

Click Here to upgrade to Unlimited Pages and Expanded Features

Design of Digital Circuits Using Evolutionary Algorithms

Uthman Al-Saiari

Click Here to upgrade to Unlimited Pages and Expanded Features

Objective

É To provide an overview of the current use of evolutionary techniques to automate the design of combinational circuits.

É Discuss what are the possible areas of improvements.

Click Here to upgrade to Unlimited Pages and Expanded Features

Introduction

É Design = Knowledge + Creativity
É Artificial Intelligence (AI) is expensive.
É Karnaugh Maps & Quine-McCluskey method (mechanical).

É Evolutionary techniques in design of digital circuits is a very new area.

Click Here to upgrade to Unlimited Pages and Expanded Features

tatement of the Problem

É Design a combinational circuit that performs a certain specified function (truth table).

É Using a set of logic gates (AND, OR, í etc).

É Should meet a certain minimal-cost criteria which may be a single/multiple objective.

Click Here to upgrade to Unlimited Pages and Expanded Features

What is Given?

É Truth table.

É Types of logic gates (AND, OR, XOR,í etc).

É Any Evolutionary Algorithm (GA, SimE, GP, EP, í ect).

Click Here to upgrade to Unlimited Pages and Expanded Features

Circuit Design Example

É Done using GA (by Coello).
É Digital circuit is represented as a matrix.
É A single chromosome is built from the matrix.

Click Here to upgrade

Your complimentary use period has ended. Thank you for using PDF Complete.

Circuit Design Example

ÉEvery gate type is encoded (AND = 0, OR = 1, XOR = 2, NOT = 3, WIRE = 4).

ÉThe chromosome for the above 5x5 matrix:

0 1 2, 0 1 0, 2 3 2, 2 3 0, 4 4 4, 5 6 2, 5 6 0, 7 7 4, 8 8 4, 9 9 4, 10 11 2, 10 11 2, 12 12 4, 13 13 4, 14 14 4, 15 15 4, 16 17 18

Click Here to upgrade to Unlimited Pages and Expanded Features

Circuit Design Example

É Genetic operation used are:
 ó Crossover operation
 É Two-point crossover.
 ó Mutation.

Click Here to upgrade to Unlimited Pages and Expanded Features

Circuit Design Example

É Fitness function used as follows:ó Check for 100% functionality firstó Maximize number of wire (min # of gates).

Unlimited Pages and Expanded Features

Your complimentary use period has ended. Thank you for using PDF Complete.

Circuit Design Example

Unlimited Pages and Expanded Features

Your complimentary use period has ended. Thank you for using PDF Complete.

Circuit Design Example

Genetic Algorithm	Human Designer 1	Human Designer 2
$F = Z(X+Y) \oplus (XY)$	$F = Z(X \oplus Y) + Y(X \oplus Z)$	$F = X'YZ + X(Y \oplus Z)$
4 gates	$5 \; \mathrm{gates}$	6 gates
2 ANDs, 1 OR, 1 XOR	2 ANDs, 1 OR, 2 XORs	3 ANDs, 1 OR, 1 XOR, 1 NOT

Click Here to upgrade to Unlimited Pages and Exp Your complimentary use period has ended. Thank you for using PDF Complete.

Circuit Design Example

Circuit Design Example

Click Here to upgrade to Unlimited Pages and Expanded Features

Click Here to upgrade to Unlimited Pages and Expanded Features

Circuit Design Example

ÉThis solution is not entirely obvious for a human designer. ÉThe GA tends to use nested XOR which reduces the number of gates.

ÉGA produces circuits that are difficult for a human designer to design and even to understande.

Click Here to upgrade to Unlimited Pages and Expanded Features

Conclusion

É A technique to design combinational logic circuit using GA is shown.

É There is much to be improved::

- ó Consider other evolutionary algorithms such as SimE and Tabu Search
- ó A better chromosomal representation
- ó Use of multiobjective fitness function
- ó Genes fitness evaluation instead of chromosome fitness
- ó Intelligent crossover operation and mutation

Click Here to upgrade to Unlimited Pages and Expanded Features

Thank You

