tree problem, Topology Design, etc.)
- Problems in high-level synthesis and VLSI physical design,
- Others such as:
 - Scheduling,
 - Power systems, telecommunications (maximal distance codes, telecom NW design), etc.
 - Fuzzy control (GAs used to identify fuzzy rule set)
Example

aghcbidef is a possible chromosome
Some Variations

- 2-D chromosomes
- Gray versus Binary encoding
- Multi-objective optimization with GAs
- Constant versus dynamically decreasing population
- Niches, crowding and speciation
- Scaling
- etc
Tabu Search

- Introduced by **Fred Glover**
- **Generalization of Local Search**
- At each step, the **local neighborhood of the current solution** is explored and the best solution is selected as the next solution
- This best neighbor solution is **accepted even if it is worse** than the current solution (hill climbing)
Central Idea

- Exploitation of memory structures
- Short term memory
 - Tabu list
 - Aspiration criterion
- Intermediate memory for intensification
- Long term memory for diversification
Basic Short-Term TS

1. Start with an initial feasible solution
2. Initialize Tabu list and aspiration level
3. Generate a **subset** of neighborhood and find the best solution from the generated ones
4. If move in not in **tabu list** then accept else
 If move satisfies **aspiration criterion** then accept
5. Repeat above 2 steps until **terminating condition**
Intensification/Diversification

- **Intensification**: Intermediate term memory is used to target a specific region in the space and search around it thoroughly.
- **Diversification**: Long term memory is used to store information such as frequency of a particular move, etc., to take search into unvisited regions.
Implementation related issues

- Size of candidate list?
- Size of tabu list?
- What aspiration criterion to use?
- Fixed or dynamic tabu list?
- What intensification strategy?
- What diversification scheme to use?
- And several others
Tabu list and Move Attributes

- Moves or attributes of moves are stored in tabu lists (storing entire solutions is expensive)
- Tabu list size is generally small (short-term)
- Tabu list size may be fixed or changed dynamically
- Possible data structures are queues and arrays
Related Issues

- Design of evaluator functions
- Candidate list strategies
- Target analysis
- Strategic oscillation
- Path relinking
- Parallel implementation
- Convergence aspects
- Applications (again several)
Simulated Evolution

- Like GAs, also mimics biological evolution
- Each element of the solution is thought of as an individual with some fitness (goodness)
- The basic procedure consists of
 - evaluation
 - selection, and,
 - allocation
- Based on compound moves
Evaluation

- Goodness is defined as the ratio of optimal cost to the actual cost
 \[\forall i, g_i = \frac{O_i}{C_i} \]

- Selection is based on the goodness of the element of a solution
- The optimal cost is determined only once
- The actual cost of some individuals changes with each iteration
Selection

● **Selection**: The higher the goodness value, higher the chance of the module staying in its current location

\[P_i = \min(1 - g_i, 1) \]

where \(g_i \) is the goodness of element \(i \)

● That is, low goodness maps to a high probability of the module being altered.

● The selection operator has a non-deterministic nature and this gives SimE the hill climbing capability

● Selection is generally followed by sorting
Allocation

- This is a complex form of genetic mutation (compound move)
- This operator takes two sets (selection S and remaining set R) and generates a new population
- Has the most impact on the rate of convergence
Comparison of SimE and SA

- In SA a perturbation is a single move
- For SA, the elements to be moved are selected at random
- SA is guided by a parameter called temperature, while for SimE the search is guided by the individual fitness of the solution components
Comparison of SimE and GA

- SimE works on a single solution called population while in GA, the set of solutions comprises the population.
- GA relies on genetic reproduction (using crossover, mutation, etc).
- In SimE, an individual is evaluated by estimating the fitness of each of its genes. (Genes with lower fitness have a higher probability of getting altered.)
Other facts

- Fairly simple, yet very powerful
- Has been applied to several hard problems (such as VLSI standard cell placement, high level synthesis, etc)
- Parallel implementations have been proposed (for MISD and MIMD)
- Convergence analysis presented by designers of the heuristic and others
Stochastic Evolution

- **StoE**, often confused with Simulated Evolution
- **Distinguishing features:**
 - The probability of accepting a bad move increases if no good solutions are found
 - Like SimE, is based on compound moves (perturb function)
 - There is a built-in mechanism to reward the algorithm whenever a good solution is found
Parameters & Inputs

- An initial solution S_0
- An initial value of control parameter p_0
 - $\text{Gain (m)} > \text{RANDINT}(-p,0)$ (accepting both good and poor solutions)
- Stopping criterion parameter called R
Functions

- **PERTURB**: To make a compound move to a new state.

- **UPDATE** function: $p = p + \text{incr}$ (p is incremented to allow uphill moves)

- Infeasible solutions are accepted, and then a function **MAKESTATE** is invoked to undo some last k moves.
Comparison of StocE and SA

- In StocE a perturbation is a **compound** move
- There is **no** hot and cold regime
- In SA, the **acceptance probability** keeps **decreasing** with time (decreasing values of temperature)
- StocE introduces the **concept of reward** whereby the search algorithm cleverly rewards itself whenever a good move is made
Common features of All heuristics

- All are general iterative heuristics, can be applied to any combinatorial optimization problem
- All are conceptually simple and elegant
- All are based on moves and neighborhood
- All are blind
- All occasionally accept inferior solutions (i.e., have hill-climbing capability)
- All are non-deterministic (except TS which is only to some extent)
- All (under certain conditions) asymptotically converge to an optimal solution (TS and StocE)
Some Research Areas

- **Applications** to various hard problems of current technology?
- **Hybridization**?
 - How to enhance strengths and compensate for weaknesses of two or more heuristics
 - Examples: SA/TS, GA/SA, TS/SimE, etc
- **Fuzzy logic** for multi-objective optimization
- **Parallel implementations**
- **Convergence aspects**