
HPTS: Heterogeneous Parallel Tabu Search for

VLSI Placement
Ahmad Al-Yamani1 Sadiq M. Sait1 Hassan R. Barada2

1Computer Engineering Department,

King Fahd University of Petroleum & Minerals,

Dhahran 31261, Saudi Arabia

2Etisalat College of Engineering, Sharjah, UAE

E-mail: yamani@stanford.edu, sadiq@ccse.kfupm.edu.sa, hbarada@ece.ac.ae

Abstract - Parallelizing any algorithm on clus-
ter of heterogeneous workstations is not easy,
as each workstation requires different wall clock
time to execute the same instruction set. In this
work, a parallel tabu search algorithm for het-
erogeneous workstations is presented using PVM.
Two parallelization strategies, i.e., functional de-
composition and multi-search thread strategies
are integrated. The proposed algorithm is tested
on VLSI standard cell placement problem, how-
ever, the same algorithm can be used on any com-
binatorial optimization problem. The results are
compared ignoring heterogeneity and are found
to be superior in terms of execution time.

I. Introduction

Tabu Search (TS) belongs to the class of general it-
erative heuristics that are used for solving hard combi-
natorial optimization problems. It is a generalization of
local search that searches for the best move in the neigh-
borhood of the current solution. However, unlike local
search, TS does not get trapped in local optima because
it also accepts bad moves if they are expected to lead to
unvisited solutions [1], [2].
Because of its search strategy the parallelization of TS

can result in improved solution quality and reduced ex-
ecution time. Encouraging results are obtained for com-
putationally intensive tasks even with a small number of
workstations in a local area network.
In ’Distributed Computing’, several interconnected

computers work together to solve a large problem [3].
The benefits of creating a distributed computing environ-
ment employing a network of workstations has been ad-
dressed and investigated. These benefits include: (i) cost

effectiveness compared to an expensive large multipro-
cessor supercomputer alternative [4], (ii) the utilization
of the abundant computation power of PCs and worksta-
tions that remain idle for a large fraction of time, (iii) the
availability of high speed transmission links that have ca-
pacities in the order of gigabits/sec [5], etc., to name a
few. Researchers from Oak Ridge National Laboratory,
the University of Tennessee, and Emory University, de-
veloped a Parallel Virtual Machine (PVM) system that
assists in the implementation of developed parallel al-
gorithms to be executed on a network of heterogeneous
workstations. The algorithm is developed as a collec-
tion of communicating tasks, where, message passing,
format conversion, task scheduling, etc., are handled by
PVM [3], [6].

II. Multiobjective VLSI Cell Placement

Cell placement consists of finding suitable locations for
all cells on the final layout of a VLSI circuit. It is a hard
combinatorial optimization problem with a number of
noisy objective functions.
A placement solution is evaluated with respect to three

main objectives: area, wire length, and critical path de-
lay. Prior to final layout these criteria cannot be accu-
rately measured. Further, it is unlikely that a placement
that optimizes all three objectives exists. Designers usu-
ally have to make tradeoffs. To deal with such complex
objectives, we resort to the goal-directed search approach
proposed in [7]. In the scheme used, the acceptable solu-
tion set is modeled as a fuzzy set. For placement prob-
lem minimizing 3 parameters, the following rule is used
to determine the membership in the fuzzy set acceptable
solution:

If a solution is within acceptable wire length AND within
acceptable delay AND within acceptable width THEN it



µ

Ci/Oi

i
c

µ i
c
(x)

1.0

1.0

Ci(x)/Oi gi

Fig. 1. The membership function within acceptable criterion

i. Ci(x) is cost of solution x and Oi is the lower bound
estimate of objective i.

is an acceptable solution.

Using fuzzy algebraic notation, while adopting the AND-
like ordered weighted averaging operator of Yager [8], the
above rule is expressed as follows:

µ(x) = β ×min(µ1(x), µ2(x), µ3(x)) + (1− β)×
1

3

3
∑

i=1

µi(x)

where, µ(x) is the membership value for solution x in
the fuzzy set acceptable solutions, and β is an averaging
constant. µi for i = 1, 2, 3 represents the membership
values of solution x in the fuzzy sets within acceptable

wire length, within acceptable circuit delay, and within

acceptable width respectively. The membership function
of the fuzzy set corresponding to a particular objective
‘i’ is shown in Figure 1. The solution which results in the
maximum value of µ(x) is reported as the best solution
found.

III. Parallel Tabu Search Algorithm (PTS)

Sequential Tabu Search starts with an initial solution
s selected randomly or using any constructive algorithm.
It then defines a subset V ∗(s), called candidate list, of
its neighborhood N(s). The algorithm selects the best
solution in V ∗(s) (in terms of an evaluation function)
call it s∗, to be considered as the next solution. If the
short term memory does not define the move leading to
s∗ as tabu, it is accepted as the new solution even if it is
worse than the current solution in terms of the evaluation
function. However, if the move leading to s∗ is tabu, the
solution is not accepted unless it has some feature that
makes the algorithm override its tabu status to accept it.
Aspiration criterion is used to check whether the tabu
solution is accepted or not [1].

The algorithm is parallelized on two levels simul-
taneously. The higher one is at the TS process level
where a master starts a number of TSWs (Tabu Search

TS Master

TS Worker

Candidate
List Worker

Candidate
List Worker

Candidate
List Worker

Candidate
List Worker

Candidate
List Worker

Candidate
List Worker

TS Worker TS Worker

Fig. 2. Paradigm of tabu search parallel implementation.

Ni : Number of iterations.
X : Set of feasible solutions.
bs : Current best solution.
bc : Current best cost.
TL : Tabu list.
Nw : Number of workers.
1. Start with an initial feasible solution bs ∈ X.
2. Initialize TL and bc.
3. Spawn Nw TSW workers to perform Tabu Search.
4. Send(bs, TL, bc) to all TSWs.
5. For Ni Do

6. Wait for best cost from all workers.
7. Ask for bs and TL from the worker

that has the overall best.
8. Receive(s, TL).
9. Update bc.
10. Send(bs, TL, bc) to all workers except sender.
11. Increment iteration number.
12. EndFor

Fig. 3. Algorithmic description of master process of parallel
TS.

Workers) and provides each with the same initial solution
(multi-search threads). The lower level is the Candidate

List construction level where each TSW starts a number
of CLWs (Candidate List Workers), this is functional

decomposition. The general structure of the parallel al-
gorithm is shown in Figure 2.

The parallel search proceeds as follows. The master initi-
ates a number of TSWs to perform TS starting from the
given initial solution. A TSW gets all parameters and
the initial solution from the master. It then performs a
diversification step where each TSW diversifies with re-
spect to a different range of cells so as to enforce that
TSWs don’t search in overlapping areas. Diversification
is performed by moves done within the TSW range to
a specific depth such that a different initial solution is
used at each TSW. Then each TSW starts a number of
CLWs to investigate the neighborhood of the current so-
lution. It sends the parameters and the initial solution
to each CLW. It also gives each CLW a range of cells to
search the neighborhood with respect to those cells. For
every move it makes, the CLW has to choose one of the
cells from its range and the other cell from anywhere in
the whole cell space. Therefore, the probability that two
CLWs perform the same move is equal to 1

(n−1)2 . The



Ni : Number of iterations.
X : Set of feasible solutions.
s : Current solution.
s∗ : Best admissible solution.
bs : Current best solution.
C : Objective function.
ℵ(s) : Neighborhood of s ∈ X.
V
∗ : Sample of neighborhood solutions.

TL : Tabu list.
AL : Aspiration Level.

1. Receive(s, TL, AL) from master.
2. For Ni Do

3. Perform a diversification step.
4. Apply short term TS for fixed # of iterations.
5. Send AL to master.
6. If the master asks for bs Then

7. Send(bs, TL) to master.
8. Else

9. Receive(bs, TL, AL) from master.
10. s = bs.
11. Endif

12. EndFor

Fig. 4. A CLW worker process of parallel TS.

probability that more than two CLWs select the same
two cells is 0. This means that the probability that k
CLWs make the same move is eliminated completely if
k > 2.
Each CLW makes a compound move of a predeter-

mined depth and keeps computing the gain. If the
current cost is improved before reaching the maximum
depth, the move is accepted without further investiga-
tion. After finding the compound move that improves the
cost the most (or degrades it the least), the CLW sends
its best solution to the TSW that started it. The TSW
selects the best solution from the CLW that achieves the
maximum cost improvement (or the least cost degrada-
tion). It then checks if the move is tabu. If it is not,
it accepts it. Otherwise, the cost of the new solution is
checked against the aspiration criterion and the process
continues for a number of local iterations. At the end of
the local iteration count, each TSW sends its best cost
to the master process. The master gets the overall best
solution and broadcasts it to all TSWs and the process
continues for a number of global iterations (See Figures 3
and 4).

IV. PTS On Hetrogeneous Workstations

Normally, a network of workstations is composed of
heterogeneous machines. Heterogeneity can be of vari-
ous types such as the machine architecture, data format,
computational speed, network type, machine load, and
network load. PVM can take care of machine architec-
ture heterogeneity and data format conversion.
In our implementation of parallel tabu search, we ac-

count for speed and load heterogeneity by letting the
master receive the best cost from any TSW that has fin-

ished the local iterations. Once the number of TSWs
that gave their best cost to the master reaches half the
total number of TSWs, the master sends a message to all
other TSWs forcing them to report whatever best cost
they have achieved. TSWs check for such a message
in their buffers periodically (every 10 iterations). Once
they receive the message, they kill the currently running
CLWs and report to the master their best achieved costs.
The same approach is followed in the communication

between TSWs and their own CLWs that check for a
message from their parents frequently. That message ei-
ther kills them, if it is the TS master that is asking the
TSW to report, or asks them for their best achieved solu-
tions if half of the CLWs have reported their best. This
approach is followed in order to account for the hetero-
genity in workstation’s speeds and loads as well as the
varying network load.
Experiments are conducted on three different speed

levels of machines and four different architectures. These
architectures are IPX/SPARC, SparcStation 10, LX/
SPARC and UltraSparc 1. All machines have the same
operating system (Solaris 2.5).

V. Experiments and Results

Seven different ISACAS-89 benchmark circuits are
used in the experiment. In this experiment, the effect
of accounting for speed and load heterogeneity of various
machines was seen by performing two runs. In the first
one (heterogeneous run), the algorithm was run while ac-
counting for speed and load heterogeneity by making the
master ask for best solutions from all TSWs once half of
them complete all assigned iterations, and report their
best to their parent. TSWs do the same by asking their
CLWs to submit their best solutions once half of them
report their best to the parent. This is a knowledge col-
legial mode of operation with respect to the control and
communication dimension. In the second run (homoge-
neous run), each parent waits for all its child processes
to finish and return their new best. In all experiments
twelve machines were used to make the Parallel Virtual
Machine. These machines include seven high-speed ma-
chines (UltraSparc 1), 3 medium-speed machines (Sparc-
Station 10), and 2 low-speed machines (LX/SPARC), all
running the same operating system (Solaris 2.5) and in-
terconnected by a 10BaseT Ethernet segment.
PVM takes care of distributing processes between ma-

chines. In both runs, 4 TSWs and 4 CLWs per TSW were
used. The run that does not account for heterogeneity
is supposed to give better solutions because the parent
waits for all of its children to give their best solutions and
does not force any one to stop searching because others
have finished. However, since the number of global it-



erations is maintained the same for both cases, the het-
erogeneous run-time is expected to be far less than the
homogeneous runtime.
Figure 5 shows the best quality of solution achieved

versus execution time for runs where heterogeneity is ig-
nored (assuming a homogenous environment) and where
heterogenity is accounted for. Except for one circuit
(c499), no noticeable difference in solution quality was
observed. For c499, there is a difference in solution qual-
ity but at the expense of larger runtime.
Table I shows the runtime needed for heterogeneous

and homogeneous runs. The table clearly indicates that
for all test cases the parallel implementation that ac-
counts for heterogeneity results in a reduction of exe-
cution by a factor of 1.4 to almost 2.00 with respect to
the homogeneous implementation.

TABLE I

Runtime comparison of homogeneous and

heterogeneous runs (in Seconds).

Circuit Hom. Runtime Het. Runtime %Impt

highway 2316 1631 1.42

fract 11194 5626 1.99

c499 5722 3060 1.87

c532 8615 4839 1.78

c880 32361 19550 1.66

c1355 42560 27822 1.53

struct 76954 43332 1.78

Figure 5 shows that towards the end of the experiment,
the heterogeneous run is doing either better than or at
least as good as the homogeneous run, but never performs
worse. For some circuits like highway, c532 and c1355,
the heterogeneous run keeps performing better than the
homogeneous run throughout the execution. For c499,
the heterogeneous run starts by performing worse and
afterwards it outperforms the homogeneous run.
In another experiment, it was determined that if it is

useful (or not) to include slower machines in the parallel
virtual machine, because the master keeps stopping them
once the other machines report their best solutions. To
see the contribution of the slower machines in the pro-
posed strategy, an experiment was conducted where one
high-speed, one medium-speed, and one low-speed ma-
chine were used as a parallel virtual machine. A single
TSW was spawned on each machine with one CLW per
TSW. As before, once a TSW reports its best solution to
the master, the master causes all others to stop and re-
port their best solutions to it. By monitoring the number
of solutions reported by each TSW within various cost
ranges, which machine is contributing more to the search

with useful results can be determined. Figure 6 shows the
results of the experiment ran on c499 for 500 global it-
erations. The results show that the contributions of the
three machines are nearly equal in all cost ranges. This
behavior is attributed to the non-deterministic nature of
the search and to the diversification step performed by
the CLWs as well as the synchronization step performed
by the master process at the end of each global iteration.

VI. Conclusion

A parallel Tabu Search algorithm on hetrogeneous
workstations for VLSI placement is presented in this pa-
per. Functional decomposition and multi-search thread
strategies were used for parallelization using PVM. A
strategy to run the algorithm on hetrogeneous worksta-
tions was proposed and experimented on different bench-
mark circuits and compared with the test where hetro-
geneity was not taken into account. The proposed strat-
egy performed better in terms of run-time for producing
same or better quality solutions.

Acknowledgement:

Authors thank King Fahd University of Petroleum
& Minerals, Dhahran, Saudi Arabia, for support under
project # COE/ITERATE/221.

Cost Range

[1,3) [5,7) [9,11) [13,15) [17,19) [21,23)

N
um

be
r 

of
 S

ol
ut

io
ns

0

50

100

150

200

250

300

350

400

High Speed Medium Speed Low Speed

Number of Solutions vs. Cost Range for
Different Machine Speeds
Circuit: c499

Fig. 6. Number of solutions provided by machines of different
speeds within various solution ranges.

References

[1] Sadiq M. Sait and Habib Youssef. Iterative Computer Algo-

rithms and their Applications in Engineering. IEEE Computer
Society Press, 1999.

[2] F. Glover, E. Taillard, and D. de Werra. A user’s guide to tabu
search. Annals of Operations Research, 41:3–28, 1993.

[3] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang,
Robert Manchek, and Vaidy Sunderam. PVM Parallel Virtual

Machine: A Users’ Guide and Tutorial for Networked Par-



Time (sec.)

10 180 350 520 690 860 1030 1200 1370 1540

B
es

t C
os

t

1.2

1.5

1.8

2.1

Het Hom

Best Cost vs. Runtime for Heterogeneous
and Homogeneous Runs
Circuit: highway

Time (sec.)

20 340 660 980 1300 1620 1940 2260 2580 2900

B
es

t C
os

t

6

9

12

15

Het Hom

Best Cost vs. Runtime for Heterogeneous
and Homogeneous Runs
Circuit: c499

(a) (b)

Time (sec.)

25 525 1025 1525 2025 2525 3025 3525 4025 4525

B
es

t C
os

t

6

7

8

9

Het Hom

Best Cost vs. Runtime for Heterogeneous
and Homogeneous Runs
Circuit: c532

Time (sec.)

35 2835 5635 8435 11235 14035 16835 19635 22435 25235

B
es

t C
os

t

1.7

3.7

5.7

7.7

Het Hom

Best Cost vs. Runtime for Heterogeneous
and Homogeneous Runs
Circuit: c1355

(c) (d)

Time (sec.)
40 4400 8760 13120 17480 21840 26200 30560 34920 39280

B
es

t C
os

t

3

3.4

3.8

4.2

Het Hom

Best Cost vs. Runtime for Heterogeneous
and Homogeneous Runs
Circuit: struct

Time (sec.)
15 585 1155 1725 2295 2865 3435 4005 4575 5145

B
es

t C
os

t

1

7

13

19

Het Hom

Best Cost vs. Runtime for Heterogeneous
and Homogeneous Runs
Circuit: fract

(e) (f)

Fig. 5. Best cost versus runtime in Seconds for heterogeneous and homogeneous runs.

allel Computing. The MIT Press, Cambridge, Massachusetts,
London, England, 1994.

[4] M. Lewis and R. Cline. PVM communication performance in a
switched FDDI heterogeneous distributed computing environ-
ment. In IEEE Workshop on Advances in Parallel and Dis-

tributed Systems, pages 13–19, October 1993.

[5] P. Crandall, E. Sumithasri, and M. Clement. Performance
comparison of desktop multiprocessing and workstation cluster
computing. In 5th IEEE Int’l Symposium on High Performance

Distributed Computing, pages 272–281, Aug 1996.

[6] G. Geist and V. Sunderam. The PVM system: Supercomputer
level concurrent computation on a heterogeneous network of
workstations. In 6th Distributed Memory Computing Confer-

ence, pages 258–261, May 1991.

[7] Sadiq M. Sait, Habib Youssef, and Ali Hussain. Fuzzy simulated
evolution algorithm for multiobjective optimization of VLSI
placement. In Proceedings of IEEE International Congress

on Evolutionary Computation, Washington D.C., pages 91–97,
July 1999.

[8] Ronald Yager. On ordered weighted averaging aggregation op-

erators in multicriteria decisionmaking. IEEE Transactions

Systems, man, and Cybernetics, 18(1):183–190, January 1988.


