Problem 1

Grid graph (n x n) has number of nodes = N=n x n and number of edges = 2n(n-1). It has a known minimal cost, which is equal to n. For example if we have a 4 x 4 grid graph, then the number of nodes = 16, number of edges = 24, and the minimum cost is 4. This cost can be obtained by cutting the graph vertically or horizontally, as shown in figure 1(a) below. Notice the ordering of the nodes so that we can get cost equal to the number of edges (i.e. all edges are cut). So, grid graph with (n x n) nodes can be used to test the partitioning heuristic. We choose the initial partition (seed) to be the worst configuration where all edges are cut as shown Figure 1(b). This can be achieved by putting all even nodes in one partition and all odd nodes in the other partition, and, then we test the heuristic and observe the result and how is it close to the minimal cost that we already know.

(note: n x n grid is a special case of the generalized m x n grid graph which also has a known minimal cost equal to n, and m must be even and the cut is horizontal).

	
[image: image1.wmf]12

11

13

14

10

9

15

16

4

3

5

6

2

1

7

8

Horizontal cut

vertical cut

	
[image: image2.wmf]12

13

14

10

9

15

16

4

3

5

6

2

1

8

7

11

	(a) Grid graph 4x4 and two possible cuts which give a minimal cost of 4.
	(b) Here, the nodes inside the shaded area belong to one partition and the other nodes belong to the other partition. All edges are cut, so, the cost here is the highest = 24.

Figure 1: a 4 x 4 grid graph.

Problem 2
From the first iteration we have obtained the elements of A & B as follows:

A = {1,2,3}, B = {4,5,6}, we will use this as initial partition for the next iteration.

Step 1: Initialization

A’ = A = {1,2,3}, & B’ = B = {4,5,6}

Step 2: Compute D-values.

	D1=
	E1 - I1 = 0 - 1 = -1
	 D4=
	E4 - I4 = 1 - 2 = -1

	D2=
	E2 - I2 = 1 - 2 = -1
	 D5=
	E5 - I5 = 0 - 2 = -2

	D3=
	E3 - I3 = 0 - 1 = -1
	 D6=
	E6 - I6 = 0 - 2 = -2

Step 3: Compute gains:

	g14=
	D1 + D4 - 2c14 = -2
	g24=
	D2 + D4 - 2c24= -4
	g34=
	D3 + D4 - 2c34= -2

	g15=
	D1 + D5 - 2c15 = -2
	g25=
	D2 + D5 - 2c25= -3
	g35=
	D3 + D5 - 2c35= -3

	g16=
	D1 + D6 - 2c16 = -3
	g26=
	D2 + D5 - 2c36= -3
	g36=
	D3 + D6 - 2c36= -3

In the above list there are more than one gain values that correspond to maximum, so we arbitrarily choose g14 swap (1, 4). So, (a1, b1)=(1,4) and gain g14 = g1= -2 and A’ = A’ - {1}= {2,3}, B’ = B’-{4}= {5,6}

Step 4: update D-values.

	D2’=
	D2 + 2c21 - 2c24= -1

	D5’=
	D5 + 2c51 - 2c54= -4

	D6’=
	D6 + 2c61 - 2c64= -4

Repeat Step 3 with Di=D’i and recompute the gains:

	g25=
	D2 + D5 - 2c25= -5

	g26=
	D2 + D6 - 2c36= -5

	g35=
	D3 + D5 - 2c35= -5

	g36=
	D3 + D6 - 2c36= -5

In the above list there are more than one gain values that correspond to maximum, so we arbitrarily choose g36 swap (3, 6). So, (a2, b2)=(3,6) and gain g36 = g2= -5 and A’ = A’ - {3}= {2}, B’ = B’-{6}= {5}.

The new D-values are:

	D2’=
	D2 + 2c23 - 2c26= -1

	D5’=
	D4 + 2c42 - 2c46= -1

And the corresponding gain is:

	g34=
	D3 + D4 - 2c34= -1

So, (a3, b3)=(2,5) and gain g25 = g3= -5.

Step 5: Detarmin k
G = g1 + g2 + g3 = -2-5-1= -8 < 0. So, there is no k such that Gk> 0, then the current partition can not be improved and remains as is. Thus, A = {1,2,3}, B = {4,5,6}.

Problem 3 (Simulated Annealing Example):
Since the problem size is small, even when changing some parameters we cannot observe the output and test how power of simulated annealing is.

The circuit used is 10 cells and 10 nets as shown in Table below. The assumption given is that all cells are of the same size.

	Net
	
	
	
	
	Weight

	N1 =
	1
	2
	4
	5
	1

	N2 =
	2
	3
	5
	
	1

	N3 =
	3
	6
	10
	4
	2

	N4 =
	4
	8
	3
	7
	1

	N5 =
	5
	7
	1
	6
	3

	N6 =
	6
	4
	7
	2
	3

	N7 =
	7
	9
	5
	
	2

	N8 =
	8
	2
	
	
	3

	N9 =
	9
	10
	5
	
	2

	N10 =
	10
	5
	
	
	4

Initial solution: Cells are selected randomly and assigned to blocks A & B.

Neighbor function: Pairwise exchange.

Parameters:
Initial Temperature (To) = 10

Note: If the problem size is big, I should first choose To with some low value and observe the number of accepted moves compared to the total moves and increase To accordingly to obtain acceptable number of moves.
Alpha = 0.9

Beta = 1

Maximum Time = 100

M = 10

I’ve tried to change parameters, however, nothing much to say since the problem size is small. For the above parameters, I’ve obtained the following:

A = [3 5 9 1 10], B = [7 2 6 8 4] and Cost = 10. Also, I’ve obtained with same cost different configuration. The variation in cost is shown in the figure below.

[image: image3.png]st

22

20

18

14

12

10
0

20

30

40

50
Iterations

60

70

80

90

100

Variation of cost

Matlab Code is in the next page. Type TestSA in Matlab command window to run.

_1129005622.vsd

_1129006636.vsd

